
PRACTICE PROBLEMS IN POPULATION GENETICS 
 
1. In a study of the Hopi, a Native American tribe of central Arizona, Woolf and 
Dukepoo (1959) found 26 albino individuals in a total population of 6000. This form of 
albinism is controlled by a single gene with two alleles: albinism is recessive to normal 
skin coloration.  
 
a) Why can’t you calculate the allele frequencies from this information alone? 
  

Because you can’t tell who might be a carrier just by 
looking.  

 
b) Calculate the expected allele frequencies and genotype frequencies if the population 
were in Hardy-Weinberg equilibrium. How many of the Hopi are estimated to be carriers 
of the recessive albino allele?  
 

If we assume that the population’s in H-W equilibrium, 
then the frequency of individuals with the albino 
genotype is the square of the frequency of the albino 
allele. In other words, freq (aa) = q2. Freq (aa) = 
26/6000 = 0.0043333, and the square root of that is 
0.0658, which is q, the frequency of the albino 
allele. The frequency of the normal allele is p, equal 
to 1 - q, so p = 0.934.  
 
We’d then predict that the frequency of Hopi who are 
homozygous normal (genotype AA) is p2, which is 0.873. 
In other words, 87.3% of the population, or an 
estimated 5238 people, should be homozygous normal. 
The frequency of carriers we’d predict to be 2pq, 
which is 0.123. So 12.3%, or 737 people, should be 
carriers of albinism, if the population is in H-W.  



 
2. A wildflower native to California, the dwarf lupin (Lupinus nanus) normally bears blue 
flowers. Occasionally, plants with pink flowers are observed in wild populations. Flower 
color is controlled at a single locus, with the pink allele completely recessive to the blue 
allele. Harding (1970) censused several lupin populations in the California Coast Ranges. 
In one population of lupins at Spanish Flat, California, he found 25 pink flowers and 
3291 blue flowers, for a total of 3316 flowers.  
 
a) Calculate the expected allele frequencies and genotype frequencies if the population 
were in Hardy-Weinberg equilibrium.  
 

Let B be the blue allele and b be the pink allele, so 
that p = frequency (B) and q = frequency (b).  
The frequency of the bb genotype = 25/3316 = q2, so q = 
√(0.00754) = 0.0868.  
p = 1 - q, so p = 0.913 
 freq (BB) = p2 = 0.834 
 freq (Bb) = 2pq = 0.158  

 
b) Harding studied the fertility of lupins by counting number of seed pods produced per 
plant in a subsample of the Spanish Flat population. He found the following:  
 
        mean # pods  number of plants examined 
blue     19.33             39 
pink     13.08            24  
 
Assume that heterozygotes are as fit as homozygous blue lupins, and that seeds from both 
pink and blue lupins all suffer about the same mortality rate after germinating. Calculate 
the relative fitness of each genotype.  
 

Fitness for BB (wBB) = 1 
Fitness for Bb (wBb) = 1 
Fitness for bb (wbb) = 13.08 / 19.33 = 0.677  

 
c) Predict quantitatively the effect of natural selection on the frequencies of phenotypes 
in the next generation of lupins.  
 

First, calculate mean fitness:  
 
p2 (wBB) + 2pq (wBb) + q

2 (wbb) = w-bar 
(0.913 * 0.913 * 1)  + (2 * 0.913 * 0.0868 * 1) + 
(0.0868 * 0.0868 * 0.677) = 0.997  
 
Now divide all terms through by w-bar to get the 
predictions for the genotype frequencies after one 
round of selection:  
 



New frequency (BB) = (0.913 * 0.913 * 1) / 0.997 = 
0.836 
New frequency (Bb) = (2 * 0.913 * 0.0868 * 1) / 0.997 
= 0.159 
New frequency (bb) = (0.0868 * 0.0868 * 0.677) / 0.997 
= 0.00512  
 
Moral of the story: Natural selection isn’t all that 
efficient at eliminating rare alleles.  



