
Vol.:(0123456789)

Artificial Intelligence Review (2023) 56:13953–14034
https://doi.org/10.1007/s10462-023-10406-6

1 3

Forty years of color quantization: a modern, algorithmic
survey

M. Emre Celebi1 

Published online: 27 April 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Color quantization (cq), the reduction of the number of distinct colors in a given image
with minimal distortion, is a common image processing operation with various applica-
tions in computer graphics, image processing/analysis, and computer vision. The first cq
algorithm, median-cut, was proposed over 40 years ago. Since then, many clustering algo-
rithms have been applied to the cq problem. In this paper, we present a comprehensive
overview of the cq algorithms proposed in the literature. We first examine various aspects
of cq, including the number of distinguishable colors, cq artifacts, types of cq, applications
of cq, data structures, data reduction, color spaces and color difference equations, and color
image fidelity assessment. We then provide an overview of image-independent cq algo-
rithms, followed by a detailed survey of image-dependent ones. After presenting a brief
discussion of pixel mapping, we conclude our survey with an outline of the open problems
in cq.

Keywords  Color quantization · Color reduction · Vector quantization · Data clustering ·
k-means

1  Introduction

24-bit true-color images have become ubiquitous over the past two decades (Sharma et al.
1998; Ramanath et al. 2005). A typical true-color image may contain hundreds of thou-
sands of distinct colors, which complicates its display, storage, transmission, processing,
and analysis. Color quantization1 (cq) is a common image processing operation that takes
as input a color image and outputs a reproduction of it with the same spatial dimensions
but significantly fewer colors. In this paper, we refer to the colors in the true-color input
image as input colors and those in the reduced-color2 output image as output colors or

 *	 M. Emre Celebi
	 ecelebi@uca.edu

1	 Department of Computer Science and Engineering, University of Central Arkansas, 201 Donaghey
Ave., Conway, AR 72035, USA

1  Also known as color reduction (Bragg 1992; Kruger 1992).
2  Also known as color-mapped, color-quantized, or palletized.

http://orcid.org/0000-0002-2721-6317
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-023-10406-6&domain=pdf

13954	 M. E. Celebi

1 3

representative colors (or representatives, for short). Figure 1 shows the Peppers image
(usc-sipi Image Database3, 512 × 512 pixels) and its quantized versions with 4, 16, 64, and
256 colors. It can be seen that the reproduction is quite good with only 64 colors and indis-
tinguishable from its original with 256 colors.

cq is composed of two phases (Orchard and Bouman 1991): color palette4 design
(the selection of a small set of colors that represents the input colors) and pixel mapping
(the assignment of each pixel in the input image to one of the representatives). The pri-
mary objective of cq is to reduce the number of distinct colors in a given image to a much
smaller number with minimal distortion. Since natural images often contain a large number
of colors, faithful reproduction of such images with a small color palette is a challenging
problem. In fact, as we will see in Sect. 5, cq can be characterized as a large-scale combi-
natorial optimization problem.

The term color quantization was coined in a little-known paper by Jain and Pratt
(1972). However, most researchers consider Heckbert (1980, 1982) the inventor of the
first true cq algorithm. Heckbert described his celebrated median-cut cq algorithm first
in his Bachelor’s thesis (Heckbert 1980) and then, with slight modifications, in a journal
paper (Heckbert 1982). In addition to being the first of its kind, Heckbert’s seminal work
introduced much of the terminology used in the cq literature to this day, described the first
divisive cq algorithm, proposed bit-cutting as a preprocessing step and k-means as a post-
processing step, developed the first accelerated pixel mapping algorithm, and suggested the
use of dithering to minimize false contours in the output image. It is thus safe to say that
Heckbert’s work established cq as a subfield of image processing.

cq can be considered an instance of vector quantization (vq) (Wu 1992a). In a true-
color red-green-blue (rgb) image, each pixel is represented with 24 bits total (8 bits per
color component). Assuming a maximum palette size of K = 256 and disregarding the
space requirements of the palette itself, cq allows us to represent each pixel in the output
image with only 8 bits, leading to a modest compression ratio of 3:1. However, the pur-
pose of cq is not lossily compressing the input image, but representing it with a signifi-
cantly smaller palette. cq should also not be confused with color (image) segmentation,
which refers to the partitioning of a given image into disjoint regions that are homogene-
ous in terms of color. Segmentation is a higher level image processing operation, which
may or may not have cq as a preprocessing step (see Sect. 1.5). In addition, segmentation
almost invariably entails the use of spatial information, whereas cq generally does not (see
Sect. 1.3).

1.1 � How many colors can humans distinguish?

The question of how many colors can be distinguished by the human eye has a long history
dating back to the late 1700s (Kuehni 2016). Estimates on the number of perceptually
distinguishable colors range from 10,000 to 400,000,000 (Masaoka et al. 2013; Kuehni
2016). Factors contributing to the variation in these estimates include the color appear-
ance model, color space, illuminant, just-noticeable difference, and the counting method
used (Masaoka et al. 2013). Nevertheless, more recent computational studies (Pointer
and Attridge 1998; Martínez-Verdú et al. 2007; Linhares et al. 2008; Morovic et al. 2012;

4  Also known as a color map or color (lookup) table.

3  Available at https://​sipi.​usc.​edu/​datab​ase/​datab​ase.​php?​volume=​misc.

https://sipi.usc.edu/database/database.php?volume=misc

13955Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Flinkman et al. 2012; Masaoka et al. 2013) reported estimates in the relatively narrow
range of 1,700,000–2,500,000.

A typical natural image usually contains far fewer than 2,000,000 distinct colors.
In addition, pairwise correlations between the red, green, and blue components of natu-
ral images are often very high (Pratt 1970), meaning that colors in such images are

Fig. 1   Peppers and its various quantized versions

13956	 M. E. Celebi

1 3

nonuniformly distributed within the rgb space. Hence, natural images can usually be repre-
sented with a relatively small palette. Figure 2 shows the Baboon (usc-sipi Image Database,
512 × 512 pixels) and Peppers images along with three-dimensional (3d) visualizations5
of their colors in the rgb space. Observe that, in both images, the colors are concentrated
primarily around the main diagonal of the rgb cube, indicating the presence of significant
spectral correlations.

1.2 � Color quantization artifacts

Due to its lossy (or irreversible) nature, cq inevitably leads to loss of color and fine details.
Color shifts occur when input colors not in the palette are represented with their near-
est representatives in the output image. Color shifts can cause rare input colors to disap-
pear, especially if the palette is small. Color loss may also cause false contours, which can
be highly objectionable to the viewer. False contours tend to appear in large, almost uni-
formly colored (or slowly-varying) regions in natural images depicting sky, water, skin, etc.
Representing such regions with a small palette causes them to split into bands of uniform
colors, and visually disturbing contours appear between those bands. As mentioned earlier,
in addition to color loss, cq causes loss of fine details such as texture, leading to the emer-
gence of flat regions. However, flat regions may also be generated intentionally for artistic
effect, which is referred to as posterization (Chao et al. 2021).

Figure 3 shows the Parrots image (Kodak Lossless True Color Image Suite6, 768 × 512
pixels) quantized to 16 and 256 colors using the median-cut algorithm. For each quantiza-
tion, we display the true-color input image, reduced-color output image, and a grayscale
error image that allows us to visualize the differences between the input and output. The
error image is obtained by amplifying the pixelwise normalized Euclidean ( �2 ) differences
between the input and output by a factor of four and then negating them for better visuali-
zation. Hence, the cleaner/lighter the error image, the better the reproduction of the input
image. In the 16-color case, we observe color loss (the teal color in both parrots), false
contours (in the background), and texture loss (feathers in both parrots). By contrast, the
256-color output is a significantly better reproduction of the input, exhibiting only subtle
contouring (in the background).

It is difficult to recover the fine image details lost due to cq (Daly and Feng 2004). To
this date, only a handful of studies (Schmitz and Stevenson 1995; Chan and Fung 2005;
Keysers et al. 2006; Fung and Chan 2004, 2006a, b; Kim et al. 2007; Wang et al. 2019)
explored the restoration of reduced-color images, an image processing operation referred to
as color dequantization. False contours resulting from color loss can be addressed using
various approaches. There are two main strategies: prevention of the appearance of false
contours and removal of the existing false contours. The primary means of prevention is
dithering (Hains et al. 2003; Baqai et al. 2005; Monga et al. 2006), an image process-
ing operation that exploits the spatial integration property of the human visual system
(hvs) to create the illusion of more colors. Unfortunately, while dithering usually mitigates
false contours, it does not always eliminate them. In addition, dithering often introduces
its own artifacts (visible noise, false textures, blurred edges, color impulses, etc.) (Akarun
et al. 1997). False contour removal appears to be a more promising direction, and is an

5  These visualizations were rendered using Color Space 1.1.1 (by Philippe Colantoni).
6  Available at http://​r0k.​us/​graph​ics/​kodak/.

http://r0k.us/graphics/kodak/

13957Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

active area of research. However, nearly all existing approaches are designed for grayscale
images, compressed videos, or high dynamic range images. For an overview of recent
approaches, refer to Bhagavathy et al. (2009), Luzardo et al. (2017), Huang et al. (2018),
Song et al. (2020), Tu et al. (2020), and the references therein.

1.3 � Classification of color quantization algorithms

There are several ways to classify cq algorithms:

•	 Image-independent vs. image-dependent (Gentile et al. 1990): Image-independent
algorithms design a universal (or fixed) palette without regard to any particular input
image, whereas image-dependent ones design a custom (or adaptive) palette based on
the distribution of the colors in a given input image.

•	 Uniform vs. nonuniform (Heckbert 1982): Uniform algorithms place the representa-
tives uniformly throughout the color space, whereas nonuniform algorithms position
the representatives nonuniformly based on the distribution of the input colors.

Fig. 2   Baboon and Peppers and their 3d color visualizations

13958	 M. E. Celebi

1 3

•	 Scalar vs. vector (Wu 1992a): Scalar (or componentwise) algorithms treat the input
image either as a scalar7 image (e.g., by traversing the 3d color space using a space-fill-
ing curve8 (Stevens et al. 1983) or projecting the 3d color data onto its first principal
component, pc1) or a vector image with uncorrelated components (Balasubramanian
et al. 1994b; Pei and Cheng 1995) (each of which can be treated as a scalar image).
Vector algorithms, on the other hand, treat the input image as a true vector image by
taking into account the spectral correlations.

•	 Pre-clustering vs. post-clustering (Dekker 1994): Pre-clustering algorithms first
divide the input color space into K regions and then compute a representative for each
region. Post-clustering algorithms, on the other hand, first select K representatives and
then cluster the input colors around these representatives. Pre-clustering algorithms

Fig. 3   Parrots image quantized using the median-cut algorithm

7  Buades et al. (2011) demonstrate that the distribution of colors in most natural images can be modeled
accurately by a 2d manifold rather than a 1d curve. In other words, reducing the color space dimensionality
(D) from three to one often leads to a severe loss of information.
8  For another application of space-filling curves in cq, see Subsection 1.7.

13959Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

compute the palette only once, whereas post-clustering algorithms compute an initial
palette and then iteratively improve it. Early cq algorithms (1980–2000) tend to be of
the pre-clustering kind, whereas more recent algorithms are generally of the post-clus-
tering kind.

•	 Hierarchical vs. partitional (Jain et al. 1999): Hierarchical algorithms recursively find
nested clusters in a top-down (or divisive) or bottom-up (or agglomerative) fashion.
In contrast, partitional algorithms find all the clusters simultaneously as a partition of
the data without imposing a hierarchical structure on the data. There are also hybrid
algorithms (e.g., a hierarchical algorithm followed by a partitional one). Pre-clustering
algorithms are generally hierarchical, whereas post-clustering algorithms are generally
partitional.

•	 Context-free vs. contextual (Wu 1992a): Context-free (or non-spatial) algorithms con-
sider only the chromatic characteristics of the input image, whereas contextual (or spa-
tial) algorithms consider both chromatic and spatial information (Joy and Xiang 1996;
Puzicha et al. 2000; Özdemir and Akarun 2002; Yu and Lo 2003; Papamarkos et al.
2002; Huang et al. 2016). While including contextual information in the cq process
may increase the separation between the color clusters (Papamarkos et al. 2002) and
mitigate artifacts such as false contours (Xiang 2018), these advantages often come at
the expense of a significantly higher computational cost.

•	 Static vs. dynamic: Static algorithms assume that the palette size (K) is a fixed integer
to be specified by the user in advance, whereas dynamic algorithms (Atsalakis et al.
2002; Kim and Kehtarnavaz 2005; Atsalakis and Papamarkos 2006; Delon et al. 2007;
Nikolaou and Papamarkos 2009; Ramella and di Baja 2013; Palomo and Domínguez
2014; Nieves et al. 2020) can determine the value of K automatically at run-time.
Unfortunately, the automatic determination of the number of clusters in a given data set
is an ill-defined problem (Baarsch and Celebi 2012). In addition, dynamic algorithms
often require additional user-defined parameters, some of which are unintuitive or dif-
ficult to tune. Finally, dynamic algorithms tend to require a lot more computation than
the static ones.

A vast majority of cq algorithms proposed to date are image-dependent, nonuniform,
vector, context-free, and static. Therefore, in this survey, we focus primarily on such
algorithms.

1.4 � Characteristics of an ideal color quantization algorithm

The following are the characteristics of an ideal cq algorithm:

•	 Effective: Produces minimal distortion.
•	 Efficient: Requires a minimal amount of computational resources (cpu time, memory,

etc.)
•	 Simple: Is easy to understand and implement9.

9  The popularity of a cq algorithm appears to correlate well with the availability of its open-source imple-
mentations. However, practitioners should be aware of the fact that open-source implementations of popular
cq algorithms such as median-cut (Heckbert 1982) and octree (Gervautz and Purgathofer 1988) have vary-
ing degrees of quality and faithfulness to the original algorithms.

13960	 M. E. Celebi

1 3

•	 Convenient: Requires a minimal number of user-defined parameters. If it has such
parameters, they are intuitive and easy to determine. In addition, its performance is not
overly sensitive to the values of these parameters.

•	 Deterministic: For a given input image and parameter values, produces the same out-
put image in every single run.

Unfortunately, many of the above characteristics are in conflict with one another. For
example, simple and efficient algorithms are not always effective and often randomized
(or nondeterministic). In addition, some of these characteristics may be undesirable in spe-
cific applications. For instance, if the performance of an algorithm is inadequate in a given
application, there may not be much to do if the algorithm is deterministic and has no user-
defined parameters. By contrast, a randomized algorithm or an algorithm with user-defined
parameters can be run multiple times (with different random seeds or parameter values,
respectively) to obtain better results at the cost of more computation.

1.5 � Applications of color quantization

In the past, cq was necessary due to the limitations of the display hardware, many of
which could not handle the number of colors in true-color images. Although 24-bit dis-
play hardware have become more common, cq still maintains its practical value. Modern
applications of cq in computer graphics, image processing/analysis, and computer vision
include non-photorealistic rendering (Chao et al. 2021), image matting (Chuang et al.
2001), image dehazing (Berman et al. 2016), image compression (Cheng and Bouman
2001), color-to-grayscale conversion (Kuhn et al. 2008), image watermarking/steganogra-
phy (Tseng and Ding 2012), image segmentation (Mignotte 2008), content-based image
retrieval (Mojsilović et al. 2002), color analysis (Celebi et al. 2012b), color-texture analy-
sis (Serrano et al. 2022), saliency detection (Cheng et al. 2015), and skin detection (Phung
et al. 2005).

In addition to the applications mentioned above, cq is an important problem in its own
right because of its close connection to the more general vq and data clustering problems.
The landmark median-cut cq (Heckbert 1980) and Linde–Buzo–Gray vq (Linde et al.
1980) algorithms were both published in 1980. Since then, the fields of cq and vq have
followed somewhat parallel developmental paths with some researchers working in both.
Many vq algorithms have their roots in general-purpose data clustering algorithms, and the
same is true for many cq algorithms. Conversely, the cq literature has also exerted some
influence on the data clustering literature (Wan et al. 1988; Schreiber 1991; Inaba et al.
1994; Yager and Filev 1994; Su and Dy 2007; Yang et al. 2008; Celebi and Kingravi 2012,
2015). Consequently, advances in cq have led and can lead to advances in vq and data
clustering.

1.6 � Data structures

In terms of storage, a context-free cq algorithm can be implemented in two equivalent
ways (Wan et al. 1988): spatial-storage and histogram-storage. In the spatial-storage
scheme, the input color data is represented as an Np × 3 array, where Np = HW denotes the
number of pixels in the H ×W input image. This scheme is easy to implement, but waste-
ful as it stores repeated colors multiple times. On the other hand, in the histogram-storage
scheme, each of the Nc input colors is stored only once along with its frequency (or count).

13961Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

This scheme can be more difficult to implement (see below) but often requires less memory
and results in a faster cq, depending on the values of Np and Nc . Note that, in the remainder
of this paper, the symbol N is used to denote the size of the input data set, Np or Nc , when-
ever the context does not require differentiation.

A color histogram can be implemented in various ways:

•	 3d representations: A color histogram can be implemented straightforwardly using a
3d array whose dimensions correspond to the three color components. Each bin of such
a histogram then stores the frequency of a particular input color. This data structure is
trivial to implement and requires O(1) time to access any bin. However, it requires a
considerable amount of memory, which is generally wasted because colors in natural
images often occupy a small part of the color space (see Fig. 2). For example, the his-
togram of a 24-bit rgb image contains 2563 elements, which require 64MBs of memory
(assuming a 32-bit data type). For this reason, 24-bit color histograms were considered
impractical in the early days of cq, prompting researchers to resort to bit-cutting (see
Sect. 3.1). Reitan (1998) investigates adaptive data structures to capture the nonuniform
distribution of the input colors in three dimensions, including k-d trees and octrees (see
Sect. 4.2). These recursive space-partitioning trees achieve much better space utiliza-
tion than a 3d histogram, but this comes at the price of simplicity and time efficiency.

•	 2d representations: To reduce memory requirements, some cq researchers proposed
the use of a 2d array whose elements are pointers to a 1d data structure, e.g., a binary
search tree (Balasubramanian and Allebach 1991a; Balasubramanian et al. 1994a; Rei-
tan 1998) or a linked list (Balasubramanian et al. 1994b; Xiang and Joy 1994). For an
rgb image, the 2d array can be indexed by the red and green components of the input
colors, while the 1d data structure stores the remaining color component (blue). Such
a design improves the efficiency of the insertion and search operations by increasing
the space utilization of the array. Compared to a 3d histogram, which requires O(2563)
memory, the resulting hybrid data structure requires only O(2562 + Nc) memory.

•	 1d representations: A color histogram can also be represented using a 1d data struc-
ture (Balasubramanian and Allebach 1991b; Reitan 1998). For example, we can use
a binary search tree that stores the red, green, and blue components of each (r, g, b)
color in packed format, e.g., 2562 r + 256 g + b or, equivalently, (r ≪ 16) | (g ≪ 8) | b ,
where ≪ and | denote the bitwise left shift and bitwise or operators, respectively.
Alternatively, we can use a hash table10 that uses chaining for collision resolu-
tion and a universal hash function of the form (Celebi 2011; Celebi et al. 2015)
ha(r, g, b) =

(
ar r + ag g + ab b

)
mod Ns , where Ns is a prime number and the elements

of sequence a = (ar, ag, ab) are selected randomly from the set {0, 1,… ,Ns − 1} . The
binary search tree and hash table require O(Nc) and O(Ns + Nc) memory, respectively.

1.7 � Data reduction

We mentioned earlier that cq can be considered a large-scale combinatorial optimiza-
tion problem. cq researchers have employed various techniques to reduce the scale of this
problem. Early techniques include taking a uniform (pseudo-)random sample from the
input image (e.g., sampling 1,024 pixels from a 512 × 512 input image (Dixit 1991)) and

10  Heckbert (1980) was the first to use hashing in cq.

13962	 M. E. Celebi

1 3

reducing the spatial dimensions of the input image (e.g., 2 : 1 sampling in the horizontal
and vertical directions (Goldberg 1991), which reduces Np by a factor of 4 by eliminating
every other column and row).

Sampling a 2d image using a pseudo-random sequence is a straightforward opera-
tion. However, such a sampling is not only non-deterministic, but also somewhat nonu-
niform in its coverage of the input pixels, which may bias the cq algorithm (Thompson
et al. 2020). To alleviate these problems, we can use a quasi-random sequence (Press
et al. 2007, p. 404) instead, which is a deterministic sequence of D-dimensional points
that fill ℝD more uniformly than uncorrelated D-dimensional pseudo-random points. This
is illustrated in Fig. 4. Here, the top row shows pseudo-random sequences with increasing
length from left to right generated using the MT19937 variant of the Mersenne Twister
algorithm (Matsumoto and Nishimura 1998), while the bottom row shows quasi-random
sequences with corresponding lengths generated using a Sobol’ sequence (Sobol’ et al.
2011).

There are many quasi-random sequences, including those due to Korobov, Halton,
Sobol’, Faure, Niederreiter, and Niederreiter and Xing. Among these, Sobol’ sequences are
often preferred in practice, especially in low dimensions, due to their favorable uniformity
properties and the availability of efficient generation algorithms. In the context of cq, Cel-
ebi et al. (2014); Thompson et al. (2020) demonstrate that, in addition to being determinis-
tic, quasi-random sampling gives comparable results to pseudo-random sampling.

