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Abstract—Advanced Metering Infrastructure (AMI) networks
allow utility companies to collect fine-grained power consumption
data of electricity consumers for load monitoring and energy
management. This brings serious privacy concerns since the
fine-grained power consumption data can expose consumers’
activities. Privacy-preserving data aggregation techniques have
been used to preserve consumers’ privacy while allowing the
utility to obtain only the consumers total consumption. How-
ever, most of the existing schemes do not consider the multi-
dimensional nature of power consumption in which electricity
consumption can be categorized based on the consumption type.
They also do not consider multi-subset data collection in which
the utility should be able to obtain the number of consumers
whose consumption lies within a specific consumption range, and
the overall consumption of each set of consumers. In this paper,
we propose an efficient and privacy-preserving multi-dimensional
and multi-subset data collection scheme, named “MDMS”. In
MDMS, the utility can obtain the total power consumption as well
as the number of consumers of each subset in each dimension.
In addition, for better scalability, MDMS allows the utility
to delegate bill computation to the AMI networks’ gateways
using the encrypted readings and following dynamic prices in
which electricity prices are different based on both the time
and the consumption type. Moreover, MDMS uses lightweight
operations in encryption, aggregation, and decryption resulting
in low computation and communication overheads as given in
our experimental results. Our security analysis demonstrates that
MDMS is secure and can resist collusion attacks that aim to
reveal the consumers’ readings.

Index Terms—Security, privacy preservation, multi-
dimensional aggregation, multi-subset aggregation, smart
grid, and AMI networks.

I. INTRODUCTION

The smart grid integrates information and communication
technologies into traditional power grids for improved ro-
bustness, efficiency, and reliability [1]. It provides two-way
communications between the grid’s entities to enable efficient
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and reliable power delivery to end consumers. Due to the
two-way information flow, the smart grid can offer numerous
advantages [2] to both electric utility companies and con-
sumers, including but not limited to: (1) reducing the operation
and management cost for utilities; (2) facilitating real-time
load monitoring, energy management, and troubleshooting; (3)
quicker restoration of electricity after power disturbances; and
(4) lower electricity cost for consumers.

An Advanced metering infrastructure (AMI) network is a
main component of the smart grid. In AMI networks, smart
meters (SMs) deployed at consumers’ houses are used to
periodically report their nearly real-time power consumption
readings to the utility at high rates, e.g., every few minutes.
Then, the utility analyzes the data reported by the meters
for real-time grid monitoring and energy management. For
example, fine-grained power consumption analysis can be used
to reduce the peak-to-average ratio which can lead to reducing
electricity blackouts [3]. Also, power consumption analysis is
required for real-time price-based demand/response programs
in which electricity price changes depending on the supply-to-
demand ratio especially during peak hours to balance energy
supply and demand [4]. However, despite the importance of
the fine-grained power consumption data collection, it poses
potential threats to consumers’ privacy since these data can
reveal their daily activities. For example, a relatively low/high
power consumption indicates the absence/presence of a con-
sumer from/at his house. Also, non-intrusive load monitoring
of a consumer’s power consumption can reveal the appliances
the consumer uses [5].

In order to preserve consumers’ privacy, data aggregation
techniques have been widely used in AMI networks [6]–
[14]. Specifically, consumers send their fine-grained power
consumption reading (PCR) to a local aggregator, called the
gateway, which aggregates all the fine-grained PCRs and
forwards an aggregated PCR to the utility for load monitoring
and energy management. Therefore, the utility can only obtain
the total power consumption of the consumers of an AMI
network while hiding the fine-gained PCR of each consumer
to preserve privacy.

Most of the existing data collection schemes [6]–[11] allow
the utility to only obtain the total power consumption of the
whole set of consumers in the AMI network. However, the
utility needs more information to do more useful analysis on
the data. In particular, power consumption data are multi-
dimensional in nature, i.e., can be categorized based on
the type of load, e.g., lamps, stove, oven, refrigerator, air
heater/conditioning, and so on [15]. Furthermore, in addition
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to learning the total power consumption of the whole set of
consumers, the utility should also be able to learn the number
of consumers whose PCs lie within a specific range, and the
overall power consumption of each set of consumers, i.e.,
multi-subset data collection [16].

Multi-dimensional and multi-subset data collection can help
in (1) efficient grid monitoring and energy management, (2)
better prediction of power demands and developing direct load
control demand/response programs [17] and (3) developing
real-time billing based on dynamic pricing which is used for
indirect load control demand/response programs [18]. There-
fore, AMI networks need a data collection scheme that allows
reporting PCRs in a multi-dimensional form and multi-subset
aggregation based on different ranges for each dimension,
i.e., a scheme that supports both multi-dimensional and multi-
subset data aggregation simultaneously.

Therefore, we propose, in this paper, an efficient and
privacy-preserving multi-dimensional multi-subset data col-
lection scheme for AMI network, named “MDMS”. Based on,
but not limited to, the secure computations over encrypted data
using the k-nearest neighbor (kNN) similarity measurement,
we develop MDMS that allows data aggregation and the
computation of electricity bills in the ciphertext domain. In
MDMS, each smart meter reports multi-dimension and multi-
subset power consumption in an encrypted data vector to the
gateway which aggregates all encrypted vectors and sends
a single aggregated vector to the utility. Upon decryption
of that vector, the utility can obtain (1) the total electricity
consumption of each subset in each dimension and (2) the
number of consumers of each subset in each dimension.

The novelty and contributions of this paper can be summa-
rized as follows.

1) We propose a privacy-preserving multi-dimensional and
multi-subset data collection scheme for AMI networks.
MDMS can achieve multi-dimensional data aggregation
with multi-subsets for each dimension whereas closely
similar schemes can aggregate either multi-dimensional
or multi-subset data but not both simultaneously.

