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Abstract—The availability of high-performance computing
platforms, large storage devices, and high-speed communications
have boosted the popularity of cloud computing. Users exploit
these capabilities by using the cloud as a repository for their
data and sharing these data with others. However, since the
cloud is usually owned and operated by private companies,
storing sensitive data in the cloud servers raises privacy concerns.
To address these concerns, privacy-preserving keyword search
schemes have been developed. In these schemes, data owners store
encrypted files in the server, and users should send encrypted
queries with keywords of interest. The server should use the
encrypted queries to search the encrypted files and return to the
user the files that have the queried keywords, without learning
any information about the keywords or the contents of the files.
Nevertheless, most of the existing schemes are either inefficient
for multi-data-owner settings or designed for single-data-owner
settings, and becomes insecure and inefficient when used for
multi-data-owner. This paper proposes an efficient multi-keyword
ranked search scheme over encrypted data for multi-data-owner
settings. The proposed scheme allows each data owner and each
user to have a distinct key, and allows the server to efficiently
search the files of different data owners using one encrypted
query sent by the user. Our privacy analysis demonstrates that
the proposed scheme can preserve the privacy of the data owners
and users. In addition, our extensive performance evaluations
demonstrate that our scheme is much more efficient than existing
approaches in the literature.

Index Terms—Privacy preservation, multi-keyword ranked
search over encrypted data, and cloud computing.

I. INTRODUCTION

A massive amount of data is received and stored every

day by cloud servers. It is expected that by 2020 around

35 ZettaBytes of digital data will be generated annually [1].

Therefore, the emerged cloud computing services such as in-

frastructures, platforms, and software can become mainstream

technologies. In addition, the concept of the delivery of the

information technology services (software or hardware) by

a third-party over the internet is evolving every day. With

cloud computing, users can utilize very large computational

resources with limited investment and have an easy access

that is not restricted to a location. Thus, around 70% of the

U.S. organizations migrated partially to the cloud, 16% are

planning for migration within a year, and 14% within three

years [2]. Nevertheless, several security and privacy concerns

have been raised.

The Cloud Security Alliance pointed 14 threats in the cloud

computing model such as data leakage and hardware failure

[3]. In addition, since the cloud is usually owned and operated

by private companies, some data owners still doubt storing

their private data remotely. Some examples of cloud breaches

includes Apple’s iCloud services leaks in 2014 [4] and Verizon

data leak by Amazon Web cloud storage services in 2017

where millions of customers records were exposed [5]. Recent

statistics show that over 3000 data breaches have occurred in

2017 [6].

Whilst data encryption is essential to preserve data owners’

privacy, it overburdens searching and retrieving the stored

files. Naive solutions like downloading and decrypting all

stored files locally would diminish the utility of the cloud.

Therefore, privacy-preserving keyword search schemes have

been developed to enable servers to search over encrypted data

[7]–[9]. In these schemes, data owners should store encrypted

files on the server, whereas users should encrypt queries with

keywords of interest and send these encrypted queries to

the server. The server should use the encrypted queries to

search the encrypted files and return the files that have the

queried keywords to the user, without learning any information

about the keywords or the contents of the files. However,

sharing encrypted data on the cloud could be useless if it is

not easily searched as plaintext data. Thus, the development

of efficient and practical searchable encryption schemes is

essential. The main challenge is to efficiently process large
amount of encrypted data and serve users’ queries in a
reasonable time.

Efficient searchable encryption schemes have been studied

extensively in literature [7]–[9]. These schemes are efficient

as they use efficient cryptographic operations and only rely

on dot product operations between the data owner’s en-

crypted document (called index) and the user encrypted query

(called trapdoor). Nevertheless, these schemes are designed

for single-data-owner scenario, but in many applications, the

data owners are more than one entitiy and users need to search

all their documents. For instance, in case of a multi-department

company, each department owns some documents on the server

and a set of users are allowed to search these documents.

In addition, using the existing single-data-owner schemes in

multi-data-owner scenario is either insecure or inefficient. In

one approach for adapting existing single-data-owner schemes

to handle the multi-data-owner scenario, each data owner

should use a unique key, whereas each user should use one key

for each data owner in the system. This approach is inefficient

because in addition to the large key storage overhead on

the users’ side, users need to encrypt their queries multiple

times and send these encrypted queries to enable the server to

search each data owner documents. In another approach, all

data owners share the same key so that users send only one

encrypted query. Obviously, this is not secure since it cannot
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Figure 1: The considered network model.

prevent a data owner from decrypting other owners’ data.

