Motor Programs

- Motor system: Muscles and neurons that control muscles
- Role: Generation of coordinated movements
- Parts of motor control
 - Spinal cord \rightarrow coordinated muscle contraction
 - Brain \rightarrow motor programs in spinal cord

The Somatic Motor System

- The Lower Motor Neuron
 - Lower motor neuron: Innervated by ventral horn of spinal cord
 - Upper motor neuron: Supplies input to the spinal cord
Spinal cord injuries
- Motor neurons below the injury remain intact.
- Motor cortex commands do not reach muscles and muscles atrophy.
- Electrodes can artificially activate muscles and prevent atrophy

UPPER MOTOR NEURON SYNDROME DAMAGE TO DESCENDING PATHWAYS
Damage to the pathways driving the motor neurons
- Tonicity
 - **TONE AND REFLEXES INCREASED**
 - Spastic cerebral palsy for example

LOWER MOTOR NEURON SYNDROME - DAMAGE DIRECT TO MOTOR NEURONS
Diseases or lesions at the level of the motor neurone or its axon
- Atrophy - loss of muscle volume
 - **DECREASED TONE AND REFLEXES**
 - Poliomyelitis for example

Guillain Barre syndrome
(ghee yan bah ray)
- Syndrome not disease (unclear what disease)
- Paralysis (can be total)
- Attacks Schwann cells, then axons
- Autoimmune
- Similar to MS in CNS
- 70% recovery! Why? ???
- Following vaccine (rabies, swine flu)
- 1 case per million 1 death per 20 million (normal?)

The Somatic Motor System

THREE Inputs to Alpha Motor Neurons

![Diagram of three inputs to alpha motor neurons]

- Feedback on muscle length (dorsal root ganglia)
The Somatic Motor System

- Types of Motor Units
 - Red muscle fibers: Large number of mitochondria and enzymes, slow to contract, can sustain contraction
 - White muscle fibers: Few mitochondria, anaerobic metabolism, contract and fatigue rapidly (but POWERFUL - escape)
 - Fast motor units: Rapidly fatiguing white fibers
 - Slow motor units: Slowly fatiguing red fibers

FAST twitch (fatigue rapidly – white) SLOW twitch (fatigue slow – red)

Forced change in input – switch phenotype (physical characteristics)

- 30-60/sec bursts - 10-20/sec steady

Excitation-Contraction Coupling

- Muscle contraction
 - Alpha motor neurons release Ach
 - Innervate muscle fibers
 - ACh produces large EPSP in muscle fibers (via nicotinic Ach receptors)
 - EPSP evokes action potential
 - Action potential (excitation) triggers Ca\(^{2+}\) release, leads to fiber contraction
 - Relaxation, Ca\(^{2+}\) levels lowered by organelle reuptake
Duchenne Muscular Dystrophy

- Genetic – Duchenne 1 in 3500
- ONLY males, so X-linked (single X is enough)
- X region codes for protein “dystrophin”
- In MD, no mRNA for this cytoskeletal protein
- Muscles tear
- WHY normal phenotype for early life?
- Could virus help????? (gene therapy)
- Could stem cells help?

Excitation-Contraction Coupling

- The Generation of Spinal Motor Programs for Walking

Excitation-Contraction Coupling

- The Generation of Spinal Motor Programs for Walking