2) MDMS utilizes masking technique such that it can resist
collusion attacks launched by the utility, gateways, smart
meters and external adversaries to reveal the power con-
sumption data of the individual consumers. Masks are
computed efficiently and in an offline way.

3) Compared to the proposed schemes in [12]–[14], MDMS
uses lightweight operations in encryption, aggregation
and decryption which results in better performance in
terms of communication and computation overheads.

4) MDMS enables the utility to delegate the computation of
the electricity bills to the gateways for better scalability,
without exposing its private key to the gateways and with-
out violating consumers’ privacy. The bills are computed
using the consumers’ fine-grained encrypted PCRs and
following dynamic pricing in which electricity prices are
different based on the billing time and the load type.

A preliminary version of this paper has been published
in [19]. The main difference between [19] and this paper
are as follows. First, [19] supports only multi-dimensional
data aggregation while this paper considers multi-subset multi-

dimensional data aggregation. Second, [19] does not address
collusion attacks and dynamic billing which are addressed in
this paper. Third, extensive analysis and simulation have been
added to this paper. These include a comprehensive security
analysis, and updated simulation results.

The remainder of this paper is organized as follows. Related
works are discussed in Section II. The considered system
models and design requirements are presented in Section III.
Preliminaries are given in Section IV. The proposed data
collection scheme is explained in Section V The security and
privacy preservation analysis and performance evaluations are
given in Sections VI and VII, respectively. Conclusions are
drawn in Section VIII.

II. RELATED WORKS

Data aggregation techniques have been widely used to
preserve consumers’ privacy in AMI networks [6]–[11]. The
schemes proposed in [6]–[8] use one-time masking such that
each meter masks its PCR and send the masked PCR to the
gateways. In this way, gateways cannot access the individual
PCRs to preserve consumers’ privacy. When the all the masked
PCRs are aggregated, all the masks cancel each other and thus
the utility can obtain only the total power consumption for the
consumers of the AMI network.

On the other hand, the schemes proposed in [9]–[11]
preserve consumers’ privacy by exploiting the additive homo-
morphic property of the Paillier cryptosystem. In specific, each
meter encrypts its PCR using the Paillier cryptosystem and
sends the encrypted PCR to the gateways. All the encrypted
PCRs are aggregated in the ciphertext domain, i.e., gateways
cannot decrypt them and thus cannot violate consumers’ pri-
vacy. Finally, the utility can decrypt the aggregated ciphertext
to recover the total consumption of the consumers of the
AMI network. However, the above data collection schemes are
designed to collect the total consumption of the AMI network’s
consumers and cannot handle either the multi-dimensional
nature of power consumption or multi-subset data aggregation.

In the literature, few schemes have addressed either multi-
dimensional data aggregation [12] or multi-subset data ag-
gregation [13], [14] but not both of them simultaneously. In
[12], Lu et al. proposed the first attempt to realize multi-
dimensional power consumption data collection by using a
super-increasing sequence to represent the multi-dimensional
power consumption and then encrypt it using Paillier cryp-
tosystem. Then, all meters’ ciphertexts are aggregated into
a single ciphertext that is sent to the utility. The utility can
perform the decryption process to obtain the total power
consumption of the consumers for each data dimension.
However, the scheme proposed in [12] is limited to multi-
dimensional data collection for the whole set of consumers and
cannot be used efficiently for multi-subset data aggregation
within each dimension. In addition, it does not address the
possible collusion between gateways and the utility to violate
consumers’ privacy.

In [13], Lu et al. have made the first attempt to develop
subset aggregation scheme based on the additive homomorphic
properties of composite order cryptographic groups [20]. How-
ever, [13] is limited to two subset data aggregation only and
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TABLE I
COMPARISON BETWEEN MDMS AND RELATED SCHEMES.

MDMS [12] [13] [14]

Privacy Preservation
√ √ √ √

Collusion Resistance
√

NA
√ √

Aggregation
Multi-dimensional only

√ √
×

√‡

Multi-subset only
√

×
√∗ √‡

Multi-subset for each dimension
√

× × ×

Billing
Basic Billing

√
NA NA

√∆

Advanced Billing
√

NA NA ×

Low communication √
× × ×

computation overhead

NA: Not Addressed
∗: Cannot support more than two subsets.

∆: Unlike MDMS, [14] involves a trusted third party to compute bills.
‡: Can support either multi-dimensional or multi-subset aggregation but not

multi-subset for each dimension.

cannot handle either the multi-dimensional nature of power
consumption or the case of more than two subsets. More-
over, the decryption process uses Pollard’s lambda algorithm
which becomes inefficient as the size of the message to be
decrypted increases. Similar to [12], Li et al. in [14] used
two super-increasing sequences and Paillier cryptosystem to
realize privacy-preserving multi-subset aggregation. Although
[14] can support either multi-subset or multi-dimensional data
aggregation, it cannot handle multi-subset data aggregation
within each data dimension. In addition, [12], [14] are not
efficient in terms of communication and computation since
they utilize the Paillier cryptosystem which typically requires
long times for encryption and decryption, as will be shown in
Section VII.

In Tab. I, we summarize the comparison of MDMS against
the closely similar schemes [12]–[14].

III. SYSTEM MODELS AND DESIGN REQUIREMENTS

In this section, we describe the considered network and
attack models. Also, we give the design requirements.

A. Network Model

As shown in Fig. 1, our network model consists of the fol-
lowing entities, a key distribution center, the utility, gateways,
and a set of smart meters forming an AMI networks. The role
of each entity is described below.
• Key Distribution Center (KDC). The KDC is responsible

for generating and distributing the public parameters and
secret keys to the smart meters and the utility. After key
generation and distribution, the KDC does not participate
in the periodic data collection or billing processes.

• The Utility. The utility is responsible for the power con-
sumption data analysis to monitor the load and manage
the electricity generation to meet the dynamic demand.
Therefore, it needs to collect the power consumption data
of consumers periodically.