Recent schemes designed for multi-data-owenr settings [10],

[11] lack both efficiency and scalability due to the high

computations. Thus, in this paper, we opt to overcome the

aforementioned issues and propose an efficient multi-keyword

ranked search scheme over encrypted data for multi-data-

owner and multi-user settings. The proposed scheme allows

each data owner and each user to have a distinct key, and en-

ables the server to search the owners’ files using one encrypted

query sent by the user. In addition, an issue in the existing

schemes [7]–[9] is that anyone who obtains trapdoors and

document indices, e.g., by eavesdropping the communications

of users and data owners, can obtain side information about the

similarity score of the queried keywords and the documents’

keywords. This issue can be eliminated by using a symmetric

key shared between the server and each data owner and user

to encrypt the indices and trapdoors, however, more overhead

is needed for key establishment/management and encryption.

This issue is addressed in our scheme efficiently and only the

server can do the similarity measurement between indicies and

trapdoors. Our privacy analysis demonstrates that the proposed

scheme can preserve the privacy of the data owners and users,

and no party in the system can decrypt other party’s indices. In

addition, our extensive performance evaluations demonstrate

that our scheme is much more efficient than existing schemes

in the literature.

The remainder of this paper is organized as follows. The

system models and design goals are discussed in Section II.

The proposed scheme is explained in Section III. The privacy

analysis and performance evaluation results are provided in

Sections IV and V, respectively. Section VI surveys the related

works. Finally, the paper is concluded in Section VII.

II. SYSTEM MODELS AND DESIGN GOALS

A. Network Model

As shown in Fig. 1, the considered network model consists

of four main entities: data owners, users, cloud server, and

an off-line trusted authority. The trusted authority should

distribute a distinct secret key to the cloud server, each data

owner, and each user. Data owners encrypt their documents

and upload the encrypted documents to the cloud server to be

shared with users. To download files of interest, users should

create an encrypted query with keywords of interest and send

the encrypted query to the server. The cloud server should use

the encrypted query to search the encrypted documents by

computing a similarity score between them, and then return

the documents that have the highest scores to the user, without

knowing any sensitive information about the queried keywords

or the contents of the documents.

B. Threat Model

The attackers can be external eavesdroppers and internal,

including, data owners, users, and the cloud server. The

attackers are considered as "honest-but-curious", i.e., they

execute the proposed scheme honestly and do not aim to

disrupt the proper operation of the scheme, however, they are

curious to infer sensitive information about the contents of the

encrypted documents or the keywords of interest. Specifically,

we consider the following two security models.

Known Ciphertext Model. In this model, the attacker has

access to only the searchable encrypted document indices I
and the trapdoors IT , that are sent from data owners and users

respectively.

Known Background Model. This is a stronger model, where

the attacker has some background knowledge such as some

statistical information about the documents or the correlation

relationship among search queries. In this case, the attacker

tries to use this information to infer some keywords.

C. Design Goals

The proposed privacy-preserving multi-keyword ranked

search scheme should achieve the following design goals:

1) Multi-Keyword Ranked Search Over Encrypted Data
for Multi-Data-Owner. The scheme should be able to use

encrypted multi-keywords queries to calculate ranked search

results over encrypted documents stored by different data

owners.

2) Scalability and Efficiency. The scheme should be able to

search a large number of encrypted documents in short time

to quickly respond to users queries. In addition, the size of the

trapdoors should be acceptable to reduce the communication

overhead.

3) Index and Trapdoor Confidentiality. The cloud server

should not be able to learn any useful information about

the stored documents or trapdoors. In addition, analyzing the

statistical information of the documents from the same domain

should not help the server to identify any specific keyword in

the query or the index.

4) Trapdoors Unlinkability. Given two trapdoors, the server

should not ascertain whether the two trapdoors have the same

set of keywords.
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Figure 2: Adding element C to Bloom filter.

III. PROPOSED MULTI-KEYWORD RANKED SEARCH

SCHEME FOR MULTI-DATA-OWNER SETTINGS

In this section, we explain in details the proposed scheme.

Table I gives the main notations used in the paper.