 
3. Cooke and Ryder (1971) studied the nestlings of Ross’s goose, a small Arctic nesting 
goose. Goslings (baby geese) exist in two color morphs, grey or yellow. Cooke and 
Ryder reported that a population of geese at Karrack Lake, Canada included 263 yellow 
goslings and 413 grey goslings (676 total). They assumed that color is controlled by two 
alleles at a single locus.  
 
a) Calculate the frequencies of all three possible genotypes, assuming that grey is 
dominant and that the population is in Hardy-Weinberg equilibrium. Then repeat, 
assuming that yellow is dominant.  
 

For both of these calculations, p = frequency of 
dominant allele, and q = frequency of recessive 
allele. If grey is dominant:  

q2 = 263 / 676 = 0.389 
q = √ (0.389) = 0.624 = frequency of yellow allele 
p = 1 - q = 0.376 = frequency of grey allele 
Predicted frequency of homozygous greys = 0.376 * 

0.376 = 0.141 
Predicted frequency of heterozygous greys = 2 * 

0.376 * 0.624 = 0.469     
Frequency of homozygous yellows = 0.389. 
CHECK: These add up to 1 (well, to 0.999, but 

that’s round-off error)  
If yellow is dominant:  

q2 = 413 / 676 = 0.611 
q = √ (0.611) = 0.782 
p = 1 - q = 0.218 
Predicted frequency of homozygous yellows = 0.218 

* 0.218 = 0.0475 
Predicted frequency of heterozygous yellows = 2 * 

0.218 * 0.782 = 0.341     
Frequency of homozygous grays = 0.611 
Check: These add up to 1, within round-off error.  

 
b) Assume that grey is dominant. (In real life, Cooke and Ryder were unable to determine 
which allele was dominant.) There is no difference between yellow and grey goslings 
once they have matured. However, yellow goslings are at an increased risk of predation 
by a predatory bird, the Arctic skua. If 303 grey goslings survive to adulthood, but only 
150 yellow ones do, calculate the fitness of the yellow phenotype relative to the grey one.  
 

Let G be the gray allele and g be the yellow allele. 
We’ve already figured out that p = freq (G) = 0.376 
and q = freq (g) = 0.624.  

Survival rate of grey goslings = 303/413 = 0.734 
Survival rate of yellow goslings = 150/263 = 
0.570  



We could just use these as estimates of fitness, but 
remember that life is easiest if fitnesses are 
normalized so that the highest fitness value gets a 
value of 1.0, so let  

wGG = 0.734 / 0.734 = 1.0 
wGg = 0.734 / 0.734 = 1.0 
wgg = 0.570 / 0.734 = 0.777  

 
c) Now calculate the mean fitness ("w-bar"). Use that to predict the effect of selection on 
the next generation.  
 

p2wGG + 2pqwGg + q
2wgg = w-bar 

(0.376 * 0.376 * 1) + (2 * 0.376 * 0.624 * 1) + (0.624 
* 0.624 * 0.777) = w-bar     
w-bar = 0.913  
You get the effects of selection by dividing the above 
equation through by w-bar. So:  
New frequency of GG geonotype = (0.376 * 0.376 * 1) / 
0.913 = 0.155 
New frequency of Gg genotype = (2 * 0.376 * 0.624 * 1) 
/ 0.913 = 0.514 
New frequency of gg genotype = (0.624 * 0.624 * 0.777) 
/ 0.913 = 0.331  



 
4. A 1970 study of 93 house mice (Mus musculus) in a single barn in Texas focused on a 
single locus (the gene for a certain enzyme) with two alleles, A and A’. The genotype 
frequencies found were:  

AA       0.226 
AA'      0.400 
A'A'     0.374  

 
a) Calculate the allele frequencies.  
 

Quick and easy way:  
Freq (A) = p = 0.226 + (0.400 / 2) = 0.426 
Freq (a) = q = 0.374 + (0.400 / 2) = 0.574   

 
b) How does this population differ from the predictions of Hardy-Weinberg equilibrium? 
Show your work.  
 

Predicted freq (AA) = p2 = 0.181 
Predicted freq (AA') = 2pq = 0.489 
Predicted freq (A'A') = q2 = 0.329  

 
c) In this specific case, what factor or factors are most likely to be causing deviations 
from Hardy-Weinberg equilibrium? How can you tell?  
 

