Generation in the Bingo Closure

J. Beyerl*, Robert E. Jamison, J. Bowman Light, Clemson University
Bingo Closure, 5x5 case

- 5x5 playing board
- A square s is dependent on a set S when s completes a line.
Bingo Closure, 5x5 case

- 5x5 playing board
- A square s is dependent on a set S when s completes a line.
Bingo Closure, 5x5 case

- 5x5 playing board
- A square \(s \) is dependent on a set \(S \) when \(s \) completes a line.
Bingo Closure, 5x5 case

• S is closed when no squares that are dependent on S are not in S.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\bullet & & & & \\
\hline
& \bullet & \bullet & \bullet & \bullet \\
\hline
& & \bullet & & \\
\hline
& & & \bullet & \\
\hline
\end{array}
\]
Bingo Closure, 5x5 case

- S is closed when no squares that are dependent on S are not in S.
Bingo Closure, 5x5 case

- The closure of S is S union all dependent squares, iterated until S is closed.
Bingo Closure, 5x5 case

- The closure of S is S union all dependent squares, iterated until S is closed.
Bingo Closure, 5x5 case

- The closure of S is S union all dependent squares, iterated until S is closed.
Bingo Closure, 5x5 case

• The closure of S is S union all dependent squares, iterated until S is closed.
Bingo Closure, 5x5 case

- The closure of S is S union all dependent squares, iterated until S is closed.
Bingo Closure, 5x5 case

• S is independent when no square in S is dependent on S.

• *Don’t need this slide?*
Bingo Closure, 5x5 case

- A generating set for the board is a set S whose closure is the entire board.

```
  ● ● ●  
  ● ● ● ●  
  ● ● ● ●  
  ● ● ● ●  
  ● ● ● ●  
```
Bingo Closure, 5x5 case

• A generating set for the board is a set S whose closure is the entire board.
Bingo Closure, 5x5 case

• The depth of S the number of iterations required to close S.

```
  ● ● ● ● ●
         ● ● ● ● ●
         ● ● ● ● ●
         ● ● ● ● ●
  ● ● ● ● ●
```
Bingo Closure, 5x5 case

• The depth of S the number of iterations required to close S.

```
  ● ● ● ● ● 1
  ● ● ● ● ●  
  ● ● ● ● ●  
  ● ● ● ● ●  
  ● ● ● ● ● 1
```
Bingo Closure, 5x5 case

- The depth of S the number of iterations required to close S.

```
  ● ● ● ● ● 1
  ● ● ● ● 2
  ● ● ● ● 1
```
Bingo Closure, 5x5 case

- The depth of S the number of iterations required to close S.

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
```
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easy upper bound: 12
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easyish lower bound: 8
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easyish lower bound: 8
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Easyish lower bound: 8
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easyish lower bound: 8

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?

• Easyish lower bound: 8
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easyish lower bound: 8
Bingo Closure, 5x5 case

- What is the maximum depth of a set \(S \)?
- Easyish lower bound: 8
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Easyish lower bound: 8
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Easyish lower bound: 8

```
  3  •  •  •  •  2
  •  8  8  6  •
  •  8  7  •  •
 4  •  •  5  •
  •  •  •  •  1
```
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Actually: 10
Bingo Closure, 5x5 case

• What is the maximum depth of a set \(S \)?
• Actually: 10
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Actually: 10
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Actually: 10
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Actually: 10
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Actually: 10
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Actually: 10
Bingo Closure, 5x5 case

• What is the maximum depth of a set S?
• Actually: 10

```
  ●  ●  3  ●  2
  ●  ●  ●   ●
  ●  ●  ●   ●
  ●  5  4  ●  ●
  7  6  ●  ●  1
```
Bingo Closure, 5x5 case

• What is the maximum depth of a set \(S \)?
• Actually: 10
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Actually: 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Actually: 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Bingo Closure, 5x5 case

- What is the maximum depth of a set S?
- Actually: 10
- ...And this is optimal.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Bingo Closure, 7x7 case

• A depth of 14 is optimal
• The previous solution to the 5x5 does not easily generalize because it started on a diagonal.
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment

```

```
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical
Bingo Closure, 7x7 case

• A depth of 14 is optimal
• Use a 5x5 solution that starts off the diagonal
• ...which requires only a slight readjustment
• ...and now it starts on a vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical
Bingo Closure, 7x7 case

• A depth of 14 is optimal
• Use a 5x5 solution that starts off the diagonal
• ...which requires only a slight readjustment
• ...and now it starts on a vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>●</th>
<th>1</th>
<th>●</th>
<th>●</th>
<th>●</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>5</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Bingo Closure, 7x7 case

• A depth of 14 is optimal
• Use a 5x5 solution that starts off the diagonal
• ...which requires only a slight readjustment
• ...and now it starts on a vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical

```
2  •  1  •  •
9  •  •  8  •
    •  •  9  •
  •  5  •  •  4
7  6  •  •  3
```
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Use a 5x5 solution that starts off the diagonal
- ...which requires only a slight readjustment
- ...and now it starts on a vertical

```
2  ●  1  ●  ●  ●
9  ●  ●  8  ●  ●
10 ●  ●  9  ●  ●
●  5  ●  ●  4  ●
7  6  ●  ●  3  ●
```
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Fill in the rest avoiding the starting vertical
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Fill in the rest avoiding the starting vertical
- ...and we can get the corners for free
Bingo Closure, 7x7 case

- A depth of 14 is optimal
- Fill in the rest avoiding the starting diagonal
- ...and we can get the corners for free

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>●</td>
<td>●</td>
<td>0</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>2</td>
<td>●</td>
<td>1</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>9</td>
<td>●</td>
<td>8</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>10</td>
<td>●</td>
<td>9</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>●</td>
<td>5</td>
<td>●</td>
<td>4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>●</td>
<td>7</td>
<td>6</td>
<td>●</td>
<td>3</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>-2</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>-3</td>
</tr>
</tbody>
</table>
Bingo Closure, nxn case, n odd

- A depth of 2n is optimal
- Continue this pattern

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Bingo Closure, nxn case, n odd

• A depth of 2n is optimal
• Continue this pattern
Bingo Closure, nxn case, n even

- A depth of 2n is optimal
- A similar pattern, based off a solution to the 6x6 case
Bingo Closure, nxn case, n even

- A depth of $2n$ is optimal
- A similar pattern, based off a solution to the 6x6 case
Bingo Closure, 2x2 case

• A depth of 1 is trivially optimal.
Bingo Closure, 3x3 case

• A depth of 4 is optimal
• Construction gives lower bound
• Upper bound by exhaustion is easy.
Bingo Closure, 4x4 case

• A depth of 5 is optimal
• Construction gives lower bound
• Upper bound requires more attention...
• Only case in which a set of maximum depth is not a generating set

```
  5   1   4   1
  4   ●   3   ●
  3   ●   ●   2
  ●   ●   ●   2
  5   4   ●   ●
  3   ●   ●   ●
  ●   ●   ●   1
```
Future Work

• Investigate other properties
• Different board sizes