A. Initialization
In our scheme, Bloom filters are used to store the keywords

compactly and protect against the attacks of known back-

ground model, as will be clarified in subsection IV-A. A Bloom

filter is a probabilistic storage data structure with very minimal

storing overhead [12]. It is represented by m bit vector that

stores a set of N keywords, and it can determine efficiently

and with high probability whether a queried keyword has been

inserted before or not.
The trusted authority selects a set of � independent keyed

hash functions H = {hi| hi : C → ni , 1 ≤ i ≤ � , and 1 ≤
ni ≤ m} to be used in the Bloom filter building algorithm

and distributes this set to data owners and users. To insert

keyword C in the filter, C is hashed using the set of keyed

hash functions, and then the locations pointed by the hash

values in a binary vector are set to one. Fig. 2 shows an

example for inserting a keyword in a 16-bit Bloom filter using

three hash functions. To determine whether a given keyword

C ′ belongs to the stored keywords, C ′ is hashed using the

set of keyed hash functions and if all the locations they point

at are ones then with high probability C ′ was inserted before;

otherwise, definitely C ′ was not inserted in the filter. The false-

positive probability can be computed by (1− (1− 1/m)�N )�

[12]. Obviously, increasing m can make the false-positive

probability very small and thus negligible.
In addition, the trusted authority runs the following set of

oracles sequentially to initialize the system:
1) SystemSetup (1m) → T ASK. The system setup al-

gorithm takes the security parameter 1m as an input and

outputs the Trusted Authority Secret Key (T ASK), where,

T ASK = {S,M1,M2, N1, ..., N8}, S is a random binary

vector of length m, and a set of random invertible matrices

∈ R
m×m.

2) KeyGenServer (T ASK) → SSK. The trusted author-

ity creates the Server Secret Key (SSK), where SSK = X ,

X is an invertible random matrix ∈ R
m×m.

3) KeyGenDataOwner (Oi, T ASK) → DOSKi. For
each data owner in the system with identity (ID) Oi, the trusted
authority creates a Data Owner Secret Key (DOSKi) as

DOSKi = {S, XN−1
1 Ai, XN−1

2 Bi, XN−1
3 Ai, XN−1

4 Bi,

XN−1
5 Ci, XN−1

6 Di, XN−1
7 Ci, XN−1

8 Di}

Table I: MAIN NOTATIONS

Notation Description

m Bloom filter size

� Number of hashes

H = {hi| hi : C → ni,
1 ≤ i ≤ � ; 1 ≤ ni ≤ m} Bloom filter hash set

T ASK Trusted authority secret key

S Secret binary vector

{M1,M2, N1, ..., N8} ∈ R
m×m Server secret matrices

SSK Server secret key

Oi Data owner i

DOSKi Oi’s secret key

{Ai, Bi, Ci, Di} ∈ R
m×m Random matrices for Oi

Ux User x

USKx Ux’s secret key

{Ex, Fx, Gx, Hx} ∈ R
m×m Random matrices for Ux

nOi
Number of Oi’s documents

Di =
{
di,1, di,2, . . . , di,nOi

}
Oi’s documents

Vi =
{
Vi,1, Vi,2, . . . , Vi,nOi

}
Oi’s documents’ filters

Ii =
{
IVi,1

, IVi,2
. . . , IVi,nOi

}
Oi’s indieces

nUx Number of Ux’s queries

Qx =
{
qx,1, qx,2, . . . , qx,nUx

}
Ux’s queries

Tx =
{
Tx,1, Tx,2, . . . , Tx,nUx

}
Ux’s queries’ filters

IT x = {ITx,1 , ITx,2 , . . . , ITi,nUx
} Ux’s trapdoors

where {Ai, Bi, Ci, Di} are random matrices ∈ R
m×m such

that Ai +Bi = M−1
1 , and Ci +Di = M−1

2 .

4) KeyGenSystemUser (Ux, T ASK) → USKx. For user

with ID Ux, the trusted authority creates a User Secret Key

(USK) as follows.

USKx = {S, ExN1, ExN2, FxN3, FxN4,

GxN5, GxN6, HxN7, HxN8}

where {Ex, Fx, Gx, Hx} are random matrices ∈ R
m×m such

that Ex + Fx = M1, and Gx +Hx = M2

Moreover, for the users to be able to decrypt the documents,

the trusted authority should distribute group keys shared be-

tween each data owner and users. The trusted authority should

also distribute a key to the data owners/users to be used for

the key hash functions H .