Could be several things, but notice in particular that 
(a) this is a small, restricted population, and (b) 
the heterozygotes are less common, and BOTH 
homozygotes are more common, than we’d expect. Sounds 
like inbreeding is a likely explanation. In fact, we 
could calculate F by solving the equation:  

actual freq (AA) = p2 + pqF 
F = [freq (AA) - p2] / pq = (0.226 - 0.181) / (0.426 
* 0.574)      = 0.184  



 
5. The geneticist P. M. Sheppard (1959) carried out a selection experiment on a 
laboratory population of the fruit fly Drosophila melanogaster. The stubble allele, which 
affects bristle shape of the fly, is dominant to the wild-type allele. Flies that are 
homozygous for stubble always die during embryonic development.  
 
a) Sheppard started out with 86% normal flies and 14% stubble flies. Calculate the allele 
frequencies.  
 

Let S be the stubble allele and s be the normal 
allele.  
Freq (SS) = 0 
Freq (Ss) = 0.14 
Freq (ss) = 0.86 
Freq (S) = p = 0 + (0.14 / 2) = 0.07 
Freq (s) = q = 0.86 + (0.14 / 2) = 0.93  

 
b) Assuming for now that wild-type and stubble flies do not differ in fitness, use the 
allele frequencies to calculate the mean fitness. Then predict the percentages of normal 
and stubble flies in the next generation. Show all work.  
 

wSS = 0 (because all flies with this genotype die) 
wSs = 1 
wss = 1  
Just because the fitness is 1 doesn’t mean that every 
fly with Ss or SS will survive. What matters is that 
the fitnesses are the same for both -- and setting 
them to 1 makes the math easier, although in the end 
it doesn’t change the result.  
p2wSS + 2pqwSs + q

2wss = w-bar  
(0.07 * 0.07 * 0) + (2 * 0.07 * 0.93 * 1) + (0.93 * 
0.93 * 1) = w-bar 
w-bar = 0.995  
Predictions for the next generation: Divide all terms 
of the equation above by w-bar.  
New freq (SS) = (0.07 * 0.07 * 0) / 0.995 = 0. (Duh.) 
New freq (Ss) = (2 * 0.07 * 0.93 * 1) / 0.995 = 0.131 
New freq (ss) = (0.93 * 0.93 * 1) / 0.995 = 0.869  

 
c) Sheppard introduced an additional source of selection: he removed 60% of the wild-
type flies before they could breed in each generation. Repeat part b taking this into 
account.  
 

OK, since each wild-type fly now has only a 40% chance 
of being left in the population to reproduce, we can 
assign a value of 0.4 to the fitness of the ss 
genotype.  
p2wSS + 2pqwSs + q

2wss = w-bar 



(0.07 * 0.07 * 0) + (2 * 0.07 * 0.93 * 1) + (0.93 * 
0.93 * 0.4) = w-bar 
w-bar = 0.476  
Divide every term by w-bar, and the terms now add up 
to 1.0, and each term gives the predicted response to 
selection:  
New freq (SS) = (0.07 * 0.07 * 0) / 0.476 = 0. (Double 
duh.) 
New freq (Ss) = (2 * 0.07 * 0.93 * 1) / 0.476 = 0.273 
New freq (ss) = (0.93 * 0.93 * 0.4) / 0.476 = 0.727  



 
6. The Old German Baptist Brethren, informally known as the "Dunkers", is a small 
religious denomination founded in Germany in 1708. Beginning in 1719, a number of 
Dunkers emigrated from Germany to Pennsylvania. As of 1950, there were about 3500 
Dunkers in the United States. Dunkers are not as strict about their lifestyle as other 
similar religious groups, such as the Amish. However, Dunkers usually marry within 
their community. Dunkers who marry non-Dunkers often leave the community, and 
converts to the Dunker denomination are relatively rare.  
     In 1950, geneticist Bentley Glass studied a population of over 200 Dunkers in 
southern Pennsylvania. Glass used the MN blood group, a blood type controlled by a 
single gene with two loci. Individuals may be type M (homozygous for the M allele), N 
(homozygous for the N allele), or MN (heterozygous). The MN blood type has little 
clinical significance, and as far as is known there is no survival advantage in having one 
MN blood type over the other.  
 
a) Glass found 102 Dunkers with type M blood, 96 with type MN, and 31 with type N. 
Calculate the allele frequencies.  
 