• The Gateway (GW). Each AMI network has a GW that
connects the meters of the network to the utility. An AMI

Gateway Utility

…

…

Key Distribution 
Center (KDC)

AMI Network

SMଵ SMଶ SM 𝕊𝕄  

Online Periodic Data Collection

Offline Secret Keys Distribution

Figure 2 SM

Fig. 1. The considered AMI network model.

network can cover a neighborhood. For the periodic data
collection process, the GW collects and aggregates the
encrypted reports received from the meters and forwards
the encrypted aggregated data to the utility. For billing
purposes, each GW computes electricity bills for the
consumers without violating their privacy.

• SMs. We consider that each AMI network has a set of
smart meters SM = {SMi, 1 ≤ i ≤ |SM|}. A smart meter
is installed at each consumer’s house to periodically re-
port encrypted multi-dimensional and multi-subset power
consumption to the utility via the GW.

MDMS not only collects power consumption data in a
multi-dimensional form, but also allows multi-subset ag-
gregation based on different ranges for each dimension.
For the multi-dimensional nature of PC, we consider a
set of m-dimensions that represent m-types of power con-
sumption data {Dj : 1 ≤ j ≤ m} to be reported.
For each type of PC, we assume that there are n-subsets
equivalent to n consecutive power consumption ranges, i.e.,{
[0, R1], (R1, R2] . . . , (Rn−1, Rn]

}
, where {R1, . . . , Rn} are

the subsets’ limits. If the PCR (R) satisfies Rk−1 < R ≤ Rk

then, it is reported within subset k. Let SMk be the set of
smart meters whose reported PCRs lie in subset k and |SMk|
be the size of this subset, where SMk ⊆ SM. The sum of all
subsets’ sizes is equal to the total number of smart meters,
i.e.,

∑n
k=1 |SMk| = |SM|, and the PCR reported by a meter

cannot belong to two different subsets, i.e., SMk

⋂
SM` = φ

for any k 6= `.

B. Attack Model

The GW and the utility are honest-but-curious, i.e., although
they follow the proposed scheme correctly, they attempt to
learn the individual PCRs of the consumers. In specific, the
GW receives the encrypted PCRs and may try to infer any
information about the PCR of any consumer. Also, the utility
may use its secret key to reveal the PCR of any consumer. The
smart meters are also honest-but-curious. Each smart meter
reports correct data to the utility, however, it also tries to learn
the individual PCRs of other meters. Moreover, there exist
external adversaries A that eavesdrop the communications
between the different entities in the network aiming to obtain
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individual meter’s readings. Furthermore, attackers can work
individually or collude with each other to launch stronger
attacks. In a collusion attack an adversary is considered to
control the utility, the GW and a set of smart meters of
size |SMA | < |SM| − 1 in order to revel the PCR of an
honest meter. We focus in this paper on preserving consumers’
privacy and resisting the collusion between different entities
that aim to obtain individual SMs’ readings. Other attacks are
beyond the scope of the paper.

C. Design Requirements
Based on the multi-dimensional and multi-subset data col-

lection objective and the aforementioned threat model, the
following functional and privacy requirements should be met.

1) Functional Requirements:
(F1) At each PCR reporting period, MDMS should allow

the utility to efficiently obtain the total electricity
consumption and the number of consumers “size” of
each subset in each dimension.

(F2) MDMS should allow electricity bill computation
based on fluctuating electricity prices. Two billing
cases should be supported by MDMS: basic billing,
in which electricity price within the same billing
interval is the same regardless of the type of the power
consumption load, and advanced billing, in which
electricity prices are different based on the type of
the PC’s load.

2) Security and Privacy Requirements: At each PCR re-
porting period, the following requirements should be met.

(SP1) Consumers’ privacy preservation. No entity should be
able to access the individual PCR of any consumer
at any time.

(SP2) Aggregated data confidentiality. No entity, except the
utility, should be able to access the aggregated power
consumption and the number of consumers “size” of
each subset within each dimension.

(SP3) Collusion resistance. MDMS should resist collusion
attacks in which attackers may collude to obtain the
PCRs of the individual consumers.

IV. PRELIMINARIES

A. Bilinear Pairings
Let G1 be an additive cyclic group, G2 be a multiplicative

cyclic group of the same prime order q, and P be a generator
of G1. A pairing ê:G1×G1→G2 has the following properties.
• Bilinearity: ê(aP1, bP2) = ê(P1, P2)

ab ∈ G2 ∀ P1, P2 ∈
G1 and a, b ∈ Z∗q .

• Non-degeneracy: ê(P, P ) 6= 1G2
.

B. Non-interactive key establishment
ID-based cryptography allows any two entities, such as SMi

and SM`, to establish a static key in a non-interactive manner
[22]. In specific, SMi uses its private key Xi along with
the public key Q` of another meter SM` to compute Ki` =
ê(Xi, Q`) = ê(sQi, Q`) = ê(Qi, Q`)

s. Similarly, SM` uses its
private key SM` along with SMi’s public key Qi to compute
the same key as Ki` = ê(Qi, X`) = ê(Qi, sQ`) = ê(Qi, Q`)

s.