Some cq algorithms are order-dependent, meaning that they are sensitive to the order
in which the input colors are processed. Such algorithms will thus be affected by the order
in which the input image is scanned. A color image with Np pixels can be scanned in Np!
different ways. The standard scan order is termed a raster scan (or row-major order
scan), where the image is scanned row by row from top to bottom, and from left to right
in each row. There are many alternative image scan orders, including serpentine, zigzag,
diagonal, and spiral. Among these, scan orders defined by space-filling curves are popular
due to their clustering (or neighborhood-preserving) properties. If two points are close on
such a curve, they are also close in the image plane; conversely, if two points are close in
the image plane, they are likely to be close on the curve (Bartholdi III and Platzman 1988).

There are many space-filling curves (Bader 2013), including the Peano curve, Hil-
bert curve, Morton curve, and Sierpiński curve. Among these, the Hilbert curve is gen-
erally preferred in image processing due to its superior clustering properties (Gotsman
and Lindenbaum 1996; Moon et al. 2001) and the availability of efficient generation
algorithms. Papamarkos et al. (2002); Atsalakis et al. (2002); Atsalakis and Papamarkos
(2006) use the Hilbert curve to scan the input image prior to cq. It should be mentioned
that while the clustering properties of space-filling curves can be beneficial in applica-
tions such as image compression (Alexandrov et al. 1984; Lempel and Ziv 1986), it is
unclear if the same is true in cq. An alternative technique is to sample the input image
following the raster order but with a non-unit step size11 that decreases in each pass, e.g.,
1009, 757, 499, 421, 307, 239, 197,… (Verevka and Buchanan 1995). Observe that these
step sizes are taken to be prime numbers to minimize the overlap among the subsets of pix-
els sampled in each pass and that the image is sampled progressively more finely. Finally,
some cq researchers (Fletcher 1991; Pei and Lo 1998; Chang et al. 2005; Wang et al. 2007)

11  Scanning an image of size Np pixels in raster order with a step size of P yields a sample of size
⌈
Np∕P

⌉

pixels.

13963Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

sample the input image according to the elaborate butterfly order used in fast Fourier
transform (fft) algorithms (Oppenheim and Weinstein 1972).

The sampling techniques discussed above are oblivious to the objective of cq, and thus
none of them come with any theoretical performance guarantees. We can develop a theo-
retically sound image sampling technique based on the idea of a coreset, which is a prob-
lem-dependent data summarization technique (Feldman 2020). More specifically, given a
data set and a machine learning problem, a coreset is a small subset of the data set that
captures its essential features with respect to the problem. In the context of cq, Valenzuela
et al. (2018) explore an image sampling technique based on a recent coreset construction
algorithm (Lucic et al. 2016) designed for the k-means problem (see Subsection 5.3).

1.8 � Notation

Tables 1 and 2 respectively list the acronyms and pseudocode operators used throughout
the paper.

1.9 � Outline of the survey

In this paper, we provide a comprehensive survey of the cq research conducted since
1980. Our survey differs from the earlier ones (Domański and Bartkowiak 1998; Brun
and Trémeau 2003; Xiang 2018) in three significant ways. First, we cover a time period
that is nearly twice as long (1980–2022 as opposed to 1982–1997 (Domański and Bar-
tkowiak 1998), 1982–2000 (Brun and Trémeau 2003), and 1982–2005 (Xiang 2018)).
Second, our coverage of the field is more algorithmic than mathematical in nature. For
example, in addition to providing a textual description of each algorithm, we employ
pseudocodes to illustrate some of the key ones. Third, while the earlier surveys focus
primarily on hierarchical algorithms, we focus more on partitional ones, which can

(a) Pseudo-random (210) (b) Pseudo-random (211) (c) Pseudo-random (212)

(d) Quasi-random (210) (e) Quasi-random (211) (f) Quasi-random (212)

Fig. 4   Comparison of pseudo-random and quasi-random sampling (number of points shown in parentheses)

13964	 M. E. Celebi

1 3

attain better results. We should mention that, to keep the paper reasonably concise, we
do not provide a detailed comparative study of the cq algorithms covered, but instead
give figures illustrating the behavior of a few prominent algorithms. For quantitative
comparisons of cq algorithms, refer to Pérez-Delgado and Gallego (2019); Pérez-Del-
gado (2020); Pérez-Delgado and Gallego (2020); Pérez-Delgado (2021) and Abernathy
and Celebi (2022).

The remainder of this survey is organized as follows. Section 2 gives an overview of
common color spaces and color difference equations, and discusses color image fidelity
assessment. Sections 3 through 6 present palette design algorithms. More specifically,
Sect. 3 describes image-independent algorithms, whereas the following three sections
present image-dependent algorithms, namely hierarchical algorithms (Sect. 4), partitional
algorithms (Sect. 5), and metaheuristic algorithms (Sect. 6). Section 7 examines the pixel

Table 1   Table of acronyms

Acronym Meaning Acronym Meaning

1d/2d/3d 1/2/3-dimensional okm Online km

adu Adaptive distributing units pc Principal component
birch Bal. Iter. Red. Clust. Hier. pim Partition index maxim.
bkm Batch km pm Pixel mapping
cd Color difference pnn Pairwise nearest neighbor
cf Clustering feature psnr Peak snr

cie Int. Comm. on illumination rgb Red-Green-Blue
ciede cie difference equation s-cielab Spatial cielab

cl Competitive learning sbkm Stability-based km

cq Color quantization snr Signal-to-noise ratio
fcm Fuzzy C-means som Self-organizing map
fskm Finite-state km sq Scalar quantization
hvs Human visual system srgb Standard rgb

iokm Incremental okm sse Sum of squared errors
iusq Independent usq tie Triangle inequality Elim.
km K-means ucs Uniform color space
mae Mean absolute error usq Uniform sq

mos Mean-ordered search vq Vector quantization
mse Mean squared error

Table 2   Table of pseudocode operators

Operator Name Effect

x ← v Assignment x equals v
(x, y) ← (v1, v2) Multiple assignment x and y equal v1 and v2 , respectively
x ← y ← v Simultaneous assignment x and y both equal v
p ∨ q Logical disjunction (or) True if p or q is true, false otherwise
p ∧ q Logical conjunction (and) True if p and q are true, false otherwise
p = q Equality True if p and q are equal, false otherwise

13965Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

mapping phase, and presents an overview of accelerated pixel mapping algorithms. Finally,
Sect. 8 concludes the survey, and suggests future research directions.

2 � Color spaces, color difference equations, and color image fidelity
assessment

In this section, we provide the necessary background information on color science and
color image processing. We first give a brief overview of common color spaces and color
difference equations. We then discuss the important but often neglected issues of objective
and subjective color image fidelity assessment.

2.1 � Color spaces

An important consideration in any color image processing operation is the color space in
which the operation is conducted. The default rgb space12 is a device-dependent color space
in which the color components often have high pairwise correlations. In applications where
true multivariate processing is desired, the input rgb image can be used directly or trans-
formed into an alternative color space for various reasons, including (i) increasing cluster
separation, (ii) reducing the number of color components (D), (iii) decoupling luminance and
chromaticity information, (iv) obtaining (approximate) perceptual uniformity, and (v) achiev-
ing invariance to various imaging conditions, such as viewing direction, illumination inten-
sity, and highlights. Among these, (perceptual) uniformity is a common reason to perform
color space transformations in cq applications. A (perceptually) uniform color space (ucs)
is one in which equal geometric distances correspond to equal perceived color differences
(cds). It is well-known that the rgb space, especially in its linear (i.e., non-gamma-corrected)
form, is perceptually nonuniform. Despite nearly a century of colorimetry research, a per-
fectly uniform color space has not been discovered yet13. However, various approximately
uniform color spaces have been designed (Kuehni 2003), including the 1960 cie-ucs, 1964
cie-ucs, osa, cielab/cieluv14, ciecam97, cam02-ucs, and cam16-ucs spaces. Despite the fact
that they are not perfectly uniform, these spaces are often referred to as ucss.

ucss should not be confused with intuitive color spaces such as Hue-Saturation-Value
(hsv), Hue-Saturation-Lightness (hsl), and Hue-Saturation-Intensity (hsi). These are cylin-
drical coordinate spaces (Levkowitz and Herman 1993; Hanbury 2008) used for color
specification (e.g., designing intuitive color picker tools). The components of these color
spaces do not accurately model the perceptual attributes of hue, saturation, and lightness,

13  There is evidence that a ucs is not Euclidean, at least not in three dimensions (Urban et al. 2007).

12  In this paper, we assume that all color image data is encoded in the standard rgb (srgb) space (Ander-
son et al. 1996), which was standardized by the International Electrotechnical Commission (iec) in 1999.
This means that the red, green, and blue components of the images are nonlinearly coded (i.e., gamma cor-
rected). It is customary to denote such nonlinear components with primes (Poynton and Funt 2014) (i.e.,
r′ , g′ , and b′ as opposed to r, g, and b, respectively). However, we omit the primes throughout the paper to

avoid clutter.

14  In 1976, the International Commission on Illumination (cie) recommended two approximately uniform
color spaces, namely cielab and cieluv. Nearly half a century later, these spaces are still the cie recommen-
dations, although cieluv has fallen out of favor (Fairchild and Johnson 2004). In fact, since its standardiza-
tion, colorimetric research has mostly revolved around the cielab space and its cd equation (Luo 2002).

13966	 M. E. Celebi

1 3

and their cd equations do not uniformly represent perceived cds (Robertson 1988). In addi-
tion, hue is a circular quantity (Crevier 1993; Hanbury 2003), which should be described
using circular statistics (e.g., hue values should be averaged using the circular mean for-
mula rather than the arithmetic mean one.)

2.2 � Color difference equations

Once we have a color space at hand, we need a cd equation to quantify the geometric distance
between two colors in this space. Assuming that we are working in the rgb space, we can use
the (unweighted) �2 distance. Let p = (r1, g1, b1) and q = (r2, g2, b2) be two colors in the rgb
space. The difference between these colors is given by

Similarly, unweighted or weighted �2 distances are commonly used to quantify cds in
ucss. The best-known ucs and cd equation pair is (cielab, �2 ). Let p = (L1, a1, b1) and
q = (L2, a2, b2) be two colors in the cielab space. The difference between these colors is
given by the cie76 cd equation

To address the nonuniformities in the cielab space, the cie standardized progressively
more advanced equations, namely the cie94 and ciede2000 equations. Despite its superior
accuracy, due to its mathematical discontinuities (Sharma et al. 2005), ciede2000 is sig-
nificantly more complex and difficult to implement than cie94 and cie76. Therefore, among
the three cd equations mentioned above, cie94 appears to offer the best balance between
accuracy and complexity (Melgosa and Huertas 2004). Nevertheless, cie76 is still prevalent
in the color image processing literature.

Given a H ×W color image I and its H ×W reproduction Ĩ , a simple way to measure the
fidelity of Ĩ is to apply a cie cd equation (cie76, cie94, or ciede2000), or one of their many
alternatives (Luo 2002), to the two images in a pixelwise manner, that is, by computing the
cd between each pixel in I and the corresponding pixel in Ĩ . The result is a difference image,
which is often reduced to a single number by averaging, that is,

where Np = HW and d(⋅, ⋅) is a distance function.
Examples of pixelwise image fidelity metrics in the form of Eq. (3) include the mean

absolute error (mae) and mean squared error (mse) metrics corresponding to d = �1 and
d = �

2
2
 , respectively. To facilitate comparisons, Eq. (3) can be normalized as follows

where 0 = (0, 0, 0) is the origin of the color space. By substituting d = �1 and d = �
2
2
 in

Eq. (4), we obtain the normalized mean absolute error (nmae) and normalized mean
squared error (nmse) metrics, respectively.

(1)d(p, q) =

√
(r1 − r2)

2 + (g1 − g2)
2 + (b1 − b2)

2.

(2)d(p, q) =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2.

(3)ed(I, Ĩ) =
1

Np

H∑
r=1

W∑
c=1

d
(
I(r, c), Ĩ(r, c)

)
,

(4)e[d](I, Ĩ) =
Np ed(I, Ĩ)∑H

r=1

∑W

c=1
d(I(r, c), 0)

,

13967Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Another popular image fidelity metric is the peak signal-to-noise ratio (psnr) given by

where M denotes the maximum possible color component value. For an image with B bits
per component, we have M = 2B − 1 (e.g., M = 255 for B = 8).

mse/psnr (Wang and Bovik 2009), and to some extent mae, are widely used image fidel-
ity metrics owing to their conceptual and computational simplicity. However, since the
early days of image processing (Huang et al. 1971), researchers have criticized these met-
rics for disregarding the characteristics of the hvs. The drawbacks of these simplistic met-
rics have prompted the development of perceptually-based metrics in the 1970s (Sakrison
and Algazi 1971; Stockham Jr. 1972; Budrikis 1972; Mannos and Sakrison 1974). How-
ever, a vast majority of the metrics proposed before the 1990s were designed for grayscale
images.

2.3 � Objective color image fidelity assessment

The aforementioned cie cd equations were developed based on psychophysical experi-
ments involving uniform color patches (placed against uniform gray backgrounds) viewed
in controlled conditions. Therefore, such equations are appropriate for assessing color dif-
ferences rather than color image differences. To assess the latter, various color image dif-
ference metrics include a filtering step to simulate the spatial blurring performed by the
hvs. Examples of such spatiochromatic metrics include the spatial cielab (s-cielab) met-
ric (Zhang and Wandell 1997, 1998; Johnson and Fairchild 2003) and its extensions such
as the icam metric (Fairchild and Johnson 2004; Johnson et al. 2010) and the more recent
flip metric (Andersson et al. 2020). These metrics include similar image processing steps
to approximate the behavior of the hvs (Johnson et al. 2010). The input images are first
transformed into a device-independent color space such as ciexyz or approximate human
cone responses (lms), and then into an opponent color space. In the opponent space, the
images are filtered with approximations of human contrast sensitivity functions to remove
high-frequency information that is imperceptible to the hvs. The filtered images are then
transformed into a ucs such as cielab wherein pixelwise cds are computed (e.g., using one
of the cie cd equations described in Subsection 2.2).

Color image fidelity assessment is a complex, interdisciplinary topic that has been the
subject of active research since the 1990s (Ortiz-Jaramillo et al. 2019). Dozens of color
image fidelity metrics, some with spatial filtering and some without, have been proposed
in the literature. Comparative studies (Sheikh et al. 2006; Hardeberg et al. 2008; Pedersen
and Hardeberg 2012; Pedersen 2015; Ponomarenko et al. 2015; Ortiz-Jaramillo et al. 2019)
reveal that different metrics capture different aspects of image fidelity, and thus there is no
universally applicable metric. Nevertheless, certain metrics may be more appropriate than
others in a given application.

Objective assessment remains to be one of the least explored aspects of cq. A vast
majority of cq studies employ pixelwise (non-spatial15) image fidelity metrics such as

(5)ePSNR(I, Ĩ) = 10 log10
M2

e
�
2
2
(I, Ĩ)∕3

,

15  Exceptions include a few cq studies (Sudha et al. 2003; Lo et al. 2003; Yu and Lo 2003; Nolle and
Schaefer 2007; Schaefer 2014; Schaefer and Nolle 2015) that employ the s-cielab metric.

13968	 M. E. Celebi

1 3

the mse/psnr, mae, and their variants, computed mostly in the rgb space. cq researchers
have generally avoided ucss such as cielab for several reasons: (i) the additional compu-
tational cost of the transformation between rgb and the alternative color space (Orchard
and Bouman 1991; Braquelaire and Brun 1997)16; (ii) the higher computational cost of
cq in the alternative color space17; (iii) the cie cd equations used with cielab are devel-
oped for measuring color differences rather than color image differences (Balasubramanian
et al. 1994a, b); iv) performing cq in the nonlinear (gamma-corrected) rgb space is not
entirely inappropriate as this space is more uniform than the linear (non-gamma-corrected)
rgb space (Zhang and Wandell 1998; Poynton and Funt 2014; Avanaki et al. 2014); and (v)
anecdotal evidence that performing cq in an alternative color space does not necessarily
give better results (Braquelaire and Brun 1997).

Despite the numerous studies proposing new cq algorithms, only a few studies (Ortiz-
Jaramillo et al. 2019; Ramella 2021) focus on the assessment of cq. Ortiz-Jaramillo et al.
(2019) and Ramella (2021) both use the tid2013 database (Ponomarenko et al. 2015),
which contains 25 reference color images and their distorted versions (each reference image
is subjected to 24 types of distortions, including cq, applied at 5 levels.) Only two fidel-
ity metrics are common to both studies, mse/psnr18 and structural similarity (ssim) (Wang
et al. 2004), which is perhaps the most prevalent metric after mse/psnr. Ortiz-Jaramillo
et al. investigate 25 metrics, and conclude that the two mse metrics based on the cie76
and ciede2000 equations and the s-cielab metric are among the best. On the other hand,
Ramella investigates nine metrics and concludes that weighted snr (wsnr)19, multiscale
ssim (msssim)20, and visual snr (vsnr)21 perform the best22. mse/psnr, the simplest metrics
tested, outperform ssim in both studies. Perhaps this is not surprising given that ssim can be
derived as a function of psnr, and thus the values of the two metrics are often highly cor-
related (Hore and Ziou 2010; Dosselmann and Yang 2011).

2.4 � Subjective color image fidelity assessment

So far, we have focused on the objective assessment of cq. The complementary assessment
methodology is known as subjective assessment. Broadly speaking, there are two kinds
of subjective assessment methodologies (Pérez-Ortiz et al. 2019): rating and ranking. In
a rating experiment, human observers rate the quality of the presented images based on
a categorical (e.g., 5: excellent, 4: good, 3: fair, 2: poor, and 1: bad) or continuous inter-
val (e.g., [0, 100]) scale. On the other hand, in a ranking experiment, observers compare

16  There are, however, accelerated color space transformations with negligible loss of accuracy (Celebi
et al. 2010).
17  For example, cielab components are often represented in floating-point format to avoid loss of precision.
Such a data representation, however, leads to slower computations than an integer representation.
18  Ortiz-Jaramillo et al. (2019) compute two separate mse metrics in the cielab space, one using the cie76
equation and the other using the ciede2000 one. By contrast, Ramella (2021) computes psnr, and by exten-
sion mse, in the rgb space.
19  wsnr is computed in the Fourier domain after filtering the two images with approximations of the human
contrast sensitivity functions (Mannos and Sakrison 1974; Mitsa and Varkur 1993).
20  msssim is a variant of ssim computed over a range of scales (Wang et al. 2003).
21  vsnr is an hvs-based fidelity metric computed in the wavelet domain (Chandler and Hemami 2007).
22  All three metrics are originally defined for grayscale images.

13969Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

the presented images. The simplest ranking method is pairwise comparison, where two
images are compared, typically on a binary scale (e.g., better or worse).

Rating-based assessment is more appropriate when the images are easily distinguishable
from one another. Once the subjective experiment is completed, we can easily compute
mean opinion scores (Streijl et al. 2016) from the observer responses and then order the
images based on their perceived quality. However, rating experiments require careful train-
ing of the observers to establish a common understanding of the rating scale. On the other
hand, ranking-based assessment is more appropriate when the images are relatively diffi-
cult to distinguish. As mentioned earlier, a common type of ranking is pairwise compari-
sons, which are simpler to perform because it is easier for humans to compare pairs of
images than rate them individually. Thus, such ranking experiments require little training
compared to rating experiments. The pairwise comparison method has two major draw-

backs. First, for Ni images, a complete and balanced design requires
(
Ni

2

)
 trials per

observer23. Second, it is nontrivial to obtain a quality ordering of the images from the com-
parison matrix. The former drawback can be alleviated using an efficient comparison-based
sorting algorithm (Silverstein and Farrell 2001; Maystre and Grossglauser 2017) or an
active sampling algorithm (Jamieson and Nowak 2011; Xu et al. 2011; Ye and Doermann
2014; Fan et al. 2017; Li et al. 2018; Heckel et al. 2019; Mikhailiuk et al. 2021), which
reduces the number of pairwise comparisons from O(N2

i
) to often O(Ni logNi) with negli-

gible loss of accuracy in the final ordering of the images. As for the latter drawback, there
are a variety methods (Cattelan 2012; Liu et al. 2019) and software24 (Wickelmaier and
Schmid 2004; Turner and Firth 2012; Hatzinger and Dittrich 2012) to analyze pairwise
comparison data.

Subjective assessment has found limited application in cq for several reasons. First, it
is nontrivial to design subjective experiments because of the number and diversity of fac-
tors involved (experiment method and its parameters, experimental environment, observer
selection and training, etc.) Second, it is costly to conduct subjective experiments in terms
of time and effort. Third, the statistical analysis of subjective experimental data may be
challenging (Tsukida and Gupta 2011; Pérez-Ortiz and Mantiuk 2017). Fourth, subjec-
tive experiments may be influenced by observer biases as well as inter- and intra-observer
variability. cq studies employing subjective assessment to date have involved only ranking
experiments. Specifically, Hadizadeh et al. (2011) and Huang et al. (2016) employ pairwise
comparisons, whereas Montagne et al. (2006) employ setwise comparisons, where observ-
ers order multiple images from the best to the worst.

It is important to emphasize that assessment, both in its objective and subjective forms,
is useful not only for validating cq algorithms, but also for optimizing them (i.e., determin-
ing optimal values for their user-defined parameters). This optimization aspect of assess-
ment can be crucial for cq algorithms with multiple user-defined parameters.

23  By contrast, a rating experiment requires only Ni trials per observer (Mantiuk et al. 2012).
24  There are also software for conducting pairwise comparison experiments (Vuong et al. 2018).