Total population = 102 + 96 + 31 = 229. (Yes, I have 
had students in the past who weren’t sure how to 
calculate this!!)  
Long way: Total number of M alleles in the population 
is two per person with type M blood and one per person 
with MN blood, So there’s (102 * 2) + 96 = 300 M 
alleles in the population, out of 229 * 2 = 458 
alleles overall. 300 / 458 = 0.655.  
Let p = freq (M) = 0.655. Thus q = freq (N) = 1 - p = 
0.345.  

 
b) Calculate the expected numbers of people who would have each blood type if the 
population were in Hardy-Weinberg equilibrium. If the expected figures don’t match 
what is observed, suggest why this might be the case.  
 

Expected freq (MM) = p2 = 0.655 * 0.655 = 0.429, or 98 
people Expected freq (MN) = 2pq = 2 * 0.655 * 0.345 = 
0.452, or 103 people Expected freq (NN) = q2 = 0.345 * 
0.345 = 0.119, or 27 people  
This is pretty close to H-W. In this case we really 
should do a chi-square test to see whether the 
differences are significant, but in this class I’m not 
going to make you do that. . .  

 
c) In Germany today, about 30% of the population has type M blood, 50% has type MN, 
and 20% has type N. In the eastern United States, the figures are almost identical (29% 
M, 50% MN, 21% N.) Discuss why both of these sets of allele frequencies might differ 
from the frequencies in the Dunkers. (There could be many reasons, but restrict yourself 
to the most likely.)  



 
A strong possibility is the founder effect -- the 
small population that founded the Dunker colony in 
America may just have had an unusually high level of M 
alleles by the "luck of the draw". Genetic drift is 
another; that has the strongest effects in a small 
population, and the Dunker population is small enough 
for drift to affect allele frequencies even in the 
absence of selection.  



 
7. P. D. N. Hebert studied the frequencies of alleles for the gene that codes for the 
enzyme malate dehydrogenase (Mdh) in the "water flea," Daphnia magna, living in 
ponds near Cambridge, England. There are three alleles of the Mdh gene, abbreviated S, 
M and F. Hebert found the following genotypes: 
 

genotype observed number 
SS  3 
SM  8 
SF  19 
MM  15 
MF  37 
FF  32 
total  114  

 
a) Calculate the allele frequencies.  
 

Easy. 114 individuals = 228 alleles. Frequency of S = 
(3*2 + 8 + 19)/228, i.e. 3 individuals with two S 
alleles and 8+19 individuals with one each, all 
divided by 228. Freq(S) = 0.145.  
You calculate freq(M) in the same way: (15*2 + 8 + 
37)/228 = 0.329, and freq(F) = (32*2 + 19 + 37)/228 = 
0.526. Check: They all add to 1.000.  

 
b) Is the population in Hardy-Weinberg equilibrium?  
 

Remember: for three alleles, the H-W equation is: 
(p+q+r)2 = 1. That expands to:  
      p2 + 2pq + 2pr + q2 + 2qr + r2 = 1  
and each term gives you a predicted genotype 
frequency. So let p, q, and r be the frequencies of S, 
M and F, respectively, and you can plug-and-chug:  
 
genotype obs. pred. (rounded) 
SS  3 p2 = 0.02103 * 114 = 2 
SM  8    2pq = 0.0954 * 114 = 11 
SF  19 2pr = 0.153 * 114 = 17 
MM  15 q2 = 0.108 * 114 = 12 
MF  37 2qr = 0.346 * 114 = 39 
FF  32 r2 = 0.277 * 114 = 32  
Pretty close to H-W. Might be a little off.  



 
8. Avena fatua is a species of wild oat (a type of grass). Jain and Marshall studied wild 
oat population genetics in California. One of the traits they examined was the pubescence 
(hairiness) of the leaf sheath, which is controlled by a single locus with two alleles, 
written L and l. They found that the frequencies of genotypes in one population were:  
  LL 57.1%   Ll 7.1%   ll 35.8%   
a) Calculate the allele frequencies.  
 