TABLE II
MAIN NOTATIONS

Notation Description

q,G1,G2, ê, P, Public parameters for the ID-based signature
Q,H1, H2, H3 scheme [21]

H(K,m) Keyed hash function, K is the key, m is the message

SM Set of smart meters SM = {SMi, 1 ≤ i ≤ |SM|}
SMi/IDi i-th smart meter / Identity of SMi

Xi,0, Xi,1 ID-based private keys of SMi

Qi,0, Qi,1 ID-based public keys of SMi

MK Master kNN key set for the utility
MK = {M1,M2,N1,N2,N3,N4}

Ki kNN key for SMi derived from MK
Ki = {AiN1, BiN2, CiN3, DiN4}

j j-th dimension of power consumption 1 ≤ j ≤ m

t reporting period

R
(j)
it PCR of SMi for dimension j at reporting period t

rit Reading vector of SMi at reporting period t

mit Masking vector used by SMi at reporting period t

wit The masked vector of SMi at reporting period t
wit = rit + mit

cit kNN ciphertext computed by SMi for wit

Si, Yi ID-based signature components computed by SMi

cat Aggregated ciphertext computed by the GW

mat Aggregated masks recovered by the utility
mat =

∑|SM|
i=1 mit = 0

rat Aggregated reading vector recovered by the utility

wat Aggregated masked vector recovered by the utility
wat = rat + mat

ri Consumption vector of SMi during a billing interval

p Pricing vector within a billing interval

C. Secure k-nearest neighbor computation

Secure computations over encrypted data using the k-nearest
neighbor (kNN) similarity measurement has been widely used
in several applications such as keyword searching [23]–[26],
multi-recipient AMI networks [27], and location-based appli-
cations [28], [29]. Based on, but not limited to, the kNN,
we develop MDMS that allows data aggregation and the
computation of electricity bills in the ciphertext domain .

V. THE MDMS SCHEME

In this section, we give the details of MDMS. For better
readability, we define the main notations that will be used in
next subsections in Tab. II. We use lowercase bold notation for
vectors and uppercase bold notation for matrices. For example,
r and m are vectors while M and N are matrices.

A. Overview

Fig. 2 shows the structure of the reading vector, rit, used in
MDMS. As shown in the figure, rit is constructed of m blocks
representing m data dimensions. For each dimension Dj , n
elements are used as subset indicators and another n elements
are used to report the PCR of this dimension. For instance,
let R(j)

it be the PCR of SMi for dimension Dj at reporting
period t. As shown in Fig. 2, if R(j)

it lies within subset k,
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Fig. 2. Reading vector structure and the aggregation result.

then SMi reports one at the k-th subset indicator and R(j)
it at

the k-th reading location, and set all other elements to zeros.
Then, SMi masks rit by a masking vector mit that can be
pre-computed as will be explained later in this section. The
masked vector, wit = rit + mit, is then encrypted using the
kNN encryption technique to generate a ciphertext vector cit
to be sent to the GW. The GW aggregates all the encrypted
vectors received from all meters and outputs an aggregated
vector, cat, which is the encryption of the aggregated masked
vector wat = rat + mat =

∑
rit +

∑
mit. After aggregation,

the GW sends the utility the aggregated ciphertext cat. The
masks are generated such that they cancel each other when
all meters’ vectors are aggregated, i.e., mat =

∑|SM|
i=1 mit =

0. Therefore, when the utility decrypts cat, it can obtain the
aggregated vector wat = rat =

∑|SM|
i=1 rit. As shown in Fig.

2, the content of rat for each dimension is the size of each
subset |SMk| and the total power consumption of each subset∑|SMk|

i=1 R
(j)
it at the reporting period t.

B. System Initialization

System initialization, carried out by the KDC, consists of the
following phases (1) generation of public system parameters,
(2) generation of ID-based public/private key pairs, and (3)
generation of kNN meters’ keys and utility key.

1) Generation of public system parameter: The KDC gen-
erates the public parameters as follows. It

1) generates the bilinear pairing parameters (G1,G2, ê,
P, q);

2) chooses a random element s ∈ Z∗q and computes Q =
sP ∈ G1;

3) chooses three cryptographic hash functions H1, H2, H3

defined as H1, H2 : {0, 1}∗ → G1 and H3 : {0, 1}∗ →
Z∗q ;

4) chooses a keyed hash function H(K,m) where K is the
key used to compute a keyed-hash on a message m.

Then, s is kept as a master secret and the public system
parameters param = {G1,G2, ê, P,Q,H1, H2, H3,H} are
published.

2) Generation of ID-based public/private key pairs: Each
SMi with an identity IDi receives from the KDC two private
keys Xi,0 = sQi,0 and Xi,1 = sQi,1, where Qi,0 =
H1(IDi, 0) and Qi,1 = H1(IDi, 1) are the corresponding
public keys. Similarly, the GW receives from the KDC private
keys Xg,0 = sQg,0 and Xg,1 = sQg,1 and the corresponding
public keys Qg,0 = H1(IDg, 0) and Qg,1 = H1(IDg, 1). Since
theses public keys are ID-based, the meters and the GW do
not need to obtain digital certificates from the KDC to certify
the public keys.

3) Generation of kNN keys: The KDC generates a ran-
dom binary v-dimensional vector s to be used as a splitting
indicator for the kNN encryption technique. The size of s
is v = 2mn. Then, the KDC generates a master key set,
MK = {M1,M2, N1, N2, N3, N4}, where each element
in MK is a v×v invertible random matrix. MK is sent to
the utility via a secure channel. Also MK is used to drive a
unique key for each meter.

Generation of meters’ keys. For each SMi, the KDC
uses MK to generate a unique key Ki as Ki =
{AiN1, BiN2, CiN3, DiN4}, where Ai,Bi,Ci and Di are
v×v invertible random matrices such that Ai + Bi = M1 and
Ci+Di = M2. Finally, the KDC sends Ki to SMi via a secure
channel.