13970	 M. E. Celebi

1 3

3 � Image‑independent algorithms

In Sect. 1, we mentioned that cq algorithms can be broadly classified into two categories:
image-independent algorithms that design a universal palette without regard to any par-
ticular input image and image-dependent ones that design a custom palette based on the
distribution of the colors in a given input image. In this section, we discuss the image-
independent algorithms.

3.1 � Uniform quantization

In general, image-independent algorithms place the representatives uniformly throughout
the color space because of their need to achieve reasonable image quality for a wide variety
of input images (Gentile et al. 1990). A small universal palette (e.g., with K < 16 colors)
can be designed manually based on geometric considerations (Paeth 1990, 1991). The sim-
plest way to design a large universal palette is through independent uniform scalar quan-
tization (iusq), which involves applying uniform scalar quantization (usq) to each color
component independently (Jain and Pratt 1972; Gentile et al. 1990). Note that iusq is a spe-
cial case of independent scalar quantization (isq) (Balasubramanian et al. 1994b), which
itself is a primitive form of product (code) vector quantization (Sabin and Gray 1984).

iusq can be implemented most efficiently using bit-cutting (Joy and Xiang 1993), that
is, truncating the least significant bits of each color component. For simplicity of discus-
sion, let us assume that we are working in the rgb space with B bits per component, and we
cut the same number C of bits from each component, reducing the number of bits per com-
ponent to B̂ = B − C . This means that our independent uniform scalar quantizer has L = 2B̂
(output) levels per component and the width of each quantization interval is W = 2C .
Consequently, the ith ( i ∈ {0,… , L − 1} ) interval is given by [iW, iW +W − 1] . The above
quantizer then divides the rgb space into L × L × L subcubes of identical dimensions
( W ×W ×W ), reducing the number of distinct colors in the space from 23B to L3 = 23B̂ .
In other words, iusq cannot be used to quantize a given image to an arbitrary number of
colors. Partly because of this, iusq is generally used as a preprocessor for image-dependent
cq algorithms (see below) rather than a standalone cq algorithm.

Thanks to the separable nature of the above quantizer, we can quantize a given image
very efficiently without resorting to computationally costly nearest neighbor searches in
three dimensions. In order to map a given input color (r, g, b), all we have to do is to per-
form three simple univariate mapping operations, one for each component. If v ∈ {r, g, b}
falls in the ith quantization interval on its corresponding color axis, then v maps to the left
endpoint25 of that interval, that is, iW. Computationally, we can determine the output level
corresponding to v in one of two equivalent ways: (i) W⌊v∕W⌋ , and (ii) (v ≫ C) ≪ C . The
latter is usually more efficient because it involves only bitwise right shift ( ≫ ) and left shift
( ≪ ) operators.

Let us now examine a common iusq configuration, namely cutting C = 3 bits from each
B = 8-bit color component of the rgb space. We have L = 28−3 = 32 output levels per
component and the width of each quantization interval is W = 23 = 8 . This quantizer then
divides the rgb space into 32 × 32 × 32 subcubes of dimensions 8 × 8 × 8 , reducing the

25  This convention is adopted for computational simplicity. In the sq literature, it is more common to use
the interval’s midpoint so as to minimize mse (Gersho and Gray 1992, p. 151).

13971Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

number of distinct colors in the space from 224 = 16, 777, 216 to 215 = 32, 768 . The quanti-
zation intervals on each color axis (from left to right) are [0, 7], [8, 15], … , [240, 247], and
[248, 255]. A given a component value v on a particular color axis maps to the output level
8⌊v∕8⌋ or, equivalently, (v ≫ 3) ≪ 3.

Figure 5 shows the Peppers image and its uniformly quantized versions where
C ∈ {1, 2,… , 7} bits are cut from each color component. For each case, we also show the
corresponding error image. Observe that with each bit cut, the number of distinct colors
drops significantly even though the overall visual quality of the image is preserved with as
few as 5 bits per component.

Heckbert (1982) was the first to use iusq as a preprocessing step for an image-dependent
cq algorithm. He cut C = 3 bits from each B = 8-bit color component both to reduce the
memory requirements of his 3d histogram and to accelerate the subsequent divisive clus-
tering process. Following Heckbert, high-resolution iusq has been used as a preprocessor
for many hierarchical cq algorithms. Note that while iusq is generally effective at reduc-
ing the amount of color data to be clustered (see Fig. 5), it is known to cause false con-
tours, especially in large, almost uniformly colored regions (Balasubramanian et al. 1994a;
Xiang and Joy 1994). Therefore, unless time or memory efficiency is of prime importance,
iusq should be applied in moderation (e.g., by cutting 1 bit (Necaise 1998) or, at most, 2
bits (Shufelt 1997) from each 8-bit color component.) In fact, Stokes et al. (1992) empiri-
cally determine that 7.4 bits per component is required in the rgb space to avoid percepti-
ble quantization artifacts.

So far, we have examined the case where we cut the same number of bits from each
component of the rgb space. Recall that Heckbert, and many subsequent cq researchers,
performed 3-3-3 bit-cutting in the rgb space, which divides the space into 32 × 32 × 32
subcubes. Joy and Xiang (1993), however, perform 3-2-4 bit-cutting26 to partially compen-
sate for the perceptual nonuniformity of the rgb space. Such an uneven bit-cutting scheme
divides the rgb space into 32 × 64 × 16 rectangular boxes. Both 3-3-3 and 3-2-4 schemes
require the same amount of memory. However, in accordance with the sensitivity of the
hvs to each primary color component, the 3-2-4 scheme represents the green component at
a higher resolution at the expense of a lower resolution in the blue component. Similarly,
Balasubramanian et al. (1994a, 1994b) propose 1-0-2 bit-cutting.

The computational simplicity of iusq stems from its separable and uniform nature. How-
ever, implementing such a quantizer is straightforward and efficient only in an orthotope-
shaped color space such as rgb, wherein quantization cells are rectangular. Several stud-
ies (Jain and Pratt 1972; Gentile et al. 1990; Yu and Chen 2006) demonstrate that iusq is
not only more difficult to implement, but also less effective in alternative color spaces (e.g.,
yCbCr , yiq, and i1i2i3 (Ohta et al. 1980)), even if they are linear transformations of rgb.

3.2 � Nonuniform quantization

In the previous section, we discussed iusq, which involves applying uniform sq to each
color component independently. While uniform sq is optimal for a uniform distribution,
such is rarely the case for the red, green, and blue components of natural images (Wan and
Kuo 1998). A more effective solution is to perform isq nonuniformly using a scalar quan-
tizer such as the Lloyd–Max quantizer (Lloyd 1982; Max 1960), which is equivalent to the

26  This scheme is inspired by the itu-r bt.601 luminance equation: y = 0.299r + 0.587g + 0.114b.

13972	 M. E. Celebi

1 3

k-means algorithm in one dimension. For a given resolution, a nonuniform scalar quan-
tizer tends to produce less distortion than a uniform scalar quantizer. In addition, given a
B-bit color component, the number of output levels (L) in a nonuniform quantizer can be
arbitrary ( L ∈ {1,… , 2B} ), whereas L must be a power of two in a uniform quantizer. It is
important to note that nonuniform sq need not be suboptimal or inefficient. In fact, optimal
nonuniform sq can be performed in linear time using dynamic programming (Wu 1991b;
Wu and Zhang 1993).

A nonuniform scalar quantizer captures the distribution of a given color component bet-
ter than a uniform scalar quantizer, but the independent application of a scalar quantizer

Fig. 5   Peppers and its various uniformly quantized versions (subfigure captions indicate the number of bits
per input color and the number of distinct colors in the reduced-color image in parentheses)

13973Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

to each color component disregards the spectral correlations. Colors in natural images
are seldom distributed uniformly in the rgb space. Thus, an independent scalar quan-
tizer tends to allocate representatives to regions where few input colors reside, leading
to wasted representatives. In fact, regardless of how it is performed, an independent sca-
lar quantizer divides the 3d rgb space into rectangular boxes (or parallelepipeds) using
axis-parallel planes. A vector quantizer, on the other hand, divides the space into convex
polyhedra using oblique planes, leading to a more effective tessellation27 of the space.
In fact, vq can be superior to isq even in an uncorrelated color space (Gersho and Gray
1992, pp. 345–349). Finally, as mentioned earlier, an independent scalar quantizer is rigid
in terms of the number of quantization cells it can generate. By contrast, a vector quantizer
can generate an arbitrary number of quantization cells. The only advantages of isq over vq
are then its simplicity and efficiency.

In the above discussion, we assumed that the number of bits per color component is a
user-defined integer. From a distortion minimization perspective, it makes sense to allo-
cate bits to the components adaptively according to their variances. Let X =

(
X1,… ,XD

)

be a D-dimensional random vector. Given a bit budget Bsum , the bit allocation problem
is to determine the optimal bit allocation vector b = (b1,… , bD) , where bd is the num-
ber of bits for Xd , that minimizes the sum of mses of the resulting quantizers subject to ∑D

d=1
bd ≤ Bsum (Gersho and Gray 1992, pp. 225–257). Assuming that each component Xd

is identically distributed with zero mean and variance �2
d
 , Huang and Schultheiss (1963)

prove that the dth component of the optimal solution is given by

It is important to note that the optimal bit allocation vector given by the above equation
may have non-integer or even negative components. A greedy algorithm due to Fox (1966)
generates non-negative integer allocations, albeit suboptimally. Starting from a zero bit
allocation vector, Fox’s algorithm iterates Bsum times, allocating one bit in each iteration
to the quantizer that needs it the most (the neediness of a quantizer is measured by its mse
given its current bit allocation.) In the high-resolution regime, Fox’s algorithm simplifies
as follows (Ramstad 1982): for each quantizer, take the standard deviation of the corre-
sponding component as the initial demand and each time a bit is allocated to a quantizer,
reduce its demand by a factor of two.

The bit allocation problem is np-hard (Mohr 2002). Various approximation algorithms
have been proposed for this problem since the 1960s. For representative algorithms, refer
to Farber and Zeger (2006), Hatam and Masnadi-Shirazi (2015), and the references therein.

We have discussed universal palette design using independent uniform/nonuniform sq
with fixed/adaptive bit allocation. A more systematic, albeit computationally more expen-
sive, way to design a large universal palette is to apply vq to a synthetic image that contains
all possible colors in equal numbers28. For example, Gentile et al. (1990) design a universal
palette of a given size using the k-means algorithm.

(6)bd =
Bsum

D
+

1

2
log2

�2
d�∏D

d=1
�2
d

�1∕D
.

27  In an asymptotically optimal quantization of a uniform 3d distribution, each quantization cell has the
shape of a truncated octahedron rather than a cube (Barnes and Sloane 1983).
28  This could be a 4096 × 4096 rgb image with 224 distinct colors or the same image uniformly quantized
using bit-cutting.

13974	 M. E. Celebi

1 3

Regardless of the design algorithm used, for a given input image and palette size, a
universal palette almost always produces inferior results compared to a custom palette, and
the more nonuniform the distribution of the input colors, the worse the universal palette.
Consequently, cq researchers turned to image-dependent algorithms in the early 1980s, and
research on image-independent algorithms declined rapidly. Before we close this section,
we should mention two interesting image-independent approaches in passing: sampling
in the cielab space based on a Fibonacci lattice (Mojsilović and Soljanin 2001; Soljanin
2002) and trellis-coded quantization (Cheng et al. 2002).

4 � Hierarchical algorithms

We now turn to image-dependent cq algorithms that design a custom palette for a given
input image. In this section, we describe hierarchical algorithms in detail.

4.1 � Divisive hierarchical algorithms

As mentioned in Sect. 1, hierarchical algorithms can be divided into two categories: divi-
sive and agglomerative. Since agglomerative algorithms typically have at least O(N2) time
complexity, most hierarchical cq algorithms are divisive. Therefore, we first examine those
algorithms.

A divisive algorithm partitions the 3d color space of the input image into K nonoverlap-
ping regions using (K − 1) planes each of which is uniquely defined by a normal vector and
a point. Each of these regions corresponds to a cluster, which is represented by the centroid
(or mean) of the input colors that fall into that region. The set of these K centroids is then
taken as the palette. Note that, in general, the resulting partition is not a nearest neighbor
partition (aka Voronoi partition). In other words, the nearest centroid to a given input
color is not necessarily the centroid of the region that contains the color.

The four main heuristics used by divisive algorithms are described below (Sproull 1991;
Reitan 1999; Celebi et al. 2015).

Selection of a splitting strategy: Following tree-structured vector quantizers (Buzo
et al. 1980), most divisive algorithms employ binary splitting29, which is accomplished in
one of two ways. One strategy, named the blind recursion strategy, is to split every clus-
ter in each iteration (Buzo et al. 1980), which results in K clusters after lgK iterations. A
more common strategy, named the iterative strategy, is to split a selected cluster in each
iteration, obtaining K clusters after (K − 1) iterations. Geometrically, the color space of the
input image is partitioned into K subspaces by a sequence of (K − 1) split operations. Note
that the number of binary splits that can be performed to obtain K subspaces equals the

number of full binary trees having exactly K leaves, 1
K

(
2K − 2

K − 1

)
 , which is too large to

permit exhaustive enumeration even for relatively small values of K. For example, the
number of all possible splits equals 9, 694, 845 and 14, 544, 636, 039, 226, 909 for K = 16
and K = 32 , respectively.

29  We can generalize divisive algorithms to generate trees with greater branching factors than two (Mak-
houl et al. 1985) or even with variable branching factors (Schmidl et al. 1993).

13975Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

The blind recursion strategy leads to a height-balanced tree30, and is easier to imple-
ment. On the other hand, the iterative strategy is more flexible, and often results in a more
effective distortion minimization (Wu 1992b). In the remainder of this discussion, we
assume that the iterative strategy is used.

Selection of the next cluster to be split: We have seen that a complete enumeration of
all possible binary splits is computationally intractable. Consequently, a heuristic divisive
algorithm must have a mechanism to determine the order of binary splits. In other words,
the algorithm should select an appropriate cluster in each iteration, and then split it into
two subclusters31. Possible choices for the next cluster to be split include:

size criterion: the cluster with the greatest size (or cardinality),
range criterion: the cluster with the greatest range on any color axis,
eigenvalue criterion: the cluster with the greatest dominant eigenvalue,
eigenvalue times size criterion: the cluster with the greatest product of its dominant
eigenvalue and size,
sse criterion: the cluster with the greatest sum of squared errors (sse)32, and
look-ahead sse criterion: the cluster whose split would lead to the greatest reduction in
the sse.

Among these criteria, the first two are computationally the simplest ones. However, while
the range criterion is sensitive to noise, the size criterion favors large (i.e., populated) clus-
ters without considering their homogeneity. In other words, based on the size criterion, a
large yet homogeneous cluster (i.e., one with a relatively small sse) may be split, while a
small yet heterogenous cluster (i.e., one with a relatively large sse) may not be.

The eigenvalue criterion selects the cluster with the greatest dispersion along the pc1
of its covariance matrix. Computing the covariance matrix of a cluster requires linear time
in the size of the cluster. The pc1 of this matrix can then be computed efficiently using the
power method. The sse criterion selects the least homogeneous cluster, that is, the one that
contributes most to the total sse. It can be shown that the eigenvalue and eigenvalue times
size criteria are approximations of the sse criterion (Brun and Trémeau 2003).

For a given splitting plane orientation and position (see below), the look-ahead sse crite-
rion selects the cluster whose split would lead to the greatest reduction in the sse. Let Pi be
the cluster to be split in a given iteration and Pl

i
 and Pr

i
 be the resulting subclusters. The sse

reduction achieved by splitting Pi is given by SSE(Pi) −
(
SSE(Pl

i
) + SSE(Pr

i
)
)
 . This shows

that the sse criterion is, in fact, an approximation of the look-ahead sse criterion, where
the influence of the second term, that is, the sum of the sses of the subclusters, is disre-
garded. To determine the (stepwise) optimal cluster, the look-ahead criterion requires that
two clusters be tentatively split in each iteration (except the first one), resulting in a total of
2(K − 2) tentative splits. Therefore, depending on the other decisions and the implementa-
tion strategy, this criterion may be computationally expensive.

30  As Wu (1992a) notes, in a search tree, keeping the tree balanced is necessary to achieve logarithmic
query time in the worst-case. However, in the palette design phase, distortion minimization is more impor-
tant than achieving a balanced palette, while in the pixel mapping phase, we are concerned with amortized,
rather than worst-case, time complexity.
31  In the first iteration, we split the only cluster that contains the entire data set.
32  For a formal definition of sse, see Eq. (12) in Subsection 5.3. Some cq researchers use the terms vari-
ance and sse synonymously even though, strictly speaking, the variance of a given cluster equals its mean
squared error, that is, its sum of squared errors divided by its size.

13976	 M. E. Celebi

1 3

Among the six criteria discussed above, the sse criterion strikes a good balance between
effectiveness and efficiency. Note that for any of these criteria, in each iteration, only the
statistics (size, range, dominant eigenvalue, etc.) of the two most recently formed clusters
need to be computed since the statistics of the remaining clusters have been computed in
earlier iterations.

Selection of the splitting plane orientation: Once the algorithm decides which cluster
to split (say, Pi ), it needs to determine the splitting plane orientation. An optimal plane
is one that minimizes SSE(Pl

i
) + SSE(Pr

i
) . Assuming that Pi is sufficiently large and its

colors are in general position, there are O(n3
i
) ways to split Pi into two subclusters using a

plane (Harding 1967), where ni is the size of Pi . Currently, the best algorithm for optimal
binary splitting in 3d space requires O(n3

i
) time (Hasegawa et al. 1993), which is impracti-

cal for large data sets such as color image data. Therefore, we need an efficient heuristic to
determine a suboptimal splitting plane. Intuitively, we need to orient the plane orthogonal
to the direction in which the data dispersion is the greatest. Thus, the plane may be orthog-
onal to the color axis with the greatest range, the color axis with the greatest variance, the
pc1 of the cluster, or another carefully selected axis. Among these choices, the pc1 is the
most sensible one, as this is the direction along which the data spread is the greatest. In
fact, it can be shown that pc1 is the optimal choice for multivariate Gaussian data (Das-
gupta and Freund 2009). A computationally cheaper alternative is to use the color axis
with the greatest variance. Note that when the splitting axis is one of the coordinate axes,
the color space is partitioned into rectangular boxes using axis-parallel cuts, as in conven-
tional decision trees (Safavian and Landgrebe 1991). By contrast, when the splitting axis is
the pc1, which is a linear combination of the coordinate axes, the cuts are oblique and the
resulting subspaces are convex polyhedra, as in oblique decision trees (Murthy et al. 1994).

Selection of the splitting plane position: The final decision concerns the selection of
the splitting plane position, that is, the point where the plane intersects the splitting axis.
The splitting plane may pass through the mean, the median, the radius-weighted mean (see
below), or another carefully selected point on the splitting axis. The rationale behind the
choice of the median point is that the resulting subclusters will contain approximately the
same number of colors. This makes sense when building multidimensional search trees,
e.g., k-d trees (Bentley 1975), but for the purpose of partitioning, there is no sound jus-
tification to require that each cluster contain nearly the same number of colors without
considering the distribution of these colors (Wan et al. 1988). In fact, it can be shown that
the mean point is the optimal choice for multivariate Gaussian data (Dasgupta and Freund
2009), and also that the mean is closer to the optimal splitting point than the median for
any non-symmetric continuous univariate distribution (Wu and Witten 1985).

Figure 6 illustrates a divisive clustering algorithm on a 2d toy data set with four com-
pact and well-separated clusters (Ruspini 1970). This algorithm employs an iterative binary
splitting strategy, where, in each iteration, the cluster with the greatest sse is split along the
coordinate axis with the greatest variance at the mean point. After three splits, the algo-
rithm obtains four clusters whose centroids are denoted by stars in Fig. 6d.

Now that we have discussed the issues surrounding the design of heuristic divisive cq
algorithms, we describe several representative algorithms that fit into this framework.

As mentioned in Sect. 1, the first divisive cq algorithm was the median-cut algorithm,
which was proposed by Heckbert in his 1980 Bachelor’s thesis (Heckbert 1980), and later
published as a journal paper (Heckbert 1982). In his thesis, the author proposed median-
cut as an iterative algorithm that splits the cluster with the greatest range on any color
axis, along the same axis at the median point. On the other hand, in his paper, the author
described median-cut as a (blind) recursive algorithm that splits every cluster in each

13977Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

iteration along the color axis with the greatest range at the median point. Historically, some
cq researchers considered median-cut a recursive algorithm (Watanabe 1988; Wan et al.
1988; Wu 1992b, a), while others considered it an iterative algorithm (Gervautz and Pur-
gathofer 1988; Orchard and Bouman 1991; Joy and Xiang 1993). In the modern literature,
however, median-cut is often regarded as an iterative algorithm that splits the largest clus-
ter in each iteration (Reitan 1999).

Wan et al.’s marginal variance minimization algorithm (Wan et al. 1988, 1990) splits
the cluster with the greatest sse along the color axis whose split would lead to the greatest
reduction in marginal variance (more accurately, marginal sse). For a given color axis, both
the optimal splitting point and the resulting reduction in marginal variance can be com-
puted in linear time using Otsu’s thresholding algorithm33 (Otsu 1979), which is equivalent
to optimal 2-means clustering on histogrammed data. Note that this algorithm is not a true
(multivariate) variance-based algorithm, as the variances are computed along the individ-
ual color axes, hence the qualifier marginal.