B. Encrypting Documents

Each data owner Oi builds a set of indices

Ii =
{
IVi,1 , IVi,2 . . . , IVi,nOi

}
for his document set

Di =
{
di,1, di,2, . . . , di,nOi

}
by invoking two oracles

BuildF ilter() and CreateIndex() and then sends Ii to the

cloud server. Also, Oi should encrypt the documents with

the group key shared with all users or those whom the owner

allows to access the documents and send them to the server

as well.

BuildF ilter
(
Di =

{
di,1, di,2, . . . , di,nOi

})
→ Vi =

{Vi,1, Vi,2, . . . , Vi,nOi
}. For each document di,j that has a set

of keywords {wi,j,1, wi,j,2, . . . }, and belongs to data owner

Oi, an m-bit Bloom filter vector Vi,j should be built by setting

the bits in Vi,j corresponding to locations pointed by the
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outputs of the hash functions on each keyword wi,j,k. Note

that, to allow the server to return ranked search results, the

Vi,j locations that are set to ones are replaced by the TF-IDF

(Term Frequency - Inverse Document Frequency) [13] of each

word in the document, which is computed as follows.

TF − IDF (wi,j,k, di,j) = freqwi,j,k,di,j
∗ log( N

nwi,j,k

)

where, freqt,di
is the frequency of wi,j,k in di,j , N is the

total number of vocabularies in all documents, and nwi,j,k
is

the total number of the appearance of wi,j,k in Di.

CreateIndex (Vi,j ,DOSKi) → IVi,j . For a Bloom filter
vector Vi,j , Oi generates an index IVi,j to be sent to the server.
Then, Oi uses the secret S to split Vi,j into two column vectors
v′ij and v′′ij of the same size, as follows. If the kth bit of S
is zero, v′ij(k) and v′′ij(k) are set similar to Vij(k), while if
it is one, v′ij(k) and v′′ij(k) are set to two random numbers
such that their summation is equal to Vi,j . Finally, Oi uses
his secret key DOSKi to compute the document index IVi,j

as

IVi,j =
[
XN−1

1 Aiv
′
ij ; XN−1

2 Biv
′
ij ; XN−1

3 Aiv
′
ij ; XN−1

4 Biv
′
ij ;

XN−1
5 Civ

′′
ij ; XN−1

6 Div
′′
ij ; XN−1

7 Civ
′′
ij ; XN−1

8 Div
′′
ij

]

where IVi,j
is a column vector of size 8m.

C. Trapdoor Generation

Each user Ux generates encrypted search queries

by invoking two oracles, called BuildF ilter() and

CreateTrapdoor(), respectively.

BuildF ilter
(
Qx =

{
qi,1, qi,2, . . . , qi,nUx

})
→

Tx = {Tx,1, Tx,2, . . . , Tx,nUx
}. For each query

qx,y = {wx,y,1, wx,y,2, . . . }, Ux generates an m-bit Bloom

filter Tx,y by setting the bits in Tx,y that are resulted from

applying the hash set H on each keyword. Then, the user

should invoke CreateTrapdoor() oracle.

CreateTrapdoor (Tx,y,USKx) → ITx,y
. Given the bloom

filter vector Tx,y , Ux uses S to split Tx,y to two random row

vectors t′xy and t′′xy of the same size. The splitting method is

described as follows. If the kth bit of S is one, t′xy(k) and

t′′xy(k) are set similar to Tx,y(k), while if it is zero, t′xy(k)
and t′′xy(k) are set to two random numbers such that their

summation is equal to Tx,y(k). Then, Ux uses his secret key

USKx to create the trapdoor ITx,y as

ITx,y =
[
t′xyExN1, t′xyExN2, t′xyFxN3, t′xyFxN4,

t′′xyGxN5, t′′xyGxN6, t′′xyHxN7, t′′xyHxN8

]

where ITx,y is a row vector of size 8m.

D. Query Matching

The cloud server should use the trapdoors received from the

users to measure its similarity with the documents’ indices by

invoking Match() oracle. Then, the server sends back to the

user the best matched encrypted documents.