C. Smart meter: PCR Encryption
For each reporting period t, each SMi ∈ SM builds a

data vector, rit, as shown in Fig. 2, that contains m PCRs(
R

(j)
it : j ∈ {1, 2, . . . ,m}

)
where R

(j)
it is the PCR of SMi

for dimension j at reporting period t. Then, SMi encrypts
this vector and report the encrypted vector to the GW by
performing the following six steps.
• Step 1: SMi builds a v-dimensional data vector rit that

contains its m PCRs as shown in Fig. 2.
• Step 2: SMi builds a v-dimensional masking vector mit

where the z-th element of mit is computed as follows

mit(z) =
∑
`<i

1≤`≤|SM|

H(Ki` , t ‖ z) −
∑
`>i

1≤`≤|SM|

H(Ki` , t ‖ z)
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where H is the public keyed hash function and Ki` is the
symmetric key shared between SMi and SM` computed
in a non-interactive way as explained in subsection IV-B.
It should be noted that the masking vector mit can be
computed offline, i.e, before the reporting period starts.

• Step 3: SMi masks the data vector rit using the masking
vector mit to generate a vector wit as wit = rit + mit.

• Step 4: SMi splits the vector wit into two random v-
dimension vectors w′it and w′′it using the splitting indica-
tor s. For the z-th element in the vector wit, splitting is
done as follows

w′it(z) = w′′it(z) = wit(z) if s(z) = 1

w′it(z) = r,w′′it(z) = wit(z)− w′it(z) if s(z) = 0

where r is a random number.
• Step 5: SMi uses w′it, w′′it and its secret key Ki to

compute a ciphertext cit as

cit = {w′itAiN1 , w′itBiN2 , w′′itCiN3 , w′′itDiN4}

where cit is a row vector of size 1× 4v.
• Step 6: SMi uses its private keys Xi,0 and Xi,1 to

generate a signature on cit by using the signature scheme
proposed in [21]. First SMi computes Pt = H2(t)
and hi = H3(cit, IDi, t). Then, SMi chooses a random
element yi ∈ Z∗q . Finally the signature components Yi
and Si are computed as follows

Yi = yiP

Si = yiPt +Xi,0 + hiXi,1

• Step 7: SMi sends to the GW the following report.

cit ‖ IDi ‖ t ‖ Si ‖ Yi

D. Gateway: Efficient Aggregation

After collecting all the meters’ reports, the GW verifies the
received signatures, aggregate all the ciphertexts and send the
aggregated message to the utility by performing the following
steps
• Step 1: The GW computes h′i = H3(cit, IDi, t) for 1 ≤
i ≤ |SM|.

• Step 2: The GW verifies the received signatures to
ensure reports’ integrity and the authenticity of reports’
senders. Efficient batch verification process can be done
by checking

ê

|SM|∑
i=1

Si, P

 ?
= ê

|SM|∑
i=1

Yi, Pt

 ê

Q,

|SM|∑
i=1

Qi,0 + h′iQi,1


• Step 3: The GW computes the aggregated ciphertext cat

as

cat =
|SM|∑
i=1

cit

=

{∑|SM|
i=1 w′itAiN1 ,

∑|SM|
i=1 w′itBiN2 ,∑|SM|

i=1 w′′itCiN3 ,
∑|SM|

i=1 w′′itDiN4

}
= {cat,1, cat,2, cat,3, cat,4}

where cat consists of four components {cat,1, cat,2, cat,3,
cat,4} and each component is row vector of size v.

• Step 4: The GW uses its private keys Xg,0 and Xg,1

to generate a signature on cat. First the GW computes
hg = H3(cat, IDg, t). Then, it chooses a random element
yg ∈ Z∗q . Finally the signature components Yg and Sg are
computed as follows

Yg = ygP

Sg = ygPt +Xg,0 + hgXg,1

• Step 5: The GW sends to the utility the following report

cat ‖ IDg ‖ t ‖ Sg ‖ Yg

E. Utility: Decryption and aggregated data recovery

After receiving cat ‖ IDg ‖ t ‖ Sg ‖ Yg from the GW, the
utility performs the following steps.
• Step 1: The utility computes h′g = H3(cat, IDg, t).
• Step 2: The utility verifies the signature by checking
ê (Sg, P )

?
= ê (Yg, Pt) ê

(
Q,Qg,0 + h′gQg,1

)
• Step 3: The utility uses its key MK to recover w′at =∑|SM|

i=1 w′it from the first two components of cat as follows

w′at = cat,1N−11 M−11 + cat,2N−12 M−11 =

|SM|∑
i=1

w′it

The correctness of this equation is as follows.

w′at = cat,1N−11 M−11 + cat,2N−12 M−11

=

|SM|∑
i=1

w′itAiN1N−11 M−11 +

|SM|∑
i=1

w′itBiN2N−12 M−11

=

|SM|∑
i=1

w′itAiM−11 +

|SM|∑
i=1

w′itBiM−11

=

|SM|∑
i=1

w′it (Ai + Bi)M−11 =

|SM|∑
i=1

w′itM1M−11

=

|SM|∑
i=1

w′it

• Step 4: In a similar process, the utility recovers w′′at =∑|SM|
i=1 w′′it from the last two components of cat as follows

w′′at = cat,3N−13 M−12 + cat,4N−14 M−12 =

|SM|∑
i=1

w′′it

• Step 5: The utility uses the vector s to merge w′at and
w′′at to obtain wat as follws

wat(z) = w′at(z) if s(z) = 1

wat(z) = w′at(z) + w′′at(z) if s(z) = 0

The result of the decryption process is wat = rat + mat =∑|SM|
i=1 rit +

∑|SM|
i=1 mit. However, since the masks are gener-

ated such that
∑|SM|

i=1 mit = 0, the decryption result is the vec-
tor wat = rat =

∑|SM|
i=1 rit. As discussed in subsection V-A,

the contents of the vector rat for each dimension are the size
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Fig. 3. Price vector structure.

of each subset |SMk| and the total power consumption of each
subset

∑|SMk|
i=1 R

(j)
it . Therefore, MDMS achieves the functional

requirement (F1).