Orchard and Bouman’s oblique-cut algorithm (Orchard and Bouman 1991) splits the
cluster with the greatest eigenvalue along its pc1 at the mean point. This is the first divisive
cq algorithm that features oblique cuts.

Wu’s variance minimization algorithm (Wu 1991a) improves upon Wan et al.’s algo-
rithm by splitting the cluster with the greatest sse along the color axis whose split would
lead to the greatest reduction in true variance (more accurately, sse). For a given color axis,
the algorithm considers each component value (in order), and computes the reduction in
the sse that would be attained if this point were taken as the splitting point. This is the first
divisive cq algorithm based on true variance minimization. A less efficient version of the
same algorithm was proposed earlier by Milvang (1987).

In a later study, Wu (1992b) improves upon his variance minimization algorithm by
splitting the selected cluster in each iteration along its pc1. The optimal splitting point
is found using the same linear-time plane sweeping approach proposed earlier by the
author (Wu 1991a). The oblique splitting plane is then adjusted iteratively using the
2-means algorithm34. This, of course, amounts to performing a local optimization over the
two most recently formed clusters. The author experiments with two different criteria to
select the next cluster to be split: the sse and the look-ahead sse.

Regardless of the way it is performed, binary splitting is at best a greedy (or stepwise-
optimal) approach that makes each splitting decision regardless of its impact on subsequent
splits (Wu 1992a). Wu’s optimal principal quantization algorithm (Wu 1992a) improves
upon his earlier work based on the observation that the pc1s of the subclusters resulting
from the first few splits remain approximately the same as the pc1 of the image. Hence,
the first four to eight splits are performed simultaneously over the pc1 of the image using
a linear-time dynamic programming algorithm. The algorithm then obtains K clusters by
splitting this initial partition iteratively in a binary manner using the algorithm proposed
earlier by the same author (Wu 1992b).

Joy and Xiang’s center-cut algorithm (Joy and Xiang 1993) is similar to the iterative
median-cut algorithm described in Heckbert’s thesis (Heckbert 1980). The only difference
is that, in each iteration, the former algorithm splits the selected cluster along its color axis
with the greatest range at the center (i.e., mid-range) rather than the median. Using the

33  Other thresholding algorithms (Yang and Tsai 1998) can be used as well.
34  A more elaborate approach would be to adjust all t ( t ∈ {1,… ,K − 1} ) splitting planes simultaneously
after split t using (t + 1)-means clustering (Howard and Harris 1966).

13978	 M. E. Celebi

1 3

center as the splitting point is not only computationally cheaper, but also reduces the clus-
ter volume by half in an attempt to limit the maximum distortion.

Liu and Chang’s algorithm (Liu and Chang 1995) first finds the best split axis for each
candidate cluster by tentatively splitting the cluster along each of the color axes at the mean
point, and computing the corresponding reduction in the sse. The algorithm then splits the
cluster whose best split axis would lead to the greatest reduction in the sse.

Yang and Lin’s radius-weighted mean-cut algorithm (Yang and Lin 1996) splits the
cluster with the greatest sse along the line passing through the radius-weighted mean and
the cluster centroid at the radius-weighted mean point35. The radius-weighted mean of a
cluster is the weighted mean of its colors, where the weight of a color is given by its �2
distance to the cluster centroid.

Braquelaire and Brun’s algorithm (Braquelaire and Brun 1997) splits the cluster with
the greatest sse along the color axis with the greatest variance. The optimal splitting point

Fig. 6   Illustration of a divisive clustering algorithm on a toy data set ( K = 4)

35  If the radius-weighted mean and centroid coincide, the splitting plane is taken orthogonal to the color
axis with the greatest variance.

13979Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Fig. 7   Comparison of divisive cq
algorithms (number of distinct
colors shown in parentheses)

13980	 M. E. Celebi

1 3

Ta
bl

e 
3  

C
om

pa
ris

on
 o

f
di

vi
si

ve
 c

q
 a

lg
or

ith
m

s
(b

tw
: b

et
w

ee
n,

 d
om

. e
ig

: :
 d

om
in

an
t e

ig
en

va
lu

e,
 m

ar
: m

ar
gi

na
l,

m
ax

: m
ax

im
um

, m
in

: m
in

im
iz

at
io

n,
 m

od
: m

od
ifi

ed
, p

ro
d:

pr

od
uc

t,
ra

d:
 ra

di
us

, r
ed

: r
ed

uc
tio

n,
 v

ar
: v

ar
ia

nc
e,

 w
: w

ith
, w

td
: w

ei
gh

te
d)

A
lg

or
ith

m
Re

fe
re

nc
es

C
lu

ste
r

Pl
an

e
or

ie
nt

at
io

n
Pl

an
e

po
si

tio
n

m
ed

ia
n-

cu
t

H
ec

kb
er

t (
19

82
)

m
ax

. s
iz

e
ax

is
 w

. m
ax

. r
an

ge
M

ed
ia

n
m

ar
. v

ar
. m

in
.

W
an

 e
t a

l.
(1

99
0)

m
ax

. s
se

ax
is

 w
. m

ax
. m

ar
. s

se
 re

d.
O

ts
u

th
re

sh
ol

d
ob

liq
ue

-c
ut

O
rc

ha
rd

 a
nd

 B
ou

m
an

 (1
99

1)
m

ax
. d

om
. e

ig
.

pc
1

M
ea

n
va

r.
m

in
.

W
u

(1
99

1a
)

m
ax

. s
se

ax
is

 w
. m

ax
. s

se
 re

d.
Ex

ha
us

tiv
e

se
ar

ch
m

od
. v

ar
. m

in
.

W
u

(1
99

2a
)

m
ax

. s
se

pc
1

Ex
ha

us
tiv

e
se

ar
ch

op
tim

al
 p

rin
ci

pa
l q

ua
nt

iz
at

io
n

W
u

(1
99

2b
)

fir
st

4–
8

cu
ts

 si
m

ul
ta

ne
ou

s
an

d
th

en
 m

ax
. s

se
pc

1
Ex

ha
us

tiv
e

se
ar

ch

ce
nt

er
-c

ut
Jo

y
an

d
X

ia
ng

 (1
99

3)
m

ax
. r

an
ge

 o
n

an
y

ax
is

ax
is

 w
. m

ax
. r

an
ge

m
id

-r
an

ge
–

Li
u

an
d

C
ha

ng
 (1

99
5)

m
ax

. s
se

 re
d.

ax
is

 w
. m

ax
. s

se
 re

d.
m

ea
n

ra
d.

-w
td

. m
ea

n-
cu

t
Ya

ng
 a

nd
 L

in
 (1

99
6)

m
ax

. s
se

lin
e

bt
w.

 ra
d.

-w
td

. m
ea

n
an

d
ce

nt
ro

id
ra

d.
-w

td
. m

ea
n

–
B

ra
qu

el
ai

re
 a

nd
 B

ru
n

(1
99

7)
m

ax
. s

se
ax

is
 w

. m
ax

. v
ar

.
ex

ha
us

tiv
e

se
ar

ch
va

r.-
cu

t
C

el
eb

i e
t a

l.
(2

01
5)

m
ax

. s
se

ax
is

 w
. m

ax
. v

ar
.

m
ea

n
–

U
ed

a
et

 a
l.

(2
01

7)
m

ax
. d

om
. e

ig
. ×

 si
ze

pc
1

O
ts

u
th

re
sh

ol
d

13981Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

is determined using a faster and more robust variant of Wu’s linear-time plane sweeping
approach (Wu 1991a).

Celebi et al.’s variance-cut algorithm (Celebi et al. 2015) splits the cluster with the
greatest sse along the color axis with the greatest variance at the mean point. This axis-
parallel splitting plane is then adjusted iteratively using an accelerated 2-means algorithm.

Ueda et al.’s algorithm (Ueda et al. 2017) splits the cluster with the greatest product
of its dominant eigenvalue and size. The splitting point is determined using linear dis-
criminant analysis, which happens to optimize the same criterion as Otsu’s thresholding
algorithm.

Figure 7 compares three divisive cq algorithms, namely median-cut, oblique-cut, and
variance-cut, on the Peppers image. It can be seen that variance-cut, which uses the sse
criterion to select the next cluster to be split, outperforms oblique-cut, which uses the less
accurate eigenvalue criterion. Not surprisingly, median-cut, which uses the size criterion,
performs the worst.

Table 3 compares the divisive cq algorithms described in this section based on the heu-
ristics used in their design.

4.2 � Agglomerative hierarchical algorithms

An agglomerative clustering algorithm starts with N singleton clusters, each containing
a single color. These clusters are repeatedly merged (pairwise) until K of them remain.
Various criteria can be used to measure the distance (or similarity) between a pair of
clusters. The following merging criteria are prevalent: single linkage, complete linkage,
unweighted average linkage, weighted average linkage, centroid linkage, median linkage,
and minimum variance.

A naive agglomerative clustering algorithm generates K clusters by iterating (N − K)
times, merging the nearest (or most similar) pair of clusters in each iteration. Like most
greedy algorithms, this naive algorithm is not guaranteed to find the optimal partition36.
Clearly, the time complexity of the algorithm is O(N3) . While time-optimal O(N2) formu-
lations for the aforementioned merging criteria exist (Müllner 2013), some of these algo-
rithms are slow in practice, and many of them are difficult to implement. This is in stark
contrast to the divisive clustering algorithms that can be implemented in O(N) time.

Among the merging criteria mentioned earlier, Ward’s minimum variance criterion (and
its associated algorithm) (Ward 1963) is one of the most popular (Murtagh and Legendre
2014). Starting from N singleton clusters with a total sse of zero, in each iteration, Ward’s
algorithm merges the pair of clusters with the least merger cost, that is, the pair whose
union would lead to the least increase in the sse. Let Pi (with size ni and centroid mi ) and
P𝚤 (with size n𝚤 and centroid m𝚤 ) be a pair of clusters. The following are straightforward to
prove:

•	 The merger cost for this pair is
(
nin𝚤∕(ni + n𝚤)

)‖‖mi −m𝚤
‖‖22 , the weighted �2

2
 distance

between mi and m𝚤;
•	 The size of the combined cluster is (ni + n𝚤) ; and

36  Global optimality can be guaranteed only in the case of single linkage clustering. However, despite its
theoretically appealing properties (Fisher and Van Ness 1971; Van Ness 1973; Ackerman et al. 2010; Carls-
son and Memoli 2010), single linkage is generally not preferred due to its tendency to generate elongated
clusters.

13982	 M. E. Celebi

1 3

•	 The centroid of the combined cluster is (nimi + n𝚤m𝚤)∕(ni + n𝚤).

About 20 years after the publication of Ward’s seminal paper, Equitz (1984, 1989) redis-
covered Ward’s algorithm under the name pairwise nearest neighbor algorithm (pnn),
and applied it to the vq problem. Later, Velho et al. (1997) rediscovered the same algo-
rithm under the name pairwise clustering algorithm, and applied it to the cq problem.
Finally, more than half a century after its introduction, Großwendt et al. (2019) discovered
two important theoretical properties of Ward’s algorithm. First, it gives a 2-approximation
for the sse objective if the clusters in the optimal K-partition37 are well separated. Second,
it recovers the optimal K-partition if the clusters are well separated and satisfy a (size) bal-
ance condition.

Now that we have introduced conventional agglomerative clustering and described
Ward’s algorithm in some depth, we proceed with a discussion of the three most prominent
agglomerative algorithms in the cq literature, namely the octree, pnn, and birch algorithms.

The first agglomerative cq algorithm was the octree algorithm proposed by Gervautz
and Purgathofer (1988). The algorithm is based on the octree (Jackins and Tanimoto 1980),
a tree data structure in which each internal node has eight children. The octree is a gener-
alization of the quadtree to three dimensions. Thus, an octree can be used to partition a 3d
space recursively. The root of such an octree represents the entire space; the children of
the root correspond to suboctants of the space; the grandchildren of the root correspond to
sub-suboctants; and so on. An octree of depth eight can thus represent all possible colors
in the 24-bit rgb space. In this color octree, the depth of a node is proportional to its color
homogeneity, with the leaf nodes initially representing the input colors.

Given an input image, the octree algorithm makes one pass over the image, attempting
to insert the input colors successively into an initially empty octree. For each pixel, the
algorithm descends the tree to determine if the pixel’s color is already present in the tree.
If the color has been inserted previously, the statistics of the corresponding leaf (e.g., the
number of distinct colors represented by the leaf, and the sums of the red, green, and blue
components of those colors) are updated. On the other hand, a previously unseen color
results in one of two actions. If there are fewer than K leaves, the new color is inserted into
the tree as a leaf node. Otherwise, the tree is reduced in a bottom-up manner so that the
number of leaves remains equal to K. Once the algorithm scans through the entire image in
the above manner, the set of mean colors of the leaf nodes is taken as the palette.

The reduction operation involves identifying a suitable internal node at the maximum
depth, assigning the mean color of its children to this node, and then deleting the children.
In other words, the selected internal node is transformed into a leaf node whose color rep-
resents the mean color of its former children. Note that the height of the tree decreases over
time due to reductions.

The octree algorithm stores at most K leaves and (K − 1) internal nodes at any given
time. Hence, the algorithm requires only O(K) memory. This memory-efficient formulation
sets the algorithm apart from its divisive rivals that require O(N) memory.

The octree algorithm has made a significant impact on the cq literature. Another influ-
ential agglomerative approach is based on the pnn algorithm, which, as mentioned earlier,
is identical to Ward’s algorithm. In fact, several agglomerative cq algorithms (Balasubra-
manian and Allebach 1991a; Dixit 1991; Xiang and Joy 1994; Velho et al. 1997; Brun and

37  For a formal definition of K-partition, see Eq. (7) in Sect. 5.

13983Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Mokhtari 2000) are variants of the pnn algorithm. The popularity of the pnn algorithm in
cq can be attributed to the algorithm’s least-squares formulation, which links it to k-means
and explains its tendency to generate roughly spherical clusters.

Figure 8 shows the Peppers image quantized to 8 colors using the octree algorithm.
It can be seen that, compared to divisive algorithms, octree spreads the distortion more
evenly throughout the output image at the expense of increased mean distortion (Xiang and
Joy 1994). In Subsection 5.2, we will describe another algorithm, maximin, that minimizes
the maximum distortion in a more systematic manner.

Following Equitz (1989), Balasubramanian and Allebach (1991a) propose an acceler-
ated pnn algorithm based on the k -d tree (Bentley 1975), a multivariate generalization of
the binary search tree that facilitates a wide range of associative queries, including nearest
neighbor queries. A k-d tree can be used to partition a multidimensional space recursively.
Each internal node of a conventional k-d tree partitions the data that it represents into two
subsets using a hyperplane orthogonal to one of the coordinate axes and passing through
the median point. Leaf nodes (or buckets), on the other hand, store the data points. The tree
is built recursively by splitting the node under examination provided that it contains more
than a predefined number of data points (this threshold is referred to as the bucket size).
Observe the similarity of the k-d tree construction method to the divisive median-cut algo-
rithm. In their implementation, Balasubramanian and Allebach split each node along the
color axis with the greatest variance at the mean, rather than the median, point. Note also
that, instead of an axis-parallel k-d tree, a more adaptive divisive algorithm (e.g., one that
splits the node with the greatest sse in each iteration along its pc1) could be used to obtain
a better initial partition.

Recall that a naive implementation of the pnn algorithm starts with N singleton clusters
and ends with K clusters after performing (N − K) mergers. In each iteration, the algorithm
identifies a pair of clusters with the least merger cost. Clearly, searching for an optimal
pair of clusters requires O(N2) time, resulting in an overall time complexity of O(N3) . On
the other hand, the accelerated pnn algorithm considers only the pairs of clusters whose
centroids reside in the same k-d tree bucket. In each iteration, the algorithm visits each
bucket to determine an optimal pair of clusters to merge. Only a predefined fraction of
these pairs are merged because some buckets may not have any close pairs. The mergers
are performed in ascending order of their costs. Once these mergers are completed, the tree
is balanced to account for the centroids lost/gained as a result of the mergers. Balancing is
accomplished by merging small buckets with their neighbors and splitting large buckets.
This three-step process (optimal pair search, mergers, and tree balancing) continues until K
clusters remain. The set of centroids of these clusters is then taken as the palette.

The accelerated algorithm described above has a time complexity of O(N logN) (Equitz
1989). This is a significant improvement over the O(N3) complexity of the naive algo-
rithm. However, while the naive algorithm is stepwise optimal, the accelerated algorithm
is clearly not. Unfortunately, we are not aware of any cq studies that compare the effective-
ness of the two pnn algorithms thoroughly. In addition to its lack of stepwise optimality, the
accelerated algorithm is more difficult to implement than its naive counterpart.

Another way to accelerate the pnn algorithm for cq is to reduce the number of input
colors prior to clustering. For example, Dixit (1991) employs uniform random sampling
for data reduction, while both Velho et al. (1997) and Brun and Mokhtari (2000) employ
uniform quantization.

13984	 M. E. Celebi

1 3

Dixit (1991) presents an approximate agglomerative algorithm that resembles pnn. The
algorithm starts by sampling the input image uniformly at random38. The colors of the
sampled pixels are stored in a table of size T as initial clusters, in ascending order of their
size ( T ≤ S due to duplicates). This table is traversed from top to bottom, merging pairs of
clusters. Let Pi be the cluster under examination at a given time. An optimal match for Pi
from the remaining set {Pi+1,… ,PT} of clusters based on the pnn merger cost formula is
determined. Let P𝚤 be the optimal match for Pi . The pair (Pi,P𝚤) is merged, and either one
of them is replaced with the combined cluster (i.e., its size and centroid) in the table. The
matched pair is excluded from the current iteration of the optimal matching process, and
the algorithm proceeds with finding a match for the next unmatched cluster. Once T/2 pairs
of clusters are merged, the next iteration starts. Hence, each iteration halves the size of the
table (i.e., the number of clusters), and the algorithm continues to iterate until K clusters
remain. Assuming an initial table size of T = O(K logK) , the time complexity of this algo-
rithm is O(K2 logK).

Fig. 8   Peppers image quantized using the octree algorithm

38  The author reports that a sample of size S = 1, 024 pixels suffices for a 512 × 512 input image.

13985Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

The birch (Balanced Iterative Reducing and Clustering using Hierarchies) algo-
rithm (Zhang et al. 1997) provides a scalable approach to clustering data sets that are
too large to fit in memory. The algorithm first generates a compact summary of the data
set through a single pass. This summary is represented by an in-memory, height-bal-
anced tree called clustering feature-tree (cf-tree). Given a set X = {x1,… , xN} ⊂ ℝ

D
of N data points in D dimensions, the cf representing X is the triplet CF(X) = (N, s, ss)
where s =

∑N

i=1
xi is the sum of the data points and ss =

∑N

i=1
��xi��2 is the sum of their

�
2
2
 norms. Essentially, CF(X) is a three-number summary of X based on its first three

moments. Various summary statistics for X (e.g, centroid and radius—see below) can be
computed from CF(X) without having access to the individual data points. In addition, cfs
are additive in that given two disjoint subsets X1 and X2 with their corresponding sum-
maries CF(X1) = (N1, s1, ss1) and CF(X2) = (N2, s2, ss2) , the cf of their union is simply
CF(X1 ∪ X2) = (N1 + N2, s1 + s2, ss1 + ss2).

Each leaf node in a cf-tree stores at most Nl cfs, each representing a summary of a sub-
set of data points. Each internal node, on the other hand, stores at most Ni cfs, one for each
of its children. Thus, both types of nodes represent summaries of subsets of data points.
The cfs in a leaf node, however, must satisfy a compactness requirement: the radius39
of a cf must be less than a predefined threshold T. Because of this compactness require-
ment (Sheikholeslami et al. 1998) and its particular cf representation, birch tends to gen-
erate spherical clusters. The size of the cf-tree is primarily controlled by the user-defined
parameters Nl , Ni , and T.

After obtaining a hierarchical summary of X in the form of a cf-tree, birch clusters the
leaves of the tree using another clustering algorithm such as Ward’s algorithm. This pro-
cess is fast since there are far fewer leaves in CF(X) than data points in X .

The advantages of birch over conventional agglomerative clustering algorithms include
its time40 and memory efficiency and its resistance to outliers. On the other hand, birch is
difficult to implement, and its flexible formulation comes at the cost of about a dozen user-
defined parameters.

Bing et al. (2004) adapt the birch algorithm to the cq problem. The authors first obtain
an initial palette of size 2K by building a cf-tree from the input colors. The most frequent
color in the initial palette is selected as the base color of an intermediate palette (of size
K). The remaining colors in the initial palette are ordered according to their weighted dis-
tances to this base color. The weighted distance between the base color and any other color
is computed as the product of the frequency of the latter color and the �2 distance between
the two colors (the frequency and distance terms are raised to the powers of user-defined
parameters Wf and Wd , respectively.) The (K − 1) colors in the initial palette with the great-
est weighted distances are added to the intermediate palette. The final palette is obtained
by merging the non-selected colors in the initial palette with their nearest colors in the
intermediate palette. The time complexity of the resulting cq algorithm is O(N) . In addi-
tion to the three birch-related parameters (i.e., Nl , Ni , and T), the algorithm has two other
user-defined parameters ( Wf and Wd ). The authors experiment with (Wf ,Wd) = (1, 1) and
(Wf ,Wd) = (1, 2) . Note that the part of the algorithm that selects K colors from the ini-
tial palette aims to select colors that are both frequent and dissimilar to the base color.

39  The radius r of X is given by r =
�∑N

i=1
��xi − x̄

��2∕N , where x̄ = s∕N is the centroid of X  . Given

CF(X) , the radius can be computed as r =
�

ss∕N − ‖x̄‖2.
40  The tree building phase requires only O(N) time.