This oughta be easy by now. The quick way:  
p = freq(L) = 0.571 + (0.071/2) = 0.606 
q = freq(l) = 0.358 + (0.071/2) = 0.394  

 
b) Predict what the genotype frequencies should be under Hardy-Weinberg equilibrium. 
If there is a difference between actual and predicted frequencies, explain briefly why the 
differences might exist.  
 

Ho hum. . .  
genotype observed predicted       
LL  57.1% p2 = (0.606)2 = 0.367 
Ll  7.1%  2pq = 2(0.606)(0.394) = 0.478 
ll  35.8% q2 = (0.394)2 = 0.155 
 
Looks a lot like inbreeding, doesn’t it? Again, you’ve 
got that decrease in heterozygotes and increase in 
both homozygotes.  

 
c) Calculate F.  
 

The simplest formula for me to remember is that F = 1-
(actual heterozygote frequency/predicted heterozygote 
frequency). So F = 1-(0.071/0.478) = 0.851. Another 
way to do it would be to plug in one of the formulas 
in your handout such as freq(LL) = p2 + pqF and solve 
for F; you get the same answer.  



 
9. The biologist B. Battaglia raised the marine copepod Tisbe reticulata (a small free-
swimming marine crustacean) under crowded conditions. T. reticulata has one gene with 
two alleles, Vv and Vm, showing incomplete dominance. In one of his tanks, Battaglia 
counted 1751 copepods: 353 VvVv, 1069 VvVm, and 329 VmVm.  
 
a) Show that the population is not in Hardy-Weinberg equilibrium.  
 

Let p = freq(Vv). Then p=(353*2 + 1069) / (1751*2) = 
0.507. And q = freq(Vm) = 1-p = 0.493. If the 
population were in H-W, then the frequency of VvVv 
individuals would be p2, or 0.257; in reality it is 
353/1751 = 0.202. The frequency of VmVm individuals 
would be q2, or 0.243; the actual frequency is 0.188; 
and the expected frequency of VvVm would be 2pq, or 
0.500, vs. the actual frequency of 0.611.  

 
b) Discuss why it might not be in Hardy-Weinberg equilibrium.  
 

Well, we have an excess of heterozygotes here, so it’s 
not inbreeding. My guess would be selection favoring 
heterozygotes. Another possibility would be 
dissortative mating: if VvVv individuals strongly 
prefer to mate with VmVm individuals, and vice versa, 
that could drive up the number of heterozygotes. 



 
10. True story: In 1912, the geneticist W. H. Goddard suggested that feeble-mindedness 
was caused by Mendelian inheritance at a single locus with two alleles. Persons 
homozygous for the recessive, feeble-minded allele (call it f) were dopes, dummies, and 
dimwits -- "incapable of managing their affairs with ordinary prudence", as Goddard said. 
Heterozygotes (Ff) and homozygous dominants (FF) were of normal intelligence. This is 
not actually true -- but pretend that it is, for the purposes of working this problem.  
 
a) According to the 1910 census, the population of the United Stetes was 91,972,266. 
Goddard estimated that 1% of the population was feeble-minded. Assume that the 
population of the US was in Hardy-Weinberg equilibrium. Calculate the allele 
frequencies, and then calculate the percentages of the population that would be 
heterozygous and homozygous dominant.  
 

Easy enough. If the US is in H-W, then the frequency 
of ff individuals is 0.01. Let the frequency of the 
normal and the feeble-minded allele be p and q, 
respectively. Then q is the square root of 0.01, or 
0.1; and p = 0.9.  

 
b) At one time or another, thirty states had laws mandating the compulsory surgical 
sterilization of the feebleminded. (As of 1996, Arkansas and nine other states still did 
have such a law on the books.) There were organizations in the early 20th century that 
lobbied for their enactment nationwide.  
 
Imagine that, in some alternate-reality USA, a mandatory, nationwide law really was put 
into effect that forced the sterilization of all feebleminded individuals before they could 
reproduce. Assume that the authorities were so efficient that they were able to track down 
and sterilize 90% of the feebleminded—and that they never, ever sterilized anyone who 
wasn’t feebleminded. What would be the frequencies of genotypes, and of alleles, after 
one generation?  
 