F. Billing based on Dynamic Pricing

Assume that each day is divided into several billing inter-
vals. The utility can generate electricity bills for customers at
the end of each billing interval. However, to consider the net-
work scalability, the utility can delegate the bill computation
to GWs, i.e., each local GW can compute the electricity bills
of its consumers without exposing the utility’s private key to
the GWs and without violating consumers’ privacy, instead of
making the utility compute the bills for all the consumers in
the system.

First, based on the time and the total power consumption
of consumers for each dimension, the utility can determine
the electricity prices for each type of consumption, i.e., for m
power consumption types, the utility can set electricity prices
to {p1, . . . , pm} for the m types for the advanced billing case.
Then, in order to compute the electricity bill, the meters, the
GW, and the utility, perform the following computations.

1) Smart meters: Assume that each SMi reports T power
consumption reports during each billing interval, i.e., 1 ≤ t ≤
T . At the end of each billing interval, (report sent at t = T ), in
order to encrypt its data vector riT , SMi follows the same steps
explained in subsection V-C except that SMi uses a masking
vector miT that is equal to the negative summation of all the
previous T − 1 masks used.

2) Utility: The utility delegates the bill computation to
the GW without violating consumer’s privacy or revealing its
secret key set MK. Therefore, the utility sends the GW an
encrypted price vector such that the GW can only compute the
bill for each user without being able to decrypt their encrypted
reports. The encrypted price vector is generated as follows.

• Step 1: The utility builds a v-dimensional price vector
p that contains the m prices as shown in Fig. 3. As
shown in the figure, for each dimension Dj , the utility
sets the locations corresponding to subset indicators to
zeros and sets the locations corresponding to the PCR to
the electricity price of that dimension. The price vector
p is a column vector of size v × 1.

• Step 2: The utility splits the price vector p into two
random v-dimension column vectors p′ and p′′ using the

splitting indicator s. For the z-th element in the vector p,
splitting is done as follows.

p′(z) = p′′(z) = p(z) if s(z) = 0

p′(z) = r,p′′(z) = p(z)− p′(z) if s(z) = 1

where r is a random number.
• Step 3: The utility uses p′, p′′ and its secret key MK to

compute a ciphertext cu as

cu = {N−1
1 M−1

1 p′, N−1
2 M−1

1 p′, N−1
3 M−1

2 p′′, N−1
4 M−1

2 p′′}

where cu is a column vector of size 4v × 1. Note that,
these previous steps can be can be executed offline, i.e,
before the end of the billing interval.

• Step 4: The utility sends the encrypted price vector cu to
the GW.

3) Gateway: The GW can generate the electricity bill for
the owner of SMi as follows. During the billing interval, the
GW stores all the ciphertexts received from SMi, i.e., the GW
stores {cit : 1 ≤ t ≤ T − 1}. At the last reporting period T of
the billing interval, the GW receives ciT from SMi. The GW
computes ci which is the encryption of the total consumption
reported by SMi during the billing interval as follows.

ci =
T∑

t=1

cit

=

{∑T
t=1 w′itAiN1 ,

∑T
t=1 w′itBiN2 ,∑T

t=1 w′′itCiN3 ,
∑T

t=1 w′′itDiN4

}

After receiving the encrypted price vector cu from the
utility, the GW can compute the electricity bill of SMi using
a single product operation between ci and cu. The correctness
proof is as follows.
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Billi = cicu

=
T∑

t=1

w′itAiM−11 p′ +
T∑

t=1

w′itBiM−11 p′

+
T∑

t=1

w′′itCiM−12 p′′ +
T∑

t=1

w′′itDiM−12 p′′

=
T∑

t=1

w′it (Ai + Bi)M−11 p′

+
T∑

t=1

w′′it (Ci + Di)M−12 p′′

=
T∑

t=1

w′itM1M−11 p′ +
T∑

t=1

w′′itM2M−12 p′′

=
T∑

t=1

w′itp
′ +

T∑
t=1

w′′itp
′′

= wip

Note that the vector wi = ri+mi =
∑T

t=1 rit+
∑T

i=1 mit.
However, since the masks are generated such that

∑T
t=1 mit =

0, then wi = ri =
∑T

t=1 rit. Therefore, the product of wi and
p represents the product of the price vector p by ri which is
the total power consumption of SMi during the billing interval,
i.e, the power consumption of each dimension is multiplied by
the electricity price of that dimension. The basic billing case
can be easily achieved by setting the same price for all the
power consumption dimensions while creating the price vector
p. Therefore, MDMS can achieve the functional requirement
(F2).

VI. PRIVACY PRESERVATION ANALYSIS

In this section, we investigate the security and privacy
preservation of our scheme.

A. Privacy preservation of consumers’ power consumption
data against individual attackers

As discussed in subsection V-C, the reading vector rit, that
should not be accessed by any entity in the network, is masked
using the masking vector mit to produce the masked vector
wit = rit + mit that is encrypted to produce the ciphertext
cit = {w′itAiN1 , w′itBiN2 , w′′itCiN3 , w′′itDiN4}. The
vector s is used as splitting indicator to split wit into w′it,w′′it.
The secret key Ki = {AiN1, BiN2, CiN3, DiN4} is used
to encrypt w′it,w′′it. Our scheme is build on kNN encryption
scheme whose security has been formally proven in the known
ciphertext model [25]. Thus, without the knowledge of the
master key MK = {M1,M2, N1, N2, N3, N4}, the content
of ciphertext cannot be recovered. Therefore, privacy preserva-
tion of wit, and in turns rit, can be achieved against both, the
GW that receives the individual ciphertexts and the external
adversary A who can eavesdrop on the communication to
obtain any individual ciphertext.

In addition, meters do not use a shared key for the en-
cryption process as done in [24]. Instead, each meter receives

a unique encryption key from the KDC generated from the
master key setMK as in [26]. Thus, a meter SM` that has an
encryption key K` = {A`N1, B`N2, C`N3, D`N4} cannot
decrypt the ciphertext cit generated by another meter SMi

[26]. Therefore, the ciphertext of SMi cannot be decrypted by
other meters in the network.