13986	 M. E. Celebi

1 3

However, the algorithm can easily select multiple frequent colors that are each dissimilar to
the base color, yet similar to each other.

The main drawback of conventional hierarchical clustering algorithms is that their split-
ting/merging decisions are irreversible. Once a divisive algorithm splits a cluster, it cannot
recover the same cluster later. Similarly, once an agglomerative algorithm merges a pair of
clusters, it cannot split them later. In general, the cumulative effect of erroneous decisions is
more significant in agglomerative algorithms because such algorithms execute (N − K) steps,
starting from singleton clusters that contain very little information (Williams 1971). By con-
trast, divisive algorithms execute only (K − 1) steps, starting from a cluster that contains the
entire data set. Another drawback of conventional hierarchical clustering algorithms is that
many of them do not optimize a particular objective function (Dasgupta 2016; Cohen-Addad
et al. 2019). Without an explicit objective, it is difficult not only to compare such algorithms
but also to analyze their theoretical properties. Nevertheless, divisive hierarchical algorithms
are efficient (requiring linear time in N and linear or logarithmic time in K), and most of them
are deterministic and relatively easy to implement. Therefore, such algorithms are often used
to initialize partitional algorithms, which are discussed in the next section.

5 � Partitional algorithms

Due to limited computational resources, early cq algorithms (1980–2000) were mostly
hierarchical. In the early 2000s, researchers turned to partitional cq algorithms, which can
achieve better results if they are initialized properly.

Given a data set X = {x1,… , xN} ⊂ ℝ
D and an integer K ( K ∈ {1,… ,N} ), a partitional

algorithm divides X into a collection P = {P1,… ,PK} of K exhaustive, mutually exclu-
sive, and nonempty subsets, that is,

The family P of sets is called a K-partition and the subsets P1,… ,PK are termed its
clusters. Clearly, the above conditions imply that n1 +⋯ + nK = N.

The number of ways in which a set of N objects can be divided into K nonempty subsets

is given by 1

K!

∑K

i=0
(−1)K−i

�
K

i

�
iN , which can be approximated by KN∕K! for fixed K as

N → ∞ . For example, even for a tiny set of size 100, there are 0.2755 ⋅ 1094 ways to parti-
tion this set into 10 nonempty subsets. Therefore, exhaustive search is computationally
infeasible, except in special cases.

Virtually all partitional clustering algorithms applied to the cq problem to date are
center-based algorithms. Like hierarchical cq algorithms, these center-based partitional cq
algorithms represent each cluster Pi with a center ci . Once the clustering process is com-
pleted, the set C = {c1,… , cK} of centers is then taken as the palette. Consequently, we use
the terms center and representative interchangeably in this section.

(7a)
⋃K

i=1
P
i
= X (exhaustive)

(7b)P
i
∩ P𝚤 = ∅, i, 𝚤 ∈ {1,… ,K}, i ≠ 𝚤 (mutually exclusive)

(7c)n
i
= |P

i
| > 0, i ∈ {1,… ,K} (nonempty)

13987Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

5.1 � The popularity algorithm

The popularity algorithm41 (Heckbert 1982) is conceptually the simplest cq algorithm.
It first builds a low-resolution (or coarse) color histogram of the input image using bit-
cutting42. The set of K most frequent colors in this histogram is then taken as the palette.

Let Nb be the number of bins in the histogram. The simplest way to determine the K
largest bins is to sort the histogram in O(Nb logNb) time using a comparison-based algo-
rithm such as quicksort. A more efficient approach is to first find the Kth largest element in
O(Nb) time using a partition-based selection algorithm such as quickselect (Hoare 1971),
and then take the K elements that are greater than or equal to it.

The popularity algorithm may produce acceptable results on synthetic images with
large, uniformly colored regions, but it generally performs poorly on natural images with a
wide range of colors. The algorithm tends to overrepresent the background colors, which
are usually of limited interest. In addition, it is sensitive to the resolution of the histogram.
If the resolution is too high, it may fail to locate K prominent peaks, or it may select fre-
quent yet similar colors. On the other hand, if the resolution is too low, significant color
shifts may occur.

The popularity algorithm considers only the frequency of the histogram colors, and dis-
regards their diversity. Braudaway (1987) proposes a modified popularity algorithm that
considers both frequency and diversity. The algorithm starts by building a low-resolution
color histogram of the input image, and then selecting the most frequent color as the first
center ( c1 ). The remaining (K − 1) centers are selected successively as follows. Suppose
that the algorithm is at the beginning of iteration i ( i ∈ {2,… ,K} ), that is, it has just
selected ci−1 . Before selecting ci , to avoid selecting a color that is frequent yet similar to
ci−1 , the algorithm reduces the frequency of each histogram color c by a factor of �
1 − e−C‖c−ci−1‖2

�−1

 , where C is a user-defined positive number. This function reduces the
frequency of ci−1 to zero so that it cannot be selected again. The frequencies of ci−1 ’s near-
est neighbors are reduced severely so that they are unlikely to be selected. Finally, the fre-
quencies of ci−1 ’s sufficiently distant neighbors are left unchanged. With a proper C value,
the modified popularity algorithm can significantly outperform the standard one. Celebi
et al. (2014, 2015) report good results with C = 0.25 . Note that Yager and Filev (1994)
later proposed a similar clustering algorithm under the name mountain algorithm.

Figures 9 and 10 compare the original and modified popularity algorithms on the Tux
(credits43, 327 × 360 pixels) and Peppers images, respectively. In each case, the input image
is preprocessed using 3-3-3 bit-cutting (cutting fewer bits makes little difference for Tux,
but leads to worse results for Peppers). As expected, both algorithms perform fairly well
on the synthetic image (with the modified algorithm producing slightly better results). On
the other hand, the original algorithm performs very poorly on the natural image because
it simply selects the most frequent 8 colors, which all happen to be shades of red, without
considering their separation.

41  Less commonly known as the populosity algorithm (Velho et al. 1997).
42  In the context of divisive cq algorithms, the primary purpose of bit-cutting is to reduce time and mem-
ory requirements. For the popularity algorithm and its variants, however, bit-cutting is necessary to detect
the dominant peaks of the color histogram effectively.
43  Courtesy of Larry Ewing (lewing@isc.tamu.edu) and the gimp

13988	 M. E. Celebi

1 3

Fig. 9   Comparison of popularity-based cq algorithms on a synthetic image

13989Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

5.2 � The maximin algorithm

The maximin algorithm (Gonzalez 1985) selects c1 arbitrarily from X and the remain-
ing (K − 1) centers are selected successively as follows. In iteration i ( i ∈ {2,… ,K} ), ci is
selected to be the data point with the greatest minimum-distance to the previously selected

Fig. 10   Comparison of popularity-based cq algorithms on a natural image

13990	 M. E. Celebi

1 3

(i − 1) centers, that is, C(i−1) = {c1,… , ci−1} . In other words, ci is selected to be xj∗ ∈ X
with index

where �
(
xj, C

(i−1)
)
 is the distance between xj and its nearest center in C(i−1) , that is,

where d(⋅, ⋅) is a metric.
If there are multiple candidates for xj∗ , a common tie-breaking rule is to select the data

point with the smallest index. Using the K centers given by this algorithm, we can con-
struct a Voronoi partition of X by assigning each data point to its nearest center.

We mentioned earlier that c1 can be selected arbitrarily44. A simple strategy is to select
a data point uniformly at random from X  , but this would render the algorithm nondeter-
ministic. A convenient and deterministic alternative is to select the data point nearest to the
centroid of X given by x̄ = (1∕N)

∑N

j=1
xj . Now that c1 is selected deterministically, maxi-

min becomes completely deterministic.
An interesting feature of maximin is that the algorithm selects exactly one center from

each of the K clusters if X is composed of compact and separated clusters, that is, if each of
the possible intra-cluster distances is less than each of the possible inter-cluster ones (Hath-
away et al. 2006). This can be expressed mathematically as follows

This greedy algorithm was originally developed as a 2-approximation for the discrete k
-center problem, which is defined as follows. Given a set X of N data points in a met-
ric space, find K representative data points (or centers) such that the maximum distance
between any data point and its nearest center is minimized. If D or K is not fixed, the prob-
lem with d = �2 is np-hard even on the plane (Fowler et al. 1981; Masuyama et al. 1981;
Megiddo and Supowit 1984). In fact, it is np-hard to approximate this problem to within
a factor of less than 2 (Hsu and Nemhauser 1979). Hence, maximin is the best possible
polynomial-time approximation algorithm for this problem.

The pseudocode for maximin is given in Algorithm 145. It is important to note that
while the algorithm works with any distance, its approximation guarantee holds only for
metric distances. However, for the case of d = �2 , there is no need to compute the square
root because the algorithm requires only relative distances.

Clearly, a naive implementation46 of Algorithm 1 requires O(NK) time. Feder and
Greene (1988) propose an elaborate 2-approximation algorithm for the k-center problem

(8)j∗ = argmax
j∈{1,…,N}

�
(
xj, C

(i−1)
)
,

(9)𝛿
(
xj, C

(i−1)
)
= min

𝚤∈{1,…,i−1}
d(xj, c𝚤),

(10)

min
i, 𝚤 ∈ {1,… ,K},

i ≠ 𝚤

min
x∈Ci,x

�∈C𝚤
d(x, x�)

max
i∈{1,…,K}

max
x,x�∈Ci

d(x, x�)
> 1.

44  For color image data, one option is the most frequent color (Houle and Dubois 1986).
45  For conciseness, we omit the handling of exceptional cases such as data points equidistant to multiple
centers.
46  For faster implementations of maximin, refer to Geraci et al. (2006), Zhao et al. (2013), and Borgelt and
Yarikova (2020).

13991Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

(with any �p metric) with O(N logK) time complexity, which is optimal under the algebraic
computation tree model.

Maximin can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where

each data point xj has a nonnegative weight wj associated with it. These weights might
reflect the importance of individual data points or relative frequencies of groups of data
points. For example, in a cq application, the weighted algorithm may be computationally
advantageous if we already have a color histogram of the input image at hand.

Without loss of generality, we assume that the weights add up to one, that is, ∑N

j=1
wj = 1 . The objective function for the weighted k -center problem is identical to that

for the unweighted problem, with the exception that the distances are weighted.
The weighted maximin algorithm (Dyer and Frieze 1985) selects a data point with

the greatest weight as c1 . In iteration i ∈ {2,… ,K} , ci is selected to be the data point with
the greatest minimum-weighted-distance to the previously selected (i − 1) centers. In other
words, ci is selected to be xj∗ ∈ X with index

As in the unweighted algorithm, if there are multiple candidates for xj∗ , we employ a tie-
breaking rule. Using the K centers given by this algorithm, we can construct a Voronoi
partition of X by assigning each data point to its nearest center.

Maximin performs well on well-separated data sets provided that there are no outli-
ers. Turnbull and Elkan (2005) suggest applying maximin to a small random subset of
X to reduce the possibility of selecting outliers as centers. Maximin also runs faster
on such a subset. Assuming that the clusters are equal in size, it can be shown that a
random subset of size N̂ = ⌈CK lnK⌉ for some constant C > 1 contains at least one data
point from each of the K clusters with probability greater than

(
1 − K1−C

)
 . For example,

for K = 32 and C = 2 , we need a subset of size N̂ = 222 and the probability of selecting

(11)j∗ = argmax
j∈{1,…,N}

wj�
(
xj, C

(i−1)
)
.

13992	 M. E. Celebi

1 3

at least one data point from each cluster exceeds 0.96. Observe that the size N̂ of the
subset is independent of the size N of the full data set. Celebi (2009, 2011) reports good
results with C = 2.

Maximin was applied to the cq problem first by Houle and Dubois (1986) and later by
Goldberg (1991) and Xiang (1997). Xiang’s implementation differs from the earlier ones
by its use of the cluster centroids rather than the centers selected by the standard algorithm.
As mentioned earlier, the cluster centroids can be obtained by first assigning each data
point to its nearest center, and then averaging the data points in each cluster.

Figure 11 shows the Peppers image quantized to 8 colors using Xiang’s variant of the
maximin algorithm. The almost uniformly dark error image confirms that the algorithm
spreads the distortion more or less evenly throughout the image in an attempt to minimize
the maximum distortion (i.e., objectionable color shifts) (Xiang and Joy 1994; Celebi
2011; Celebi et al. 2015). In fact, if the goal is to minimize the mean distortion, maximin
may not be appropriate because it gives an N-approximation for the k-means problem in the
worst case. Due to its tendency to sacrifice mean distortion, several studies (Reitan 1999;
Celebi 2009, 2011; Celebi et al. 2014, 2015; Thompson et al. 2020) conclude that maximin
is inferior to most other cq algorithms. Nevertheless, maximin can be used as an effec-
tive and deterministic initializer for more elaborate partitional clustering algorithms such
as batch k-means and online k-means, as demonstrated recently by Thompson et al. (2020).

The maximin algorithm aims to maximize the dispersion of the representatives in the
color space or, equivalently, their diversity. Hsieh and Fan (2000) propose a modified
maximin algorithm that considers both the frequency and diversity of colors. The algo-
rithm first builds a low-resolution color histogram of the input image, and then traverses
this histogram in descending order of frequency. The most frequent color is taken as c1 .
The second most frequent color is taken as c2 provided that its �2 distance to the nearest
previously selected center is greater than a user-defined threshold T; otherwise, the next
most frequent color is considered. The remaining (K − 2) centers are selected similarly.

Hsieh and Fan (2000) recommend setting T = 3
√
2553∕K initially. If the algorithm fails

to select K centers after going through the histogram, T is reduced by a small amount,
and the clustering process is restarted. The set of K centers selected is taken as the initial
palette. Clusters are formed around the initial representatives by assigning each histogram
color to its nearest representative. The set of weighted centroids of these clusters is then
taken as the final palette. This algorithm is sensitive to the value of T. If T is too small,
frequent yet similar colors may be included in the initial palette. On the other hand, if T is
too large, rare colors may be selected, or the histogram may be exhausted before K colors
can be selected.

More recently, Huang (2021) proposed another modified maximin algorithm47. The
algorithm first builds a builds a low-resolution color histogram of the input image. The
most frequent color is taken as c1 . In iteration i ( i ∈ {2,… ,K} ), ci is selected to be the data
point with the greatest product of the square root of its frequency and its minimum-distance
to the previously selected (i − 1) centers. Compared to Hsieh and Fan’s algorithm, Huang’s
algorithm has the advantage of not requiring a threshold value. However, �2

2
 distance and

square root of frequency are incommensurable quantities. For example, the distance term
may dominate in small images, whereas the frequency term may dominate in large images.
Hence, both terms should be normalized by their observed maximums in the input image.

47  Yuan and Goldberg (1988) proposed a similar algorithm in the context of vq.

13993Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

5.3 � The K‑means algorithm

A popular clustering objective function is the sum of errors (se) given by

where �(x, C) denotes the Bregman divergence (Bregman 1967) between x and its nearest
center in C = {c1,… , cK} , that is,

where dB(x, ci) denotes the Bregman divergence between x and ci . It is important to note
that, unlike the discrete k-center objective, the set C of centers in objective (12) is not con-
strained to be a subset of X .

Bregman divergences are a family of nonmetric distance functions that includes the
squared Euclidean distance ( �2

2
 ), squared Mahalanobis distance, Kullback–Leibler diver-

gence, and Itakura–Saito divergence. In practice, the most popular Bregman divergence is
�
2
2
 , in which case Eq. (12) is referred to as the sum of squared errors (sse).

(12)JSE =
∑
x∈X

�(x, C),

(13)�(x, C) = min
i∈{1,…,K}

dB(x, ci),

Fig. 11   Peppers image quantized using Xiang’s maximin algorithm

13994	 M. E. Celebi

1 3

For any Bregman divergence, it can be shown that the optimal center ci for cluster Pi is
given by the centroid of the cluster (Banerjee et al. 2005), that is,

where ni denotes the size of Pi.
For K > 1 , the k -means problem48 (km), that is, minimizing Eq. (12) with d = �

2
2
 , is a

nonsmooth and nonconvex optimization problem with numerous local minima. If D or K
is not fixed, the problem is np-hard49 even for K = 2 ( D ≥ 2) (Aloise et al. 2009) or D = 2
( K ≥ 2) (Vattani 2009; Mahajan et al. 2009). Recently, Awasthi et al. (2015) proved that
there exists a constant 𝜀 > 0 such that it is np-hard to approximate this problem to within a
factor of (1 + �) . Later, Lee et al. (2017) established that � ≥ 0.0013.

Among the heuristics for the km problem, the (batch) k -means algorithm50 (bkm) is
the simplest and most popular one (Celebi 2015). The algorithm is based on the idea that it
is easy to determine the optimal clusters when the centers are fixed and, similarly, it is easy
to determine the optimal centers when the clusters are fixed. The algorithm starts with K
arbitrary centers, typically selected uniformly at random from X  . It then alternates between
an assignment step and an update step until a predefined termination criterion is met. In the
assignment step, each data point is assigned to its nearest center using Eq. (13), whereas,
in the update step, each center is recomputed as the mean of all data points assigned to it
using Eq. (14). This is an alternating minimization procedure because in the assignment
step, the centers are held constant and the partition is optimized, whereas in the update
step, the partition is held constant and the centers are optimized.

The pseudocode for bkm is given in Algorithm 251. In each iteration, we first assign
each data point to its nearest center, and then update the size and vector sum of the cor-
responding cluster. After computing the Voronoi partition of X in this manner, we recom-
pute each center as the ratio between its vector sum and size. These iterations continue
until the relative change in the centers between two consecutive iterations drops below a
threshold, that is,

where c(t)
i

 is the center of Pi at the end of iteration t ( t = 1, 2,… ) and � ≥ 0 is a user-defined
threshold. The cases � = 0 and 𝜀 > 0 correspond to termination upon convergence and
early termination, respectively.

Another common termination criterion is to stop the iterations whenever the relative
change in the sse between two consecutive iterations drops below a threshold (Linde et al.

(14)ci =
1

ni

∑
x∈Pi

x,

(15)
1

K

K∑
i=1

‖‖‖c
(t−1)

i
− c

(t)

i

‖‖‖2
‖‖‖c

(t−1)

i

‖‖‖2 +
‖‖‖c

(t)

i

‖‖‖2
≤ �,

48  In the clustering literature, k -means may refer to an objective function to be minimized or the best-
known algorithm for minimizing this objective.
49  In the early cq literature, the hardness of the km problem was incorrectly attributed to various authors,
including Hyafil and Rivest (1976), Brucker (1978), and Garey et al. (1982).
50  Also known as the Lloyd’s algorithm (Lloyd 1982), generalized Lloyd algorithm (gla) (Gray and Karnin
1982), or Linde–Buzo–Gray algorithm (lbg) (Linde et al. 1980).
51  As before, we omit the handling of exceptional cases such as empty clusters or data points equidistant to
multiple centers.

13995Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

1980), that is,
(
SSE(t−1) − SSE(t)

)
∕SSE(t−1) ≤ � , where SSE(t) denotes the sse at the end of

iteration t ( t = 1, 2,… ) with SSE(0) = ∞ , and � ≥ 0 is a user-defined threshold ( � = 0.001
and � = 0.0001 are commonly used in the literature.)

bkm can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where each

data point xj has a nonnegative weight wj associated with it. Without loss of generality,
we assume that the weights add up to one, that is,

∑N

j=1
wj = 1 . The objective function

for the weighted k -means problem is identical to that for the unweighted problem, with
the exception that the distances are weighted. The optimal center ci for Pi is given by the
weighted centroid of the cluster, that is,

The pseudocode for the weighted (batch) k -means algorithm can be obtained by making
two simple modifications to Algorithm 2: (1) ni ← ni + 1 should be ni ← ni + wj , and (2)
ĉi ← ĉi + xj should be ĉi ← ĉi + wjxj.

bkm is undoubtedly the most popular hard partitional clustering algorithm (Wu et al.
2008). Its popularity can be attributed to several reasons:

•	 It is conceptually simple and easy to implement.
•	 It has a time complexity linear in N, D, and K, that is, O(NDK) per iteration. For this

reason, it can be used to initialize more expensive clustering algorithms. Furthermore,
numerous sequential and parallel acceleration techniques are available in the literature.

•	 It is guaranteed to converge to a local minimum of its objective in a finite number of
iterations.

•	 It is insensitive to the order in which the data points are processed.

(16)ci =
1∑

xj∈Pi
wj

�
xj∈Pi

wjxj.

13996	 M. E. Celebi

1 3

On the other hand, bkm has several significant disadvantages:

•	 It is designed to discover spherical clusters that are well separated. In other words, it is
unsuitable for discovering arbitrary shaped or overlapping clusters.

•	 It tends to discover clusters of approximately equal size.
•	 Because of the nonconvexity of its objective and its descent formulation, it converges

to a local minimum, which can be arbitrarily far from a global minimum. For the same
reasons, it is sensitive to the selection of the initial cluster centers.

It is important to note that these drawbacks are shared by many other partitional clustering
algorithms (Celebi 2015).

Heckbert (1982) was the first to suggest using bkm52 to improve the palette generated
by a divisive cq algorithm such as median-cut. However, Heckbert and several other early
cq researchers (Wu and Witten 1985; Wan et al. 1988, 1990; Orchard and Bouman 1991;
Wu 1992b) deemed bkm to be computationally impractical53 due to its iterative nature. This
negative perception of bkm prompted the development of various efficient divisive cq algo-
rithms between the early 1980s and the early 2000s.