Sterilization removes you permanently from the 
breeding population, just as surely as execution 
would. So let’s set the fitnessess so that the fitness 
of the ff genotype is only one-tenth of the fitnesses 
of the other two:  

wFF = 1.0    wFf = 1.0    wff = 0.1  
Plug these into our favorite formula. . .  

p2wFF + 2pqwFf + q
2wff = w-bar 

0.9*0.9*1 + 2*0.9*0.1*1 + 0.1*0.1*0.1 = w-bar 
w-bar = 0.991  

Now divide all terms by w-bar to get the predicted 
response to selection:  

freq (FF) = 0.9*0.9*1/0.991 = 0.817 
freq (Ff) = 2*0.9*0.1*1/0.991 = 0.182 
freq (ff) = 0.1*0.1*0.1/0.991 = 0.0001  



 
We can quickly calculate p after one round as 0.817 + 
(0.182/2) = 0.908. So one generation of selection has 
changed the frequency of the gene for normal 
intelligence by a factor of 0.8%. End result: Even if 
you could create a government program that was as 
efficiently run as this one—which we may well be 
skeptical of—it would have a tiny effect on allele 
frequencies. Eugenics isn’t efficient. 



 
11. Fundulus heteroclitus (common name: mummichog) is a small fish that lives in bays 
and estuaries along the east coast of North America, from Newfoundland to Florida. It’s 
been extensively used in evolutionary studies.1  
     Northern populations of F. heteroclitus are virtually completely homozygous for an 
allele of a liver enzyme called Ldh-B (lactate dehydrogenase B), an allele which is just 
called Ldh-Ba. Southern populations are virtually completely homozygous for the other 
major allele of Ldh-B, referred to as Ldh-Bb.  
     Ldh-B has an effect on the survival of fish embryos when exposed to temperature 
stress. In an experimental test of this survival, Fundulus heteroclitus eggs from different 
populations were incubated at 30°C, under heat stress. 57% of the eggs from a southern 
population hatched successfully at 30°C. Only 22% of the eggs from a northern 
population hatched. Interestingly enough, 87% of the eggs that were heterozygous at the 
Ldh-B locus successfully hatched. 
 
a) Suppose you put 500 northern Fundulus fish and 500 southern fish in a large tank, 
allowed them to breed freely, and then incubated all the eggs at 30°C. Predict the 
frequencies of both alleles and genotypes after one generation. 
 

For simplicity, I’ll call the two alleles A and B. 
Northern populations are virtually all AA, and 
Southern populations are virtually all BB. 
 
500 AA fish and 500 BB fish means that the frequency 
of both alleles is 0.5. So let p = frequency(A) and q 
= frequency(B); p = q = 0.5. 
 
You could use the raw survival percentages as fitness 
values and you’d end up with the right answer. But the 
math is easier, and the meaning is more intuitively 
right, if you divide them all by the highest. So 
 
wAA = 0.22/0.87 = 0.25 
wAB = 0.87/0.87 = 1.00 
wBB = 0.57/0.87 = 0.66 
 
Plug these numbers in to 
 
p2wAA + 2pqwAB + q

2wBB = w-bar: 
 
(0.5)2(0.25) + 2(0.5)(0.5)(1) + (0.5)2(0.66) = w-bar 
 
0.063 + 0.5 + 0.165 = 0.73 

                                                             

1 Powers, D.A., M. Smith, I. Gonzalez-Villasenor, L. DiMichele, D. Crawford, G. Bernardi, and T. 
Lauerman. A multidisciplinary approach to the “selectionist/neutralist” controversy using the model teleost, 
Fundulus heteroclitus. Oxford Surveys in Evolutionary Biology 9: 43-107. 



 
Now the new genotype frequencies are given by dividing 
each term of the above equation by w-bar. So: 
 
new freq(AA) = p2wAA/w-bar = 0.063/0.73 = 0.086 
new freq(AB) = 2pqwAB/w-bar = 0.5/0.73 = 0.685 
new freq(BB) = q2wBB/w-bar = 0.165/0.73 = 0.23 
 
Check: Do these three add up to 1? Yes, they do, 
allowing for round-off error. 
 