Although the utility has the master key set MK that can
decrypt any individual or aggregated ciphertext, it has no
access to the individual ciphertext cit. Also, it has no access to
all the masking vectors used by all meters. Therefore, MDMS
can protect the individual power consumption data of the
consumers against individual attackers, i.e., MDMS satisfies
the security/privacy requirement (SP1).

B. Privacy preservation of consumers’ power consumption
data against colluding attackers

Different from singular attacks in which a single attacker
tries to reveal the power consumption data of any consumer,
we consider in this subsection collusion attacks in which the
adversary can collude with other entities in the AMI networks.
Assume that an adversary A can control the utility, the GW,
and a set of meters of size |SMA |. In order to reveal the
power consumption data of a meter, first A obtains from the
GW the ciphertext cit of the SMi. Then, A uses the master
key MK of the utility to decrypt cit and recover the masked
vector wit = rit + mit.
In order to recover the reading vector rit, A removes the
masking vector mit. As mentioned in step 2 in subsection V-C,
SMi shares a pairwise secret masks with all other SMs in SM
in an efficient and offline way. Therefore, as long as |SMA | <
(|SM|−1), A cannot completely remove all the masks added
to mit, and thus the reading vector rit is still masked by the
remaining (|SM| − 1)− |SMA | masks.

In [30], a formal security proof is given to prove that
the masked power consumption data is protected as long as
the mask size is chosen properly, and masks are generated
using a pseudorandom function. Therefore, MDMS can resist
collusion attacks in which A controls the utility, GW and
a set of (SM − 2) meters and thus MDMS can satisfy the
security/privacy requirement (SP3).

The colluding set SMA can contain up to (|SM| − 2). It
cannot contain all the (|SM| − 1) meters, i.e, all but one are
colluding, since in this case A can obtain the aggregated
power consumption data from the utility and simply recover
the power consumption data of the honest meter by subtracting
the consumption of the other colluding (|SM|−1) meters from
the aggregation result.

C. Confidentiality of the aggregated power consumption data
and subsets’ sizes

The aggregated vector, rat, that contains all the aggregated
power consumption data as well as all the subsets’ sizes should
not be accessed by any entity in the system except the utility.
As mentioned in subsection V-D, the GW receives all the
individual ciphertexts and computes the aggregated ciphertext
cat. Also, the external adversary A can eavesdrop on all the
exchanged messages to obtain a copy of all the individual
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(c) Utility Computations.
Fig. 4. Computation overhead comparison

ciphertexts and thus A can compute the aggregated ciphertext
cat as well. Since the aggregation of all the ciphertexts results
in removing all the masking vectors added by all meters,
cat becomes the encryption of the aggregated vector rat.
Therefore, the GW and A can obtain the ciphertext cat of
the vector rat that should be protected from any unauthorized
access. However, cat is still a ciphertext encrypted under the
master key set MK, which has been shown to be secured
as discussed in subsection VI-A and the meters’ keys cannot
decrypt it. Thus, neither the GW nor A can learn any
information about the aggregated power consumption data of
each subset nor the subsets’ sizes. Therefore, MDMS can
satisfy the security/privacy requirement (SP2).

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MDMS in
terms of the computation overhead required by each entity
and the communication overhead incurred between each two
entities in the network. We compare the performance of
MDMS with EPPA [12] and PPMA [14].

A. Computation Overhead

The computation overhead is defined as the processing time
required by each node in the network. These nodes are smart
meters, the GW and the utility. In MDMS, we use the efficient
ID-based aggregate signature scheme proposed in [21] which
requires a fixed number of bilinear pairing operations regard-
less of the number of the individual signatures to verify the
aggregate signature, i.e., the signature verification complexity
is O(1). On contrary, EPPA [12] uses the signature scheme
proposed in [31] which requires a number of pairing operations
that increases linearly with the number of individual signatures
to verify the aggregate signature, i.e., the signature verification
complexity is O(n). Therefore, for the fairness of comparison,
we do not consider the overhead of signing and verifying
messages in MDMS and other schemes.

To evaluate the computation overhead, we implemented
MDMS, EPPA, and PPMA, using Python charm cryptographic
library [32] running on an Intel Core i7-4765T 2.00 GHz and
8 GB RAM. We used super-singular elliptic curve (SS512
curve) with the symmetric Type 1 pairing to realize the bilinear
pairing operation. The size of the parameter q is 512 bits. All
the experiments’ results are as follows.

Figure 4a gives the computation overhead for each meter
versus the number of data dimensions/subsets to be encrypted.
As shown in the figure, the computation overhead required

by each meter in MDMS increases slightly as the number
of data dimensions/subsets increase. For instance, it increases
from 52 µs when reporting one dimensions/subsets to 330
µs when reporting 10 dimensions/subsets. This is because the
size of the vector to be encrypted wit increases linearly with
the number of dimensions/subsets, and thus more arithmetic
addition and multiplication operations are needed during the
vector encryption process. For EPPA [12], as the number of
dimensions increases, EPPA requires more time to build the
super-increasing sequence and then encrypt the sequence using
Paillier cryptosystem. Therefore, the computation overhead of
each meter in [12] also increases linearly with the number of
data dimensions to be reported. On contrary, the computation
overhead of each meter in PPMA [14] is almost constant.
This is because the encryption process in PPMA requires
only two exponentiation operations over Zn2 regardless of
the number of subsets represented in the message. The figure
shows that MDMS reduces the computation overhead by more
than 90% as compared to [12], [14]. This is because the
encryption process in MDMS requires only efficient arithmetic
addition and multiplication operations compared to the Paillier
encryption time required in [12], [14]. Therefore, MDMS is
more suitable than other schemes for the resource-constrained
meters due to its lower computation overhead.