Adaptations of bkm to the cq problem primarily focus on two issues: (i) obtaining bet-
ter local minima through adaptive initialization, and (ii) accelerating the algorithm. The
former concerns the algorithm’s effectiveness, whereas the latter concerns its efficiency.
However, these issues are not independent, as initialization also affects convergence.

We first examine the issue of initialization. Recall that the km objective is a nonsmooth
and nonconvex function with numerous local minima. Hence, a local search algorithm
such as bkm is expected to converge to a local minimum nearest to the initial configura-
tion. Unfortunately, such a local minimum can be far from a global minimum, especially
in a large data set. Therefore, initialization is crucial for bkm and its variants (Celebi and
Kingravi 2012; Celebi et al. 2013; Celebi and Kingravi 2015). Adverse effects of improper
initialization include empty clusters, slower convergence, and a higher chance of getting
stuck in a poor local minimum.

The most popular initialization method is random selection, where K data points are
selected uniformly at random from X  . This method is likely to select data points from
dense regions, but it has no mechanism to avoid selecting nearby data points. In a cq appli-
cation, this method is likely to select frequent colors without considering their diversity.
Another popular initialization method is the maximin algorithm. Recall that, unlike ran-
dom selection, maximin considers diversity but not frequency. There are dozens of other
initialization methods (Celebi et al. 2013) of which k -means++ (Arthur and Vassilvitskii
2007) is the most well-known. In this paper, we refer to these as generic initialization
methods because they are not specifically designed for color image data.

As mentioned earlier, we can also use a hierarchical cq algorithm (e.g., median-cut) as
an initializer. We refer to these as image-specific initialization methods. Celebi (2011)
compares seven generic and seven image-specific methods as initializers for bkm. Not sur-
prisingly, the author finds that image-specific methods are generally more effective and
efficient than the generic ones because the former are specifically designed for color image
data. Celebi also demonstrates that bkm reduces the mse produced by various hierarchical

52  Various cq researchers incorrectly cite Shafer and Kanade (1987) or Celenk (1990) in the context of bkm.
53  For example, Wu and Witten (1985) report execution times ranging from 12 to 34 hours for 256 × 256
images ( K = 256).

13997Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

cq algorithms by an average of 18–50% and, in general, the more ineffective the hierar-
chical algorithm by itself, the more bkm improves upon it. For example, bkm initialized
using median-cut gives, on average, 47% lower mse than median-cut alone. This compre-
hensive experiment refutes the claim made by some of the early cq researchers (Heckbert
1982; Wan et al. 1988, 1990; Orchard and Bouman 1991) that bkm offers only a marginal
improvement over hierarchical cq algorithms.

We now turn to the issue of acceleration. A naive implementation of Algorithm 2 can
take a long time to cluster a large data set. This is because the algorithm computes NK �2

2

distances per iteration, each of which requires (2D − 1) additions and D multiplications.
Hence, we can accelerate bkm by reducing one or more of the following quantities54:

•	 Number of data points (N): In most applications, N is the dominant factor in the execu-
tion time, as N ≫ D and N ≫ K . Sampling and weighting are two common ways to
reduce N. Note that most algorithms that employ sampling are approximate.

•	 Number of clusters (K): Given a data point, many accelerated algorithms try to deter-
mine its nearest center without computing the distance between the data point and all K
centers. In other words, these algorithms aim to compute fewer than NK distances per
iteration. Representative algorithms of this kind are described below.

•	 Cost of distance computations: Dimensionality reduction may be used to reduce
the number of attributes per data point (D), thereby accelerating the distance com-
putations. Dimensionality reduction may also accelerate convergence and facilitate
clustering by eliminating irrelevant, redundant, or noisy attributes. Other ways to
accelerate distance computations include numerical approximations, geometric
identities, and partial distance elimination (see below). Note that algorithms that
employ dimensionality reduction or numerical approximations are usually approxi-
mate.

•	 Number of iterations: We can accelerate convergence by reducing N, D, or K, increas-
ing the convergence threshold ( � ), or using a better initialization method. However,
none of these modifications is guaranteed to accelerate convergence, and each one is
likely to affect the final centers generated by bkm.

Numerous accelerated bkm algorithms have been proposed since the 1980s. We first describe
two approximate algorithms briefly, and then discuss three exact algorithms in detail.

Huang and Chang (2004) propose the finite-state k -means algorithm (fskm)55. The
first iteration of fskm is the same as that of bkm. In each of the subsequent iterations, when
searching for the nearest center to a given data point, the algorithm considers only the Kf
nearest neighbors of the center to which the data point was assigned in the previous itera-
tion. This strategy is faster since the nearest center search is performed in a smaller set
of Kf centers rather than the entire set of K centers. Here, Kf is a user-defined number in

54  In this paper, an exact accelerated algorithm refers to an accelerated algorithm that generates the same
output as the corresponding naive algorithm when started from identical initial conditions. On the other
hand, an approximate accelerated algorithm refers to an accelerated algorithm that generates approxi-
mately the same output as the corresponding naive algorithm when started from identical initial conditions.
We restrict ourselves to sequential acceleration techniques, as opposed to parallel ones, as the former tech-
niques are more appropriate for and common in cq applications. Note that a sequential acceleration algo-
rithm does not necessarily have a lower time complexity than its naive counterpart.
55  This algorithm was proposed for vq earlier by Chang et al. (1992).

13998	 M. E. Celebi

1 3

the range [1, K]. If Kf = K , fskm reduces to bkm. Otherwise, the former approximates the
latter.

In each iteration (except the first one), fskm first computes the pairwise �2
2
 distances

between the K centers, and then determines the Kf nearest neighbors of each center. If the
latter is accomplished using a partition-based selection algorithm such as quickselect, the
assignment step of fskm requires O(K2D + K2 min{Kf , logK} + NDKf) time. Compar-
ing this to the O(NDK) complexity of the assignment step of bkm, we see that fskm can
be faster than bkm only if Kf ≪ K . Huang and Chang report that, for K = 256 , fskm with
Kf = 8 is 16 to 28 times faster than bkm, while obtaining similar results. Unfortunately, the
authors do not suggest a systematic way to set Kf .

Hu and Lee (2007) propose another approximate bkm algorithm, which we refer to as
the stability-based k -means algorithm (sbkm)56. The first T iterations of sbkm are the
same as those of bkm. In the subsequent iterations, the clustering process is accelerated
based on the concepts of center stability and point activity. More specifically, if a center
does not move by more than Δ units (as measured by the �2

2
 distance) in two successive

iterations, it is classified as stable. Furthermore, data points previously assigned to stable
centers are classified as inactive.

In each iteration, only unstable centers and active points participate in the clustering
process. During the first T iterations, all K centers are considered unstable and all N data
points are considered active. As the iterations progress, the number of unstable centers,
and thus the number of active data points, decreases rapidly, resulting in increasingly faster
iterations. The authors report that sbkm with T = 10 and Δ = 1 is 4 to 21 times faster than
bkm, while obtaining similar results.

It is important to stress that, unlike their predecessor (bkm), fskm and sbkm are not guar-
anteed to converge. Therefore, these algorithms should be terminated early, as discussed
earlier.

We now turn to exact approaches for accelerating bkm. The simplest way to acceler-
ate bkm is the partial distance elimination technique (Cheng et al. 1984; Bei and Gray
1985). Let x be a data point, c be a candidate nearest center, and the minimum distance
between x and the previously examined centers be dmin (initialized to ∞ ). It is easy to see
that we can abort the computation of ‖x − c‖2

2
 as soon as the (partial) distance between

the first d̂ attributes of x and c exceeds the current minimum distance, that is, whenever ∑d̂

d=1
(xd − cd)

2 > dmin , where d̂ ∈ {1,… ,D}.
Searching for the nearest center to a data point using the standard �2

2
 distance requires

(2D − 1) additions and D multiplications, whereas the above elimination technique requires
2d̂ additions, d̂ multiplications, and d̂ comparisons. Therefore, this technique is advan-
tageous only if d̂ ≪ D , which is often the case when D is reasonably large. Otherwise,
the time saved by the early termination of the full distance computation is offset by the
additional time spent on comparisons. In our experience, for low-dimensional data such as
color image data, the cost of additional comparisons often renders this technique slower
than direct computation.

The partial distance elimination technique aims to accelerate bkm by reducing the cost
of distance computations. By contrast, most accelerated bkm algorithms aim to reduce the
number of distance computations. Consider a data point x , two centers ci and c𝚤 , and a
distance metric d(⋅, ⋅) . By the triangle inequality, we have d(ci, c𝚤) ≤ d(x, ci) + d(x, c𝚤) .

56  An exact version of this algorithm was proposed earlier by Kaukoranta et al. (2000).

13999Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Therefore, if we know that 2d(x, ci) ≤ d(ci, c𝚤) , we can conclude that d(x, ci) ≤ d(x, c𝚤)
without having to compute d(x, c𝚤) . Note that for d = �

2
2
 , the (relaxed) triangle inequal-

ity test becomes 4‖‖x − ci
‖‖22 ≤ ‖‖ci − c𝚤

‖‖22 . In an efficient implementation, we can avoid
repeated multiplications by 4 by premultiplying the pairwise �2

2
 distances between the cent-

ers by 1/4.
The triangle inequality elimination algorithm (tie) (Chen and Pan 1989) precom-

putes the pairwise �2
2
 distances between the centers at the beginning of each iteration. The

(K − 1) distances associated with each center are then sorted in ascending order. Now, con-
sider a data point x that was assigned to cluster Pk in the previous iteration57. We compare
x against the centers in ascending order of their distances from center ck using the triangle
inequality test. If the test fails, we compute the �2

2
 distance between x and the current center

under consideration; otherwise, we abort the search because we know that the test will suc-
ceed for the remaining centers in the sorted list.

The pseudocode for tie is given in Algorithm 3. In the pseudocode, di is an array of dis-
tances associated with center ci (e.g., upon sorting, di𝚤 denotes ci ’s distance to its 𝚤 th near-
est center.) On line 15, the function ����_�����(di) sorts the input array di in ascending
order, and returns an array pi that contains the indices of the sorted values in the unsorted
input array, that is, pi1 is the index of the smallest value in di , pi2 is the index of the second
smallest value in di , and so on.

On lines 28–30 of Algorithm 3, we declare the candidate center c𝚤 to be the nearest
center to xj in one of two cases: (i) c𝚤 is closer to xj than its current nearest center; or (ii) c𝚤
has the same distance to xj as its current nearest center, but the index of the former center
is less than that of the latter one. Strictly speaking, the second test is not necessary, but,
as discussed earlier in this section, if there are multiple centers equidistant to the query
data point, the center with the smallest index is conventionally taken as the nearest center.
Therefore, without the second test, the tie algorithm may not give identical results to a
standard bkm implementation.

Another popular accelerated bkm algorithm is the mean-ordered search algorithm
(mos) (Ra and Kim 1993), which is based on the idea that two data points can be matched
approximately based on their means. Let x be a data point and c be a candidate nearest
center. The mos algorithm uses the following inequality

where mx =
1

D

∑D

d=1
xd and mc =

1

D

∑D

d=1
cd are the means of x and c , respectively. Conse-

quently, if c satisfies

where dmin is the �2
2
 distance between x and its current nearest center, then c can be elimi-

nated from consideration without having to compute ‖x − c‖2
2
 . This is because inequalities

(17) and (18) imply dmin < ‖x − c‖2
2
 , which means that c cannot possibly be closer to x

than its current nearest center. The computation of the right side of (18) is cheaper than that
of ‖x − c‖2

2
 provided that the means are precomputed; the former requires one addition and

two multiplications, whereas the latter requires (2D − 1) additions and D multiplications.

(17)D
�
mx − mc

�2
≤ ‖x − c‖2

2
,

(18)dmin < D
(
mx − mc

)2
,

57  We can arbitrarily assign all data points to P1 before the first iteration.

14000	 M. E. Celebi

1 3

The means of the data points can be computed before clustering, whereas those of the cent-
ers can be computed at the beginning of each iteration.

Inequality (17) alone is insufficient to design an efficient search algorithm. We also
need to start the search from a center that is likely to be the nearest center to x (this way,
we can ensure that the lower bound dmin in (18) is small, which allows us to eliminate a
large number of candidate centers). Fortunately, there is a simple solution: we can sort
the centers based on their means (or, equivalently, their sums), and locate the center that
has the nearest mean to x ’s using binary search. Let ci be this tentative match. Starting
from ci , we can then traverse the centers in “up” and “down” fashion until we locate the
nearest center. An additional benefit of this search scheme is that once we encounter a
center that satisfies (18), we can terminate the search in the current direction since the
centers further toward the current extreme end cannot possibly be closer to x than its
current nearest center. In other words, if we are going in the up direction and ci−1 satis-
fies (18), we can eliminate centers ci−1,… , c1 . Similarly, if we are going in the down
direction and ci+1 satisfies (18), we can eliminate centers ci+1,… , cK.

The pseudocode for mos is given in Algorithm 4. For efficiency reasons, we represent
each data point/center by its sum, rather than its mean (the sums of xj and ci are denoted
by sp

j
 and sc

i
 , respectively.) The function �������({sc

1
,… , sc

K
}, s

p

j
) finds the index of the

center with the nearest sum to xj ’s using binary search. The purpose of the ����_�����
function was explained earlier in the description of the tie algorithm. Let ci be the tenta-
tive match for xj . We traverse the sorted set of centers in the following order: ci+1 , ci−1 ,
ci+2 , ci−2 , and so on.

It should be noted that more elaborate approaches for accelerating bkm have been pro-
posed in the literature (Hamerly and Drake 2015; Wang et al. 2020). These include algo-
rithms based on k-d trees (Kanungo et al. 2002; Lai and Liaw 2008) and more sophis-
ticated uses of the triangle inequality (Elkan 2003). Some of these algorithms (Elkan
2003) are not suitable for low-dimensional data such as color image data, as they incur
significant overhead to create and update auxiliary data structures. Others (Kanungo
et al. 2002; Lai and Liaw 2008) provide acceleration comparable to tie and mos, but
are difficult to understand or implement. In contrast, tie and mos are conceptually sim-
ple, relatively easy to implement, and incur negligible computational overhead, making
them ideal candidates for cq.

Several exact accelerated bkm algorithms for cq have been proposed in the literature.
Kasuga et al. (2000) first use a divisive clustering algorithm to obtain K initial centers,
and then form Km macroclusters around these centers. When searching for the nearest
center to a data point x , the algorithm computes distances from x to only these Km mac-
roclusters and to certain centers in specific macroclusters, which are determined using
the triangle inequality. For K = 256 , the authors recommend Km = 2

√
K , and estimate

the theoretical speed-up of their algorithm to be roughly
√
K . However, they report a

modest 4-fold speed-up.
Hu and Su (2008a); Hu et al. (2009) propose an algorithm that combines tie with

mos. The authors report 2.5- to 14-fold speed-up over bkm. Celebi (2009, 2011) presents
a weighted tie algorithm. The author reports a maximum of 392-fold speed-up over bkm
(with an average of 62-fold). More recently, Huang (2021) proposed an algorithm based
on a variant of mos.

Numerous elimination conditions such as those used in tie and mos have been pro-
posed in the literature (Xie et al. 2016; Wang et al. 2018). In general, the more condi-
tions used in an accelerated bkm algorithm, the larger the reduction in the number of
distance computations. However, using an excessive number of conditions to minimize

14001Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

the search space aggressively may take more time than computing �2
2
 distances directly,

especially in low dimensions.

14002	 M. E. Celebi

1 3

14003Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Before moving on to other km variants, we make a few remarks on the bkm algorithm
and its accelerated variants:

•	 bkm does not require an unbounded number of iterations to converge (Equitz
1989). It can be shown that for a 24-bit color image with N pixels, bkm requires at
most 3 ⋅ 2562 ⋅ N5 iterations (Har-Peled and Sadri 2005). However, bkm converges
much faster in practice, requiring only a few hundred iterations for typical color
images58 (Thompson et al. 2020). Furthermore, since most of the progress is made in
earlier iterations, the algorithm can be terminated early.

•	 Starting bkm with a more effective initializer does not guarantee a better sse or faster
convergence. However, there are initialization methods that generally outperform oth-
ers in both respects (Celebi et al. 2013).

•	 It can be misleading to compare the efficiency of initialization methods based on the
number of bkm iterations they lead to. For example, we can use an elaborate and com-
putationally expensive initializer to achieve faster convergence (Celebi 2011).

•	 An approximate bkm algorithm does not necessarily converge or, if it does, it does not
do so faster than standard bkm (Huang and Chang 2004).

•	 An approximate bkm algorithm does not necessarily perform worse than standard bkm
in terms of sse (Huang and Chang 2004).

•	 Most acceleration techniques for bkm involve geometric inequalities that can lead to
numerical instabilities when implemented using finite-precision arithmetic.

•	 Sampling the input image does not guarantee a faster convergence because while each
iteration will be faster, there may be more of them.

•	 An accelerated bkm algorithm does not necessarily run faster than a naive one. Most
accelerated algorithms pay off only if K is sufficiently large.

•	 It can be misleading to compare the efficiency of accelerated bkm algorithms based on
the number of distance computations they require. This is because an accelerated algo-
rithm may perform multiple tests to reduce the number of distance computations drasti-
cally at the cost of significant computational overhead.

MacQueen (1967) proposes an online formulation of the bkm algorithm. The two km algo-
rithms differ in when and how they update the cluster centers. The online k -means algo-
rithm (okm) updates the nearest center immediately after the presentation of each data
point, whereas bkm recomputes all centers after the presentation of the entire set of data
points.

The pseudocode for okm is given in Algorithm 5. Here, ����(l, u) is a uniform random
number generator that returns an integer between l and u (inclusive), ni denotes the number
of data points assigned to ci (or, equivalently, the number of times ci has been updated),
and P ≥ 0 denotes the user-defined exponent of the learning rate, which is explained
below. With MacQueen’s choice of P = 1 , the combination of statements ni ← ni + 1 and
ci ← ci + n−P

i
(xr − ci) reduces to ci ← (nici + xr)∕(ni + 1) , which ensures that ci represents

the mean of all data points assigned to it.
Assuming a single pass over X  , that is, N presentations, the time complexity of okm is

dominated by the nearest center search operations, which take O(NDK) time. This com-
plexity is identical to that of bkm. However, in terms of the actual number of arithmetic

58  In general, the exact number of iterations depends on the number, dimensionality, and distribution of the
data points, the number of clusters sought, and the initial centers.

14004	 M. E. Celebi

1 3

operations, an okm pass costs slightly more than a bkm pass due to the additional random
number generation and learning rate computation operations. It is important to notice that
the total computational requirements of the two algorithms are often substantially different.
This is because, in practice, the online algorithm is often terminated after one pass or, at
most, a few passes, whereas the batch algorithm converges after many passes59. Therefore,
the online algorithm can be significantly faster than the batch one (Thompson et al. 2020;
Abernathy and Celebi 2022).

Unlike its batch counterpart, okm traverses the data points randomly. This random pres-
entation reduces the sensitivity of the algorithm to the order in which the data points are
processed. In this regard, random presentation has been shown to be superior to cyclic
presentation, that is, x1, x2,… , xN , x1, x2,… (Mulier and Cherkassky 1995; Bermejo and
Cabestany 2002). In fact, cyclic presentation is likely to introduce bias into the learning
procedure, especially in redundant data such as color image data.

The okm algorithm can also be viewed as an instance of the competitive learning (cl)
paradigm (Rumelhart and Zipser 1985; Grossberg 1987), which is a form of unsupervised
learning (Celebi and Aydin 2016) closely related to neural networks (Ahalt et al. 1990). In
a basic cl algorithm, we have a randomly distributed set of (neural) units that compete for
the right to respond to a given subset of inputs (Rumelhart and Zipser 1985). Whenever an
input is presented, the most closely matching unit (typically in the �2 sense) is declared the
winner, and moved toward the input. Since only the winner is adapted, this learning para-
digm is termed hard competitive learning (or winner-take-all learning)60.

Let x(t) be the input at time t ( t = 1, 2,… ) and c(t) be the winner (with respect to the �2
distance). The adaptation equation for c(t) is given by

where � ∈ [0, 1] is the learning rate, which is typically a monotonically decreasing func-
tion of time. The larger the � value, the more emphasis is given to the new input, and hence

(19)c(t) = c(t − 1) + �(t)(x(t) − c(t − 1)),

59  Thompson et al. (2020) show that a single-pass variant of bkm is faster than okm, but performs very
poorly.
60  For a discussion of the alternative soft competitive learning (or winner-take-most learning) paradigm,
see Subsection 5.5.

14005Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

the faster the learning. However, very large values of � may prevent the algorithm from
converging. In general, � is selected to satisfy the Robbins–Monro conditions (Robbins and
Monro 1951) given by

 These conditions ensure that the learning rate decreases fast enough to suppress the noise,
but not too fast to avoid premature convergence. Under mild regularity conditions, this
algorithm converges almost surely to a local minimum (Bottou 1998).

Rearranging the terms in Eq. (19), we obtain

which indicates that the new center c(t) is a convex combination of the old center c(t − 1)
and the input x(t) . In other words, values of � in [0, 1] move c along the line segment join-
ing c and x.