Match
(
SSK, ITx,y , IVi,j

)
→ Score. In this oracle, the

cloud server should first use its secret X−1 to remove X from

IVi,j
to obtain ¯IVi,j

, where

¯IVi,j
=

[
N−1

1 Aiv
′
ij ; N−1

2 Biv
′
ij ; N−1

3 Aiv
′
ij ; N−1

4 Biv
′
ij ;

N−1
5 Civ

′′
ij ; N−1

6 Div
′′
ij ; N−1

7 Civ
′′
ij ; N−1

8 Div
′′
ij

]

Then, it can simply compute the similarity score between

the trapdoor ITx,y
and the index ¯IVi,j

by dot product operation

(ITx,y
• ¯IVi,j

), where • denotes dot product.

Theorem 1. Using our scheme, the cloud server can measure
the similarity score of the indices and the trapdoors.

Proof: This can be done by computing ITx,y
• IVi,j of a

document filter Vi,j and a query filter Tx,y , as follows.

ITx,y
• ¯IVi,j

= t′xyExAiv
′
ij + t′xyExBiv

′
ij + t′xyFxAiv

′
ij+

t′xyFxBiv
′
ij + t′′xyGxCiv

′′
ij + t′′xyGxDiv

′′
ij+

t′′xyHxCiv
′′
ij + t′′xyHxDiv

′′
ij

= t′xy(Ex + Fx).(Ai +Bi)v
′
ij+

t′xy(Gx +Hx).(Ci +Di)v
′
ij

= t′xyM1M
−1
1 v′ij + t′xyM2M

−1
2 v′ij

= Tx,y • Vi,j

= Score (Tx,y • Vi,j)

IV. PRIVACY ANALYSIS

A. Known Ciphertext and Known Background Models

We use the same security model of [14] to prove the security

of our scheme. Basically, the cloud server should not be able

to infer any information more than the access and the search

patterns.

Theorem 2. The proposed scheme is secure under both known
ciphertext and known background models.

Proof: The proof of this theorem is as follows.

History. For a set of documents D, the history is a set of

indices I = {IV1 , . . . , IVn} over D and a set of trapdoor

queries IT = {IT1 , IT2 , . . . , ITk
}, denoted as H = (I, IT ).

Trace. A trace reflects the knowledge inferred by the cloud

sever over the history H , denoted as Tr(H), such as the

search and access patterns, where Tr(H) is defined over all

the queries of H such as Tr(H) = {Tr(IT1
), . . . , T r(ITk

)}
View. It represents the perception of the cloud server. It is

the combination of the encrypted history and its trace, denoted

as V (Encsk(I), Encsk(W ), T r(H)).

Consider a simulator S that can generate a false view V ′

that is indistinguishable from V by doing the following steps.

1) S calls SystemSetup(1m) oracle to get a secret key sk′ =
T ASK′.

2) S generates a set of random documents D′ =
{d′1, . . . , d′n} such that |di|= |d′i|, 1 ≤ i ≤ n, and

d′i = {w′
1, w

′
2, . . . }.
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3) S generates a set of trapdoors IT ′ = {I ′T1
, I ′T2

, . . . , I ′Tk
},

where I ′Tj
∈ {0, 1}m is as follows.

-For each keyword wi ∈ W , if wi ∈ IT j and 1 ≤ j ≤ k,

add w′
i to IT ′

j . Note that IT ′
j is a random copy of IT j .

4) S generates a set of m-bit zero vectors denoted as indices

I ′ = {I ′V1
, . . . , I ′Vn

} as follows:

-For each keyword wi ∈ W , if wi ⊂ dj and 1 ≤ j ≤ n,

add w′
i to I ′Vj

. Note that I ′Vj
is a random copy of IVj .

5) S generates encrypted index Encsk′(I ′) and trapdoor

Encsk′(IT ′) using secret sk′.

From the previous construction S has a history

H ′ = (I ′, IT ′) with trace Tr(H ′) similar to

Tr(H) such that in no probabilistic polynomial-

time (P.P.T.), adversary can distinguish between the

two views V (Encsk(I), Encsk(IT ), T r(H)) and

V ′(Encsk′(I ′), Encsk′(IT ′), T r(H ′)) with non-negligible

advantage where the correctness of the construction implies

this conclusion. In particular, the indistinguishability follows

directly from the semantic security of kNN encryption

scheme.

Moreover, for the known background model, the � keyed

hashes used in the construction of the Bloom filter can prevent

the cloud server from obtaining any statistical information,

such as keyword frequencies, and any information related to

the domain of the data.