Figure 4b gives the computation overhead of the GW to
aggregate ciphertexts versus the number of meters. As shown
in the figure, EPPA and PPMA have exactly the same aggrega-
tion time because the GW aggregates Paillier ciphertexts in the
two schemes. The figure also shows that MDMS is six times
faster than other schemes because the aggregation process in
MDMS requires only efficient addition operations.

Figure 4c gives the computation overhead required by the
utility versus the number of dimensions/subsets represented
in the plaintext. The figure shows that MDMS is the most
efficient compared to the schemes in [12], [14]. This is because
in MDMS only one vector decryption operation, that includes
arithmetic addition and multiplication, is required which is
much more efficient than Paillier decryption operation used in
[12], [14]. To sum up, MDMS outperforms other schemes in
terms of computation overhead on each entity in the network.

B. Communication Overhead

The communication overhead is measured by the size of
transmitted messages between the network entities. In specific,
the communication overheads to be measured are for the
messages sent from smart meters to GW and from GW to the
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(a) MDMS.

(b) EPPA [12].
Fig. 5. Communication overhead comparison for multi-dimensional data
collection.

utility. However, in all schemes under consideration, the GW
aggregates all the ciphertexts to a single ciphertext. Therefore,
in our comparison, we will focus on comparing the ciphertext
size of each scheme.

In MDMS, the ciphertext is a vector of size 4v = 8mn
elements. Consider that each element in the ciphertext is
represented with 2 bytes, therefore, the ciphertext size in
MDMS becomes 16mn bytes. For EPPA [12] and PPMA
[14], the ciphertext size is the same as in Paillier cryptosystem
which is 512 bytes (2,048 bits). However, EPPA only allows
multi-dimensional data collection whereas PPMA allows only
multi-subset data collection. For fair comparisons, we consider
the following cases.
• Case 1. We compare MDMS to the EPPA scheme in [12]

for multi-dimensional data collection only.
• Case 2. We compare MDMS to the PPMA scheme in

[14] for multi-subset data collection only.
• Case 3. We compare MDMS to EPPA and PPMA

when used to collect multi-dimensional multi-subset data
collection simultaneously. For PPMA, to simultaneously
support multi-dimensional and multi-subset data collec-
tion, an additional paillier ciphertext is sent for every
data dimension. Similarly, for EPPA, an additional paillier
ciphertext is sent for every additional subset.

Case 1: Multi-dimensional data collection. In this case,
the ciphertext size of MDMS can be reduced to 8m instead of
16mn. There is a reduction factor of (2n) as there is no need
to report n elements for subsets readings nor n elements for
the corresponding subsets’ indicators in this case. We plot the
SM-to-GW communication overhead in terms of the number
of meters and the number of data dimensions. Fig. 5a gives
the communication overhead of MDMS, whereas Fig. 5b gives
the communication overhead of EPPA.

As shown in Fig. 5a, the total communication overhead

(a) MDMS.

(b) PPMA [14].
Fig. 6. Communication overhead comparison for multi-subset data collection.

in MDMS increases with both the number of meters and
the data dimensions, whereas Fig. 5b shows that the total
communication overhead in EPPA increases only with the
number of meters. However, the figures show that MDMS
always has a lower communication overhead compared to
EPPA. This is because the single ciphertext size in MDMS
is extremely low compared to that in EPPA.

Case 2: Multi-subset data collection. In this case, the
ciphertext size of MDMS can be reduced to 16n instead of
16mn. There is a reduction factor of (m) as there is no
need to report m multi-dimensional data in this case. We
plot the SM-to-GW communication overhead in terms of the
number of meters and the number of subsets. Fig. 6a gives the
communication overhead of MDMS, whereas Fig. 6b gives the
communication overhead of PPMA.

As shown in Fig. 6a, the total communication overhead in
MDMS increases with both the number of meters and subsets,
whereas Fig. 6b shows that the total communication overhead
in PPMA increases only as the number of meters inreases.
However, the figures show that MDMS always has lower
communication overhead compared to PPMA for the same
reason as case 1.

Case 3: Simultaneous Multi-dimensional Multi-subset
data collection. In this case, the ciphertext size of MDMS
is 16n. We plot the size of a single ciphertext sent by a smart
meter versus the number of data dimensions and the number
of subsets in Fig. 7a for MDMS, Fig. 7b for EPPA, and Fig.
7c for PPMA. The figures show that MDMS has the lowest
ciphertext size when compared to EPPA and PPMA which
in turns results in an improved communication overhead. As
shown in the figure, for 10 data dimensions with 10 subsets
to be reported within each dimension, MDMS can achieve a
reduction of 40% in the ciphertext size.
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(b) EPPA [12].
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(c) PPMA [14].
Fig. 7. Ciphertext size comparison for all schemes when used for multi-dimensional multi-subset data collection.

VIII. CONCLUSION

In this paper, we have proposed MDMS, an efficient and
privacy-preserving data collection scheme for AMI networks
that allows multi-dimensional and multi-subset data collec-
tion. Based on, ID-based cryptography, the kNN encryption
technique, and data masking technique, we have developed
MDMS to achieve the functional and privacy requirements for
the multi-dimensional multi-subset data collection in AMI net-
works. Also, MDMS was designed to all the utility to delegate
electricity bill computation to local gateways to consider the
network scalability in terms of the number of consumers. Our
privacy analysis have demonstrated that MDMS can preserve
the privacy of the consumers against individual and collusion
attackers because no one can access the power consumption
data of the individual consumers. Moreover, our performance
evaluations demonstrated that MDMS is more computationally
and bandwidth-wise efficient compared to relevant schemes in
the literature. For the resource limited smart meters, MDMS
is 8 times faster than closely similar existing schemes. For the
communication overhead, MDMS can reduce the communica-
tion overhead by approximately 40%.
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