The choice �(t) = t−P with P ∈ (0.5, 1] guarantees converge. The value P = 1 gives us
the most popular rate in the stochastic approximation literature (i.e., the harmonic rate),
�(t) = 1∕t , which coincides with MacQueen’s choice. This rate leads to the fastest asymp-
totic convergence for K = 1 (Yair et al. 1992). In practice, data sets are finite ( N < ∞ ),
and we seek multiple clusters ( K > 1 ). In addition, the clustering problem is nonstationary
because the subsets of data that fall into each cluster change through the iterations (Darken
and Moody 1990). Therefore, the asymptotically optimal harmonic rate is often subopti-
mal in practice. More specifically, �(t) = 1∕t decays too rapidly for K > 1 . Multiple stud-
ies (Darken and Moody 1990; Wu and Yang 2006; Thompson et al. 2020) recommend the
so-called square root rate, �(t) = 1∕

√
t , instead.

It is interesting to note that, while there are numerous exact accelerated bkm algo-
rithms (Hamerly and Drake 2015; Wang et al. 2020), to the best of our knowledge, there
is no exact accelerated okm algorithm. This is because it is difficult to accelerate okm in an
exact manner due to the frequent center updates. In fact, online algorithms such as okm are
often accelerated (approximately) through better learning rate schedules. Fortunately, with
an appropriate schedule, a one-pass okm implementation can be orders of magnitude faster
than its many-pass batch counterpart (Thompson et al. 2020; Abernathy and Celebi 2022).
Thus, there is little need to accelerate okm algorithmically.

Thompson et al. (2020) apply the okm algorithm (with maximin initialization and square
root learning rate) to the cq problem. The authors demonstrate that, compared to the batch
algorithm (with maximin initialization), the (one-pass) online algorithm is easier to imple-
ment, 41 to 300 times faster, and gives very similar results.

Abernathy and Celebi (2022) improve upon Thompson et al. (2020)’s okm algorithm
by integrating the initialization method into the clustering algorithm. Their incremental
online k -means clustering algorithm (iokm) begins by setting c0 to the centroid x̄ of X
(for K = 1 , this choice of c0 is clearly optimal). It then adds 2t+1 new centers in iteration t

(20a)lim
t→∞

�(t) = 0,

(20b)
∞∑
t=1

�(t) = ∞,

(20c)
∞∑
t=1

𝜂(t)2 < ∞.

(21)c(t) = �(t)x(t) + (1 − �(t))c(t − 1),

14006	 M. E. Celebi

1 3

( t ∈ {0,… , log2 K − 1} ) by splitting each of the existing centers into two. When a center ck
is split, the left child inherits its parent’s attributes (i.e., c2k+1 = ck ), whereas the right child
becomes a slightly perturbed version of its parent (i.e., c2k+2 = ck + � where � is an arbi-
trary vector of small positive �2 norm). The set of final K centers is then taken as the pal-
ette. Note that in the description above, we assumed that K is a power of two for simplicity.
If this is not the case, we perform ⌊log2 K⌋ iterations as described above, and then perform
one last iteration in which we split only K − 2⌊log2 K⌋ of the centers from the previous itera-
tion. The authors demonstrate that their initialization-free iokm algorithm (with � = 0 and
square root learning rate) is easier to implement and more effective than its predecessor,
okm.

The simple cl algorithm described above sometimes encounters the so-called dead
unit problem, where certain units never win the competition and hence never learn, typ-
ically because of poor initialization. From a clustering perspective, such units represent
empty clusters that do not contribute to the clustering quality. Uchiyama and Arbib (1994a,
1994b) propose the adaptive distributing units algorithm (adu), a modified cl algorithm
that alleviates the dead unit problem. adu starts with a single unit, whose center is given
by the centroid x̄ of X  . In each iteration, a data point is selected uniformly at random from
X  , and the nearest unit (with respect to the �2 distance) is declared the winner. This unit is
then updated by moving its center closer to the data point, and incrementing its win count.
New units are added by splitting existing units that win a user-specified number of times,
until the number of units reaches K. This splitting policy prevents the formation of dead
units by preventing certain units from monopolizing the competition. Note that when a new
unit is generated by duplicating an existing unit, the two units are temporarily colocated.
Whenever a data point to which these two units are the nearest is presented, one of these
units becomes the winner and gets updated, while the other remains unchanged. Hence, the
problem of two identical units moving together cannot occur.

The pseudocode for adu is given in Algorithm 6. The symbols Tmax and Nmax denote the
maximum number of iterations (or presentations) and the win count threshold, respectively.
It can be shown that Tmax ≥ (2K − 3)Nmax guarantees that K units are generated upon ter-
mination (Uchiyama and Arbib 1994b). Unlike most partitional algorithms described in
this section, adu does not require initialization, which makes the algorithm even easier to
implement than okm. However, like okm, adu is somewhat sensitive to the order in which
the data points are processed.

Celebi et al. (2014) adapt adu to the cq problem. The authors report com-
petitive results with bkm using the following parameter values: Nmax = 400

√
K ,

Tmax = (2K − 3)(K + 7)Nmax , and � = 0.015 . Note that with a constant learning rate � = C ,
a cl algorithm converges to a neighborhood of a solution whose size is proportional to C.
We can reduce the size of this neighborhood, and thus the variance of the solutions, by
reducing C. This is why � should be a small positive number.

14007Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Fig. 12   Comparison of km-based cq algorithms

14008	 M. E. Celebi

1 3

Figure 12 compares two km variants, weighted tie (Celebi 2011) and adu (Celebi et al.
2014), on the Peppers image. It can be seen that the error image for weighted tie is slightly
cleaner than that for adu, and both algorithms produce significantly better results than the
non-km-based cq algorithms described so far.

5.4 � The fuzzy C‑means algorithm

Given a data set X =
{
x1,… , xN

}
⊂ ℝ

D , a real matrix U = [uij]K×N represents a hard K
-partition of X if its elements satisfy three conditions (Bezdek 1981)

 The ith row of U  , i.e., Ui =
(
ui1,… , uiN

)
 , represents the characteristic function of cluster

Pi : uij = 1 if xj ∈ Pi , and 0 otherwise; condition (22b) means that each xj belongs to exactly
one of the K clusters; condition (22c) means that no cluster is empty and no cluster is all of
X  , that is, K ∈ {2,… ,N} . For obvious reasons, U is called a partition matrix (or mem-
bership matrix). Note that in the fuzzy clustering literature, the symbol C is often used to
denote the number of clusters. However, in the following discussion, we continue to use the
symbol K for consistency.

(22a)uij ∈ {0, 1} i ∈ {1,… ,K}, j ∈ {1,… ,N},

(22b)
K∑
i=1

uij = 1 j ∈ {1,… ,N},

(22c)0 <

N∑
j=1

uij < N i ∈ {1,… ,K}.

14009Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

The concept of hard K-partition can be generalized by relaxing condition (22a) as
uij ∈ [0, 1] , in which case the partition matrix U is said to represent a fuzzy K -parti-
tion of X  . In such a partition matrix, the total membership of each xj is still 1, but since
uij ∈ [0, 1] for all i, xj may have an arbitrary distribution of membership among the K
fuzzy clusters.

The fuzzy c -means algorithm (fcm) is a generalization of bkm in which data points
can belong to multiple clusters (Bezdek 1981). The algorithm aims to generate an optimal
fuzzy K-partition of X by minimizing

where M ∈ [1,∞) is a user-defined weighting exponent that controls the degree of mem-
bership sharing among the fuzzy clusters. In many applications, this weighting expo-
nent is taken in the range [1.1, 5], with M = 2 an overwhelming favorite (Bezdek et al.
1999, p. 34). Note that M = 2 is computationally advantageous, as this is the only value
that leads to an integer exponent in the partition matrix update equation given next.

Like its hard counterpart, fcm is based on alternating minimization. In each iteration, we
first update the cluster memberships as follows

for all i and j.
Based on the updated memberships, we then update center ci (for all i) as follows

which is the weighted centroid of X  . These iterations continue until termination criterion
(15) is satisfied.

The larger the M value, the fuzzier the membership assignments. As M
+
→ 1 , fcm con-

verges to a bkm solution. Conversely, as M → ∞ it can be shown that uij → 1∕K for all i
and j, so ci → x̄ (for all i), the centroid of X .

The pseudocode for fcm is given in Algorithm 761. A naive implementation of fcm
requires O(NDK2) time per iteration, which is quadratic in K. The pseudocode gives an
O(NDK) formulation due to Kolen and Hutcheson (2002).

fcm can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where each

data point xj has a nonnegative weight wj associated with it. Without loss of generality, we
assume that the weights add up to one, that is,

∑N

j=1
wj = 1 . The objective function for the

weighted fuzzy c -means problem is identical to that for the unweighted problem, with
the exception that the distances are weighted. The optimal center ci for Pi is given by the
weighted centroid of X  , that is,

(23)JFCM =

N∑
j=1

K∑
i=1

uM
ij

‖‖‖xj − ci
‖‖‖
2

2
,

(24)uij =

⎡
⎢⎢⎢⎣

K�
𝚤=1

⎛
⎜⎜⎜⎝

���xj − ci
���
2

2

���xj − c𝚤
���
2

2

⎞
⎟⎟⎟⎠

1∕(M−1)⎤
⎥⎥⎥⎦

−1

,

(25)ci =
1∑N

j=1
uM
ij

N�
j=1

uM
ij
xj,

61  For conciseness, we omit the handling of exceptional cases such as empty clusters or data points coinci-
dent with centers.

14010	 M. E. Celebi

1 3

The pseudocode for the weighted fuzzy c -means algorithm can be obtained by making
two simple modifications to Algorithm 7: (1) ni ← ni + m should be ni ← ni + wjm , and (2)
ĉi ← ĉi + mxj should be ĉi ← ĉi + wjmxj.

Despite its linear time complexity, fcm can be slow when dealing with large data sets.
Various accelerated fcm algorithms have been proposed since the 1980s. Nearly all of these
algorithms are inexact, as they involve numerical approximations (Cannon et al. 1986;
Höppner 2002) or sampling (followed by optional weighting) (Cheng et al. 1998; Pal and
Bezdek 2002; Eschrich et al. 2003; Hathaway and Bezdek 2006; Hathaway and Hu 2009;
Parker and Hall 2014). Furthermore, most of these algorithms attain only modest (e.g.,
2- to 6-fold) speed-ups. It is important to emphasize that fcm is more difficult to accelerate
than bkm because the former algorithm involves soft (or partial) memberships, whereas the
latter one involves hard (or binary) memberships.

The earliest applications of fcm to the cq problem were described by Kok et al. (1993)
and Çak et al. (1998). The former study does not report any numerical results. In addition,
both studies omit crucial details such as the value of the weighting exponent used in the
experiments.

The first rigorous study of fuzzy clustering in cq was conducted by Özdemir and Akarun
(2002). The authors modify the fcm objective to maximize the so-called partition index

(26)ci =
1∑N

j=1
wju

M
ij

N�
j=1

wju
M
ij
xj.

14011Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

defined for data point xj as pj =
∑K

i=1
uM
ij

 , which quantifies how well xj has been classified.
If the classification is relatively unambiguous ( uij ≈ 1 for some i, that is, xj is much closer
to a particular center than it is to other centers), pj approaches its maximum value of one.
If, on the other hand, the classification is relatively ambiguous ( uij ≈ 1∕K for all i, that is,
xj is nearly equidistant to all K centers), pj approaches its minimum value of K1−M.

The fcm objective (23) can be modified to incorporate the sum of partition indices for
all data points as follows

The fcm-like alternating optimization algorithm to minimize this modified objective is
called the partition index maximization algorithm (pim). The center update equation for
pim is identical to that for fcm. On the other hand, the membership update equation for pim
is given by

for all i and j, which reduces to the membership update equation for fcm for R = 0 . To pre-
vent undefined values in the above equation, we set uij = 1 if ‖‖‖xj − ci

‖‖‖2 ≤ R . This means
that we classify xj in a hard manner if it falls in the spherical region of radius R centered at
ci , and in a soft manner based on Eq. (28) otherwise. The greater the radius R, the more
data points are classified in a hard manner, and hence the faster the pim algorithm (com-
pared to fcm)62. However, R cannot be too large because otherwise, pim ceases to be a fuzzy
clustering algorithm. Özdemir and Akarun recommend setting R to a user-defined fraction
C of the �2

2
 distance between the nearest two centers, that is, R = Cmini≠𝚤

‖‖ci − c𝚤
‖‖22 , where

C ∈ [0, 0.5) . The authors report good results with M = 1.3 and C = 0.49 . Yang et al. (2008)
suggest C ∈ [0, 0.25) because C ≥ 0.25 might violate condition (22b).

Wen and Celebi (2011) implement accelerated variants of bkm and fcm, and compare the
resulting cq algorithms. Both algorithms feature sampling of the input image (2 : 1 sam-
pling in the horizontal and vertical directions) as well as weighting. bkm is further accel-
erated using the tie algorithm described in Subsection 5.3. The authors investigate four
hierarchical cq algorithms to initialize bkm and fcm: median-cut, octree, marginal variance
minimization, and variance minimization. Four fcm variants63 are tested: FCM1.25 FCM1.5 ,
FCM1.75 , and FCM2.0 , where the subscripts indicate the values of the weighting exponent.
In terms of mae, all bkm and fcm variants perform similarly. In general, as M is increased,
the mse attained by fcm increases, with FCM1.25 performing slightly better than bkm. With
respect to efficiency, bkm vastly outperforms fcm. In particular, bkm is 92 times faster than
fcm, on average.

Schaefer and Zhou (2009); Schaefer (2014) apply several fuzzy/rough clustering algo-
rithms to the cq problem. These algorithms include standard fcm, multistage random

(27)JPIM =

N∑
j=1

K∑
i=1

uM
ij

‖‖‖xj − ci
‖‖‖
2

2
− R

N∑
j=1

K∑
i=1

uM
ij
.

(28)uij =

⎡
⎢⎢⎢⎣

K�
𝚤=1

⎛
⎜⎜⎝

���xj − ci
���2 − R

���xj − c𝚤
���2 − R

⎞
⎟⎟⎠

2∕(M−1)⎤
⎥⎥⎥⎦

−1

,

62  In practice (Celebi 2009), pim is only slightly faster than fcm because the former is based on �2 distances,
whereas the latter is based on �2

2
 distances.

63  Recall that fcm with M = 1 is identical to bkm.

14012	 M. E. Celebi

1 3

sampling fcm (Cheng et al. 1998), enhanced fcm (Szilágyi et al. 2003), anisotropic mean-
shift-based fcm (Zhou et al. 2009), rough c-means (Schaefer et al. 2011), and fuzzy rough
c-means (Schaefer et al. 2012). Their experiments demonstrate that, when initialized with
randomly selected centers, these algorithms perform similarly on average for K = 16 . While
some of these algorithms may be faster than naive fcm, they also have more user-defined
parameters, and many of them are more difficult to implement.

Due to its fuzzy nature, fcm is expected to be less sensitive to noise, cluster overlap,
and initialization than its hard counterpart. However, in the context of cq, these potential
advantages of fcm have been demonstrated only to a limited extent (Szilágyi et al. 2014,
2016). In addition, despite significant efforts from fuzzy clustering researchers (Chen and
Wang 1999; Dembélé and Kastner 2003; Yu et al. 2004; Yu and Yang 2005; Ozkan and
Turksen 2007; Schwämmle and Jensen 2010; Huang et al. 2012; Wu 2012; Ren et al. 2019;
Zhou and Yang 2019), there is still no universally accepted method to set the weighting
exponent.

Figure 13 shows the Peppers image quantized to 8 colors using Wen and Celebi’s vari-
ant of the fcm algorithm with M = 2 . It can be seen that the error image for fcm is darker in
most parts than that for tie (shown in Fig. 12c), indicating that fcm produces more distor-
tion than its hard counterpart.

Fig. 13   Peppers image quantized using Wen and Celebi’s fcm algorithm

14013Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

5.5 � The self‑organizing map algorithm

In Subsection 5.3, we discussed the dead unit (or empty cluster) problem that plagues hard
cl algorithms such as okm, especially when they are initialized poorly. We then presented a
modified cl algorithm that alleviates the dead unit problem. Recall that hard cl algorithms
adapt only the winner unit in each iteration. Therefore, units initialized near high-density
regions of the data space may monopolize the competition, whereas those initialized near
low-density regions may become perpetual losers. In this subsection, we describe another
approach to address the dead unit problem, the so-called soft competitive learning (or
winner-take-most learning) paradigm.

Soft cl algorithms adapt not only the winner, but also some of the losers so that they are
not completely excluded from the competition. Among these algorithms, Kohonen’s self-
organizing map algorithm (som) (Kohonen 1982) is one of the most prominent. The som
algorithm performs a nonlinear, topology-preserving mapping from a high-dimensional
data manifold to a low-dimensional (typically 1d or 2d) lattice (Van Hulle 2012). Here,
topology (or neighborhood) preservation means topologically close (or neighboring) units
respond to similar inputs.

The competitive stage of som is identical to that of okm: in each iteration, a data point
selected uniformly at random from X is presented, which induces a competition for activa-
tion among the K units. The two algorithms differ in their cooperative stage: while okm
adapts only the winner unit using Eq. (19), som adapts both the winner unit i∗ and its lattice
neighbors as follows

where h is the neighborhood function, a scalar-valued function of the lattice coordinates
ri and ri∗ of units i and i∗ , respectively. The function h is often taken as a Gaussian, that is,

where �(t) is the learning rate and �(t) is the standard deviation of the Gaussian, which
corresponds to the neighborhood range. Both �(t) and �(t) are usually taken to be mono-
tonically decreasing functions of time. For example, �(t) may decay according to an expo-
nential schedule (Ritter and Schulten 1988) given by �(t) = �i(�f∕�i)

t∕Tmax , where Tmax is
the number of iterations (i.e., t ∈ {0,… , Tmax} ), and �i = �(0) and �f = �(Tmax) are respec-
tively the initial and final values of �(t) with 𝜂i ≥ 𝜂f > 0 . The initial learning rate �i is typi-
cally taken as one, in which case the exponential schedule reduces to �(t) = �

t∕Tmax

f
 . Other

popular schedules in the som literature (Kohonen 2013) include the linear schedule and
harmonic schedule given by �(t) = �i(1 − t∕Tmax) and �(t) = �iC∕(C + t) with C > 0 ,
respectively. Similarly, �(t) may decay according to an exponential, linear, or harmonic
schedule.

In Subsection 5.3, we discussed the role of the learning rate �(t) in an online learn-
ing algorithm. As for the neighborhood range �(t) , we start with a relatively large value
to promote topology preservation in the early iterations, and then decrease it mono-
tonically with time. Observe that when �(t) vanishes, the adaptation equation for som,
Eq. (29), reduces to that for simple cl, Eq. (19), meaning that som reduces to okm.

(29)ci(t) = ci(t − 1) + h(i, i∗, t)
(
x(t) − ci(t − 1)

)
,

(30)h(i, i∗, t) = �(t) exp

(
−
‖‖ri − ri∗

‖‖22
2�2(t)

)
,

14014	 M. E. Celebi

1 3

The Gaussian neighborhood function given above ensures that each neighbor of the
winner is moved toward the input at a rate depending on its topological closeness to the
winner. A computationally simpler neighborhood function is given by

where r(t) is the radius of the neighborhood, which is also a monotonically decreasing
function of time. This simplified neighborhood function moves the winner and its neigh-
bors within a radius toward the input at the same rate.

There are two common ways to initialize a som. Random initialization involves
using K data points selected uniformly at random from X as initial centers. pc initializa-
tion (Kohonen 2013) involves selecting the K initial centers from the subspace spanned by
the first D′ pcs of the data, where D′ is the dimensionality of the map ( D� ∈ {1, 2, 3} ). Not
surprisingly, the effectiveness of an initialization method appears to be data dependent. In
a recent experimental study on 1d soms (Akinduko et al. 2016), random initialization out-
performed pc initialization on nonlinear data sets, whereas the situation was reversed on
quasilinear data sets.

(31)h(i, i∗, t) =

{
𝜂(t) ‖‖ri − r

i∗
‖‖2 < r(t),

0 otherwise,

Fig. 14   Peppers image quantized using Dekker’s som algorithm

14015Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Ta
bl

e 
4  

C
om

pa
ris

on
 o

f
Pa

rti
tio

na
l c

q
 A

lg
or

ith
m

s
(d

iff
: d

iffi
cu

lt,
 e

ffi
: e

ffi
ci

en
t,

eff
ec

: e
ffe

ct
iv

e(
ne

ss
),

fr
eq

: f
re

qu
en

cy
, h

ist
. r

es
.:

hi
sto

gr
am

 r
es

ol
ut

io
n,

 im
pl

: i
m

pl
em

en
t,

in
it:

in

iti
al

iz
at

io
n,

 m
od

: m
od

ifi
ed

, m
od

er
: m

od
er

at
el

y,
 p

ar
am

: p
ar

am
et

er
, p

re
s:

 p
re

se
nt

at
io

n,
 se

ns
: s

en
si

tiv
e,

 so
m

e:
 so

m
ew

ha
t,

su
b:

 su
bs

ta
nt

ia
lly

, s
qr

t:
sq

ua
re

 ro
ot

)

A
lg

or
ith

m
Re

fe
re

nc
es

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

Po
pu

la
rit

y
H

ec
kb

er
t (

19
82

)
effi

.;
ea

sy
 to

 im
pl

.
D

is
re

ga
rd

s d
iv

er
si

ty
 o

f c
ol

or
s;

 h
ist

. r
es

. p
ar

am
. d

iff
. t

o
se

t
M

od
. p

op
ul

ar
ity

B
ra

ud
aw

ay
 (1

98
7)

effi
.;

ea
sy

 to
 im

pl
.