B. Trapdoors Unlinkability

In multi-data-owner scheme proposed in [10], called

SRMSM, sending the same trapdoor in different occasions

results in the same ciphertext, which violates the trapdoor

unlinkability requirement. On the contrary, in our scheme,

sending the same trapdoor in different occasions guaran-

tees different ciphertexts. Another advantage of the proposed

scheme over SRMSM is that, even if an eavesdropper gets the

messages communicated with the server, I = {IV1
, . . . , IVn

}
and IT = {IT1 , IT2 , . . . , ITk

}, he cannot measure the similar-

ity scores because the server secret key SSK is needed.

V. PERFORMANCE EVALUATIONS

A. Experiment Setup and Metrics

1) Experiment Setup: To evaluate the proposed scheme,

we implemented it using Python and a server with an Intel®

Xeon® Processor E5-2420 @2.2GHZ (2 processors) and 32

GB RAM. In our experiments, we used Request For Com-

ments (RFC) dataset of size 5089 files [15]. We processed the

dataset using scikit-learn Python library [16] and extracted

the top 60 TF-IDF scored keywords. The computation and

the communication overhead of the proposed scheme are

compared to SRMSM. In addition, we used Charm crypto-

graphic library [17] to measure the execution times of the

cryptographic operations used in both schemes. In our scheme,

the Bloom filter size is set to 592 bits to make the false positive

probability less than 0.01 in case of adding 60 keywords. All

the experiments were run 1000 times and average results are

reported.

Table II: Computation Overhead.

Operation Time

Our Scheme

TKeyGen 0.06 sec

TDot 4.4 μsec

TBh 9 μsec

TEnc 6.63 msec

SRMSM [10]

TPm 1.43 μsec

TExp 0.217 msec

Th 0.13 μsec/Byte

TAdd 0.2 μsec
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Figure 3: Trapdoor generation time (ms)

2) Performance Metrics: Three performance metrics are

used for comparison and assessment of our scheme.

(1) Average search time. The time needed by the cloud server

to search the documents.

(2) Computation overhead. The time needed by users to

compute a trapdoor to be sent to the server.

(3) Communication overhead. The amount of data transmit-

ted during the communication between the users and the

server.

B. Experiment Results

Table II gives the times required for the cryptographic

operations used in SRMSM and our scheme. For our scheme,

TKeyGen, TDot, TBh, and TEnc denote the times required

for single key generation, indices and trapdoors dot product,

Bloom Filter single hash operation, and encryption time,

respectively. For SRMSM, TPm, Th, TExp, and TAdd denote

the times required for group points multiplication, single

hash operation, modular exponentiation, and score addition,

respectively. We denote V , Q, and D as the total number of

vocabularies in the dataset, the number of keywords per query,

and the number of documents respectively. In our evaluations,

all computations that can be done off-line, such as uploading

the encrypted documents to the server, are excluded from the

comparison.
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Figure 4: Search Time for our scheme versus SRMSM

1) Computation Overhead: Fig. 3 gives the time needed

to generate a trapdoor versus the number of keywords per

query. In SRMSM, each keyword is hashed first then mapped

to an element in a finite field and used as exponent for the

group generator, with a total cost of Q(Th + TExp). In our

scheme, each keyword is hashed � times to generate a Bloom

filter vector, and then this vector which has a fixed size of m
bits is encrypted as explained in III-C. Therefore, our trapdoor

generation time can be formulated as Q�TBh+TEnc. As shown

in the figure, the trapdoor generation time of both schemes

grow linearly as the number of keywords per query increases,

however, the growth rate of our scheme is much slower than

that of SRMSM.

For the server search time in SRMSM, the server should

search an inverted index matrix sent by each data owner where

the rows of the matrix encode the keywords to points in group

and the columns represent the score of this keyword in each

document of the data-owner dataset. Thus, the server has to

search over two stages namely: locate keywords, and rank

relevance score. In the first stage, the server has to perform

V Q group point multiplications, while in the second stage,

the server has to perform D multiplied by the number of

matched keywords q′ relevance score additions. Therefore,

the total search time for SRMSM can be formulated as

V QTPm + (q′ − 1)DTAdd to search over each data owner

documents. In our scheme, the server needs only to compute

the dot product between a trapdoor and each document index

regardless of the total number of vocabularies V . Therefore,

the total search time in our scheme is DTdot.

Using the measurements given in Table II, we compare in

Fig. 4 the server search time for our scheme and SRMSM.