Now you have to calculate the new allele frequencies. 
There are several ways you could do that, but here’s 
the long way: 
 
new p = (86*2 + 685)/2000 = 0.428 
new q = (230*2 + 685)/2000 = 0.572 

 
EITHER: 
 
b) Predict the frequencies of both alleles and genotypes after a second generation. 
 

Start with 
 
new p = (86*2 + 685)/2000 = 0.428 
new q = (230*2 + 685)/2000 = 0.572 
 
Use the fitness values from the previous problem, and 
calculate w-bar: 
 
p2wAA + 2pqwAB + q

2wBB = w-bar: 
 
(0.428)2(0.25) + 2(0.428)(0.572)(1) + (0.572)2(0.66) = 
w-bar 
 
0.046 + 0.49 + 0.22 = 0.76 
 
Now the new genotype frequencies are given by dividing 
each term of the above equation by w-bar. So: 
 
new freq(AA) = p2wAA/w-bar = 0.046/0.76 = 0.06 
new freq(AB) = 2pqwAB/w-bar = 0.49/0.76 = 0.64 
new freq(BB) = q2wBB/w-bar = 0.22/0.76 = 0.29 
 
Check: Do these add up to 1? Yes, they do, allowing 
for rounding off. 
 



And now you have to calculate the new allele 
frequencies: 
 
new p = (6*2 + 64)/200 = 0.38 
new q = (29*2 + 64)/200 = 0.61 

 
OR: 
 
c) Suppose that, when you actually do this experiment, you discover that the actual 
heterozygote frequency is 0.55. Calculate F.  
 

The right way to calculate F in this situation is one 
I didn’t put on the handout: F = 1 - (Ho/He), where Ho 
is the observed frequency of heterozygotes and He is 
the expected frequency of heterozygotes. Here, Ho is 
0.55, and He is the predicted heterozygote frequency. 
If it’s the second generation after the founding 
generation that we’re talking about, He = 0.68. Ho/He = 
0.81, so F = 0.19. 
 
You might have also remembered the formula that 
freq(AB) = 2pq - 2pqF. If you plug in the numbers 
there, you end up with a negative value for F. 
Technically, that’s not the right way to do it -- that 
formula works only if the only thing that’s pushing 
the population away from H-W Equilibrium is 
inbreeding. Here, we have selection going on as well, 
and that makes the math messier.  



 
12. In 1973, Francisco Ayala and colleagues sampled a population of deep-sea starfish of 
the species Nearchaster aciculosus,  living at a depth of 1244 meters off the coast of San 
Diego, California. They used electrophoresis to determine the frequencies of various 
alleles. One gene that they looked at,  for the enzyme tetrazolium oxidase (abbreviated 
To), had four alleles (abbreviated To-100, To-107, To-114, and To-120.) They found that 
the frequency of each allele was as follows: 

To-100  0.206 
To-107  0.147 
To-114  0.353 
To-120  0.294 

 
Ayala et al. observed that in this population, 70.6% of the starfish were heterozygous. 
Does this observation match the prediction for a population in Hardy-Weinberg 
equilibrium? 
 

Oooh! Four alleles! The formula for the four-allele 
Hardy-Weinberg equilibrium is 
 

(p + q + r + s)2 = 1 
 
which comes to 
 

p2+2pq+2pr+2ps+q2+2qr+2qs+r2+2rs+s2 = 1 
 
Each term of the equation gives the predicted 
frequency for a particular genotype; p2 is the 
predicted frequency for the To-100/To-100 genotype, 
2pq is the predicted frequency for the To-100/To-107 
genotype. . . and so on. p2, q2, r2, and s2 are the 
predicted frequencies of the four possible homozygous 
genotypes. All the other terms in the above equation 
are the predicted frequencies for the six possible 
heterozygous genotypes. So if the population is in 
Hardy-Weinberg equilibrium, then the frequency of all 
heterozygotes would be 
 
 2pq + 2pr + 2ps + 2qr + 2qs + 2rs 
 
Plug in the numbers. . . 
 
2(0.206)(0.147) + 2(0.206)(0.353) + 2(0.206)(0.294) + 
2(0.147)(0.353) + 2(0.147)(0.294) + 2(0.353)(0.294) = 
0.725. 
 
The actual frequency of heterozygotes is 0.706. Close 
to the predicted value, but maybe a little low. 