As shown in Fig 4(a), the search time of SRMSM exhibits

a linear rate as the number of keywords per query increases

given that the number of files D = 5000 and at most q′ = 3
matched keywords during the locate keywords stage. On the

other hand, our scheme exhibits a constant rate as the number

of keywords per query increases. In addition, Fig. 4(b) gives

the server search time versus the number of documents. As

shown in the figure, the search time of both schemes increase

with the number of documents, however, SRMSM has a much

faster rate because as the number of documents (D) increases,

the total number of vocabularies (V ) increases accordingly

which results in more time required for locating keywords

in SRMSM. Therefore, our scheme outperforms SRMSM in

terms of total computation complexity.

2) Communication Overhead: For SRMSM scheme, each

keyword in the query is represented as a point in an integer

group of size of 1024 bits. Therefore, the size of the trapdoor

in SRMSM grows linearly with the number of keywords in

query. In our scheme, the size of the trapdoor is constant

and depends on the size of the encrypted Bloom filter which

is 9.5 KBytes. Our scheme outperforms SRMSM in the

communication overhead when the number of keywords is

large. Moreover, in SRMSM, the server can know the number

of keywords in the queries since each keyword is mapped to

a group point, while in the our scheme, this side information

is completely hidden.

VI. RELATED WORK

Various schemes have been proposed to enable searching

over encrypted data. The first provably secure scheme was

introduced by Song et al. [18]. The scheme relies on a sym-

metric key using a 2-layered encryption model. Later, different

symmetric searchable encryption (SSE) schemes have been

proposed. In [19], Goh proposed an efficient SSE scheme and

devised a formal security model. Boneh et al [20], introduced

the concept of public key encryption with keyword search

(PEKS). The proposed approach is based on Identity Based

Encryption (IBE) cryptography. Overall, these preliminary

schemes do not support ranked search and complex queries

with multiple keywords and logical operators.

Boolean search schemes that support logical operators, such

as conjunctions and disjunctions, were presented in [21]–[23].

In [21] a conjunctive encrypted keyword search scheme was

developed where users can search with a complete set of

keywords. Disjunctive encrypted keywords search is proposed

in [22] where users can search with a subset of keywords.

Then, generalized boolean search schemes that support both

conjunction and disjunction operators were discussed in [23],



7

[24]. Most of these boolean search schemes are limited to

certain applications as they do not support ranking capabilities.

Ranked search [25], [26] was introduced to imitate the

unencrypted search scenarios in real world applications, in

which top-k relevant results are provided for a user query.

Cao. et al. [26] proposed a privacy preserving multi-keyword

ranked search over encrypted data (MRSE) for single data

owner where the k-nearest-neighbor (kNN) scheme is used in

similarity matching. Recently, Fu et al. [27] have proposed a

multi-keyword fuzzy search that can tolerate spelling mistakes

in the user input by utilizing locality sensitive hashing and

stemming techniques. However, these schemes were developed

for single-data-owner scenarios and it is either insecure or

inefficient to use them in multi-data-owner settings.

For multi-data-owner ranked search, Zhang. et al. [10]

proposed a ranked multi-keyword search scheme based on

additive order and privacy preserving function that allows the

data owners to securely send the keyword scores for each

document to the server. The scheme has two stages: locate

keywords and score calculation. To match a trapdoor, the

server has to compare each encrypted keyword in the trapdoor

with all the vocabularies of each data owner during the first

stage, which increases the computation dramatically. Then, the

server has to add all the document scores of all the matched

keywords for comparison. Moreover, in this scheme query

unlinkability cannot be achieved because encrypting the same

query at different times results in the same ciphertext. Our

proposed scheme overcomes these shortcoming.

VII. CONCLUSION

Most of the existing privacy-preserving multi-keyword

search schemes focus on single-data-owner scenario, and using

these schemes in multi-data-owner settings is either insecure

or inefficient. In this paper, we have proposed an efficient

multi-keyword search scheme over encrypted data for multi-

data-owner settings. The proposed scheme allows each data

owner and each user to have a distinct key, and allows the

server to search the files of the different data owners using one

encrypted query sent by the users. Our privacy analysis has

demonstrated that the proposed scheme is more secure than the

existing schemes and can preserve the privacy of data owners

and users in both known ciphertext and known background

models. Moreover, our extensive performance evaluations have

demonstrated that our scheme is much more efficient than the

existing approaches, especially in the search time.
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