C
 p

ar
am

. d
iff

. t
o

se
t

M
ax

im
in

H
ou

le
 a

nd
 D

ub
oi

s (
19

86
)

eff
ec

. o
n

w
el

l-s
ep

ar
at

ed
 d

at
a;

 e
ffi

.;
ea

sy
 to

 im
pl

.
D

is
re

ga
rd

s f
re

q.
 o

f c
ol

or
s;

 se
ns

. t
o

ou
tli

er
s;

 sp
re

ad
s d

ist
or

tio
n

un
i-

fo
rm

ly
M

od
. m

ax
im

in
H

si
eh

 a
nd

 F
an

 (2
00

0)
effi

.;
ea

sy
 to

 im
pl

.
T

pa
ra

m
. d

iff
. t

o
se

t
M

od
. m

ax
im

in
H

ua
ng

 (2
02

1)
effi

.;
ea

sy
 to

 im
pl

.
�
2 2
 d

ist
an

ce
 a

nd
 sq

rt.
 o

f f
re

q.
 a

re
 in

co
m

m
en

su
ra

bl
e

fs
k

m
H

ua
ng

 a
nd

 C
ha

ng
 (2

00
4)

m
od

er
. f

as
te

r t
ha

n
b

k
m

; s
om

e.
 e

as
y

to
 im

pl
.

K
f p

ar
am

. d
iff

. t
o

se
t;

se
ns

. t
o

in
it.

; n
o

co
nv

er
ge

nc
e

gu
ar

an
te

e
sb

k
m

H
u

an
d

Le
e

(2
00

7)
m

od
er

. f
as

te
r t

ha
n

b
k

m
; s

om
e.

 e
as

y
to

 im
pl

.
se

ns
. t

o
in

it.
; n

o
co

nv
er

ge
nc

e
gu

ar
an

te
e

–
K

as
ug

a
et

 a
l.

(2
00

0)
Sl

ig
ht

ly
 fa

ste
r t

ha
n

b
k

m
di

ff.
 to

 im
pl

.
ti

e
+

 m
o

s
H

u
an

d
Su

 (2
00

8a
)

m
od

er
. f

as
te

r t
ha

n
b

k
m

di
ff.

 to
 im

pl
.;

se
ns

. t
o

in
it.

w
ei

gh
te

d
ti

e
C

el
eb

i (
20

11
)

su
b.

 fa
ste

r t
ha

n
b

k
m

so
m

e.
 d

iff
. t

o
im

pl
.;

se
ns

. t
o

in
it.

m
o

s
H

ua
ng

 (2
02

1)
m

od
er

. f
as

te
r t

ha
n

b
k

m
so

m
e.

 d
iff

. t
o

im
pl

.;
se

ns
. t

o
in

it.
o

k
m

Th
om

ps
on

 e
t a

l.
(2

02
0)

su
b.

 fa
ste

r t
ha

n
b

k
m

; e
as

y
to

 im
pl

.
se

ns
. t

o
in

it.
io

k
m

A
be

rn
at

hy
 a

nd
 C

el
eb

i (
20

22
)

su
b.

 fa
ste

r t
ha

n
b

k
m

; e
as

y
to

 im
pl

.;
in

it.
-f

re
e

eff
ec

. c
an

no
t b

e
im

pr
ov

ed
 u

si
ng

 a
 b

et
te

r i
ni

t.
a

d
u

C
el

eb
i e

t a
l.

(2
01

4)
effi

.;
ea

sy
 to

 im
pl

.;
in

it.
-f

re
e

sc
al

es
 p

oo
rly

 w
ith

 K
; s

om
e.

 se
ns

. t
o

pr
es

. o
rd

er
pi

m
Ö

zd
em

ir
an

d
A

ka
ru

n
(2

00
2)

le
ss

 se
ns

. t
o

no
is

e,
 c

lu
ste

r o
ve

rla
p,

 a
nd

 in
it.

 th
an

 b
k

m
Sl

ow
er

 th
an

 fc
m

; M
 a

nd
 C

 p
ar

am
. d

iff
. t

o
se

t
fc

m
W

en
 a

nd
 C

el
eb

i (
20

11
)

le
ss

 se
ns

. t
o

no
is

e,
 c

lu
ste

r o
ve

rla
p,

 a
nd

 in
it.

 th
an

 b
k

m
su

b.
 sl

ow
er

 th
an

 b
k

m
; M

 p
ar

am
. d

iff
. t

o
se

t
so

m
D

ek
ke

r (
19

94
)

effi
.;

le
ss

 se
ns

. t
o

in
it.

 th
an

 b
k

m
; g

en
er

at
es

 a
 so

m
e.

co

nt
ig

uo
us

 p
al

et
te

di
ff.

 to
 im

pl
.;

m
an

y
pa

ra
m

.;
so

m
e.

 se
ns

. t
o

pr
es

. o
rd

er

14016	 M. E. Celebi

1 3

In Subsection 5.3, we discussed the difficulty of accelerating okm. As okm is a special
case of som, where the winner has no neighbors, the acceleration of som appears to be at
least as difficult as that of okm. For this reason, most accelerated som variants are either
approximations (Koikkalainen and Oja 1990; Lampinen and Oja 1990; Su and Chang
2000; Bernard et al. 2020) or parallel algorithms (Ienne et al. 1997; Lawrence et al. 1999;
Xiao et al. 2015; Wittek et al. 2017; Liu et al. 2018), which are not based on the online som
formulation given above, but rather a batch som formulation (Kohonen 1993).

The first rigorous application of the som algorithm to the cq problem was pro-
posed by Dekker (1994). The author employs a 1d som64, initialized with centers
spread evenly along the main diagonal of the rgb cube, that is, ci = (ri, gi, bi) , where
ri = gi = bi = 255⌊(i − 1)∕(K − 1)⌋ for i ∈ {1,… ,K} . The algorithm is essentially a one-
pass algorithm, but, for implementation reasons, the scan is divided into 100 cycles. Thus,
N/100 pixels are presented in each cycle. The learning rate schedule during cycle t is taken
as �(t) = exp(−0.03t) . Hence, the learning rate starts at 1 (at cycle 0), and decreases expo-
nentially until reaching its final value of about 0.0513 (at cycle 99). The neighborhood
function is taken as h(i, i∗, t) = �(t)

�
1 − (�i − i∗�∕⌊r(t)⌋)2� , where the radius is given by

r(t) = 32 exp(−0.0325t) . Thus, the radius starts at 32 (at cycle 0), and decreases exponen-
tially until reaching about 2.02 at cycle 85, after which point it drops below 2. This means
that in the last 14 cycles, only the winner is updated.

Dekker uses the conscience mechanism of DeSieno (1988) to prevent certain units
from monopolizing the competition. Let x be the current input and ci be one of the units.
The conscience mechanism computes the distance65 between the two as ‖‖x − ci

‖‖1 − bi ,
where bi is a bias factor that increases as unit i loses, thereby favoring the selection of less
frequently winning units. The bias is defined as bi = �(1∕K − fi) , where � is a constant, and
fi estimates the frequency at which unit i is nearest to the input. Initially, we have fi = 1∕K ,
and hence bi = 0 . Let i∗ be the nearest unit to x with respect to the �1 metric, that is,
i∗ = argmin

i∈{1,…,K}

‖‖x − ci
‖‖1 . The frequency of unit i∗ is updated as fi∗ ← fi∗ − �fi∗ + � , whereas

that of unit i ≠ i∗ is updated as fi ← fi − �fi . Note that the bias of unit i∗ can then be updated
directly as bi∗ ← bi∗ + ��fi∗ − �� , whereas that of unit i ≠ i∗ can updated as bi ← bi + ��fi .
Dekker recommends � = 1024 and � = 1∕1024 so that �� = 1 , which simplifies the above
update equations. It is important to note that the conscience mechanism aims to achieve
clusters of approximately equal size, which is rarely optimal from a distortion minimiza-
tion perspective.

Figure 14 shows the Peppers image quantized to 8 colors using Dekker’s som algorithm.
It can be seen that while the algorithm performs better than early hierarchical algorithms
(e.g., median-cut and octree), it is not competitive with modern hierarchical algorithms or
km-based partitional algorithms.

From a cq perspective, the advantages of som are (i) its biologically-inspired formula-
tion is appealing to researchers; (ii) thanks to its soft-competitive design, the algorithm
is less sensitive to initialization and the dead unit problem; and (iii) the final palette is
somewhat contiguous (i.e., adjacent colors are similar), which can be exploited for post-
quantization image processing operations such as edge detection (Mojsilović and Soljanin
2001) and compression (Dekker 1994; Pei and Lo 1998; Mojsilović and Soljanin 2001;
Chang et al. 2005; Pei et al. 2006).

65  For computational efficiency, Dekker adopts the �1 metric rather than the �2

2
 distance.

64  According to Pei and Lo (1998), in the context of cq, a 2d som performs slightly worse than a 1d one.

14017Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Dekker’s algorithm is the best-known application of som to cq. However, his seminal
paper illustrates a major challenge researchers face when designing som-based cq algo-
rithms: the large number of user-defined parameters required for controlling their behavior.
In fact, Dekker’s algorithm, as well as its successors (Pei and Lo 1998; Chang et al. 2005;
Wang et al. 2007; Chung et al. 2012), each have a half-dozen to dozen parameters. Further-
more, the performance of these algorithms is known to be sensitive to the values of at least
some of their parameters (Ienne et al. 1997; Su and Chang 2000; Chang et al. 2005; Wang
et al. 2007). Other disadvantages of som include (i) convergence is formally proved only for
the simplest case (both the input space and lattice are 1d) (Cottrell et al. 2016; ii) it is not
only slow, but also difficult to accelerate (Chung et al. 2012; iii) it is somewhat sensitive
to the order in which the data points are processed; and (iv) it is more difficult to imple-
ment (Kohonen 2013) than its km-based alternatives.

Table 4 compares the partitional cq algorithms described in this section.

6 � Metaheuristic algorithms

Many recent cq algorithms are based on metaheuristics (Blum and Roli 2003). These
algorithms formulate cq as a global66 optimization problem, and then attempt to solve it
using various nature-inspired metaheuristics. Metaheuristics applied to cq to date include
single-solution-based metaheuristics such as simulated annealing (Fiume and Ouellette
1989; Nolle and Schaefer 2007; Schaefer and Nolle 2015) and variable neighborhood
search (Hansen et al. 2007) as well as population-based metaheuristics such as evolu-
tionary algorithms (genetic algorithms (Freisleben and Schrader 1997; Scheunders 1997;
Taşdizen et al. 1998), evolution strategies (González et al. 2000), etc.) and swarm intel-
ligence algorithms (particle swarm optimization (Omran et al. 2005), ant colony optimi-
zation (Ghanbarian et al. 2007; Pérez-Delgado 2015, 2021), etc.) There are also cq algo-
rithms that combine a conventional (hierarchical or partitional) clustering algorithm with a
metaheuristic (Pérez-Delgado and Gallego 2019, 2020) or multiple metaheuristics (Pérez-
Delgado 2018, 2019, 2020).

Compared to conventional clustering algorithms, metaheuristic algorithms can optimize
more complex, e.g., perceptually-based (Schaefer and Nolle 2015), objective functions
or even multiple objective functions simultaneously. For example, it is generally easier
to formulate an objective function with a variable number of clusters in a metaheuristic
framework. Unfortunately, these black-box algorithms have several major disadvantages
over conventional ones. First they often involve a large number of user-defined parameters
(initial/final temperature, cooling schedule, population size, crossover/mutation probabil-
ity, etc.) some of which are difficult to tune or control (Eiben et al. 1999). Second, they are
generally randomized to escape from local minima. Third, due to the vast search space in
clustering problems, they usually require many iterations, which renders them computa-
tionally expensive (they can be orders of magnitude slower than conventional clustering
algorithms). Fourth, they are typically more difficult to implement. We should, however,
mention that some of the recent metaheuristic-based cq algorithms (Pérez-Delgado and
Gallego 2020, 2019) have only a few user-defined parameters, and are reasonably efficient.

66  By contrast, conventional partitional algorithms discussed in Sect. 5 are all local optimization algo-
rithms.

14018	 M. E. Celebi

1 3

7 � Pixel mapping

Recall that cq consists of two main phases: color palette design and pixel mapping67 (pm).
In general, the former is a computationally hard problem, whereas the latter can be solved
exactly using a trivial linear-time algorithm, as explained below. Therefore, most of the cq
literature deals with the former phase, which is also the main focus of this paper. In this
section, we briefly discuss the latter phase for completeness.

Given an input image, the palette design phase produces a small palette that represents
the input colors. To minimize distortion, each pixel in the input image (or query pixel in
the nearest neighbor search terminology) should be mapped to its nearest representative in
the palette. The result of the pm phase is thus a reduced-color image, wherein only colors
from the palette can appear.

A key aspect of pm is the distance function d(⋅, ⋅) used to quantify the dissimilarity
between a query pixel and a representative. Let I and Ĩ be the H ×W input and output
images, respectively, and C = {c1,… , cK} be the palette. The mapping operation is then
given by

for r ∈ {1,… ,H} and c ∈ {1,… ,W}.
Since mse is the most popular fidelity metric in cq applications, it is customary to adopt

the d = �
2
2
 distance in the pm phase as well. Nevertheless, some studies use alternative dis-

tance functions. For example, Dekker (1994) uses the �1 metric to accelerate pm. Unfortu-
nately, the �1 norm is a poor approximation for the �2 norm. More specifically, the former
can overestimate the latter by as much as 100(

√
D − 1) % in D dimensions ( ≈ 73.2 % for

D = 3) (Celebi et al. 2011). In addition, �1 is unlikely to provide an appreciable computa-
tional advantage over �2

2
 on a modern cpu. Verevka and Buchanan (1995) use an �2 approx-

imation due to Chaudhuri et al. (1992) as a substitute for �2
2
 . In fact, there are several such

�2 norm approximations in the literature (Celebi et al. 2011, 2012a). These approximations
are computationally cheaper than �2 , as they eliminate the expensive square root operation
(in some cases, also reduce the number of multiplications) at the cost of increasing the
numbers of comparison and absolute value operations. Hence, using an �2 approximation
is unlikely to yield a significant speed-up over the computationally simpler �2

2
 , which does

not involve any square roots.
Another issue is whether or not the pm phase is coupled with the palette design phase.

A prime example of an uncoupled pm algorithm is the trivial algorithm that computes the
�
2
2
 distance between a given query pixel and each of the K representatives in O(K) time,

leading to an O(NpK) exact pm algorithm. Coupled pm algorithms, on the other hand, are
typically found in divisive cq algorithms. Many of these cq algorithms build a binary tree
approximating the 3d Voronoi diagram of the input color space, which can then be used for
approximate pm in O(Np logK) time (Brun and Secroun 1998). These algorithms achieve
faster pm at the cost of greater distortion by mapping each query pixel to the representative
of its cluster rather than its nearest representative (Wu 1992b, a). Note that an optimal pm
algorithm has a time complexity of O(Np).

(32)Ĩ(r, c) = argmin
ci∈C

d(I(r, c), ci),

67  Sometimes referred to as inverse color map computation (Heckbert 1982)

14019Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

For each query pixel, the trivial algorithm performs an exhaustive search in the palette.
This is inefficient because, for any query pixel, many of the representatives will likely be
too far to be its nearest representative. We now briefly describe the accelerated pm algo-
rithms proposed in the cq literature. The first such algorithm, named locally sorted search,
was proposed by Heckbert (1982). The algorithm starts by performing bit-cutting, that is,
by dividing the rgb cube into L × L × L equal-sized subcubes, where L is a user-defined
integer (the author uses L = 8 for K = 256 ). For each subcube, it maintains a sorted list of
representatives that are nearest to some color in that subcube. Given a query pixel, it first
determines the subcube that contains the color of that pixel, and then performs an exhaus-
tive search only in the list associated with that subcube. This algorithm reduces the number
of �2

2
 distance computations required for an exact pm. However, it uniformly divides the rgb

space without considering the distribution of the input colors (Necaise 1998). In addition,
the optimal L value is difficult to estimate (Brun and Secroun 1998). Necaise (1998) pro-
poses a modified locally sorted search algorithm that divides the rgb space adaptively into
rectangular boxes of varying dimensions using a k-d tree.

Thomas (1991) proposes an algorithm that explicitly computes the 3d Voronoi diagram
generated by the representatives. The algorithm requires O(23B) memory, where B is the
number of bits per color component. To reduce the memory requirements of the algorithm,
the author employs bit-cutting, that is, truncating the least significant C bits of each com-
ponent (the author uses C = 3 ). Due to this modification, however, the algorithm provides
only an approximate pm. Brun and Secroun (1998) describe a three-step algorithm that
improves upon Thomas’s Voronoi-diagram-based approach. The algorithm first projects
the representatives onto the plane spanned by the first two pcs of the input image. It then
computes an approximate 2d Voronoi diagram generated by the projected representatives.
Finally, a correction step is performed to reduce the approximation errors committed in the
first two steps. For a sufficiently large palette, the resulting algorithm provides a near-exact
pm in roughly O(Np) time (independent of K).

Cheng and Yang (2001) propose an exact accelerated pm algorithm based on 1d pro-
jections onto a rough approximation for the pc1 of the palette given by the line � passing
through the mean representative and the representative farthest from it. The algorithm first
projects the representatives onto � , and then sorts them to obtain an ordered set S of pro-
jection values. Given a query pixel, it determines the nearest representative by performing
repeated binary searches over S with the search key taken as the projection of the query
pixel on � . Hung and Chang (2002) modify Cheng and Yang’s algorithm by taking the
pc1 of the palette as the projection axis, and performing a single binary search per query
pixel to find an approximate nearest representative, which is then refined by means of lin-
ear searches among the immediate left and right neighbors of that representative. Hwang
and Chang (2002) extend Hung and Chang’s approach by employing 2d projections onto
the plane spanned by the first two pcs of the palette. More recently, Hu and Su (2008b)
combine tie with mos68. It should noted that there is a fine balance between the effective-
ness of elimination and the efficiency of search. Therefore, overly complicated elimination
strategies do not necessarily pay off in practice.

68  Dekker (1994) also employs a mos-like accelerated pm algorithm.

14020	 M. E. Celebi

1 3

8 � Conclusions and future research directions

In this paper, we presented a comprehensive survey of cq algorithms proposed since 1980.
We first provided background information on cq, color science, and color image process-
ing. We then presented a detailed survey of color palette design, followed by a brief discus-
sion of accelerated pixel mapping.

Despite the over four decades of research on cq, many unsolved problems remain:

•	 The selection of the color space in which to perform cq and the selection of color
image fidelity metrics with which to evaluate the quality of cq are nontrivial decisions
that deserve further exploration.

•	 In addition to objective methods, subjective methods should be used to assess cq algo-
rithms.

•	 A vast majority of cq algorithms developed to date are context-free. Due to the impor-
tance of contextual information, algorithms that incorporate such information in
accordance with the characteristics of the hvs should be developed. Metaheuristic algo-
rithms are particularly attractive for optimizing complex hvs-based objective functions.

•	 Most cq algorithms are static, requiring the user to specify the palette size in advance.
However, in some applications, we are interested in determining the number of domi-
nant colors in a given image (Celebi and Zornberg 2014; Barata et al. 2016). Therefore,
the development of dynamic cq algorithms should be prioritized for such applications.

•	 Due to the advances in camera technology, true-color images have been steadily get-
ting larger over the years. It may be too slow to quantize such large images even with
a linear-time cq algorithm, especially if the algorithm is a partitional one that requires
multiple passes over the input image. Therefore, effective and efficient methods should
be developed to sample large images.

•	 Researchers have developed many real-time cq algorithms since the 1980s. However,
to the best of our knowledge, there have been no attempts to develop an interactive cq
algorithm. It is not difficult to envision that such an algorithm can be used in various
computer graphics applications such as non-photorealistic rendering.

•	 Most cq algorithms are designed for software implementation. Among the few existing
hardware solutions, most concern the som algorithm implemented on field-program-
mable gate arrays (fpgas) (Sudha et al. 2003; Atsalakis et al. 2004; Chang et al. 2006;
Kurdthongmee 2008, 2011, 2016; Khalifa et al. 2020). While these hardware-based som
quantizers can achieve real-time processing speeds, they involve certain approxima-
tions (e.g., fixed-point or integer representation as opposed to floating-point representa-
tion, the �1 metric instead of the �2

2
 distance, and winner-take-all learning rather than

winner-take-most learning) that compromise their effectiveness. More effort should be
directed toward designing hardware-friendly and effective cq algorithms. In addition,
implementation of cq algorithms on graphics processing units (gpus) should be investi-
gated further (Leung et al. 2010; Bottisti et al. 2012; Trapp et al. 2019).

•	 There are currently very few supervised cq algorithms (Hou et al. 2020; Yoo et al.
2020; Park et al. 2022). Convolutional neural networks (cnns) are a promising avenue
of research in this respect.

•	 Most open-source cq software implement conventional hierarchical algorithms (e.g.,
median-cut, marginal variance minimization, octree, oblique-cut, and variance mini-
mization). cq researchers should release implementations of newer algorithms as open-
source software.

14021Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

•	 Many cq studies employ images taken from the usc-sipi Image Database or the Kodak
Lossless True Color Image Suite. Recently, Celebi and Pérez-Delgado published a large
and diverse benchmark database named cq10069 on which cq algorithms can be devel-
oped, tested, and compared. This database should be used in cq studies so that its defi-
ciencies can be identified and subsequently addressed.

Funding  This material is based upon work supported by the National Science Foundation under Award
No. oia-1946391. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science Foundation.

Data availability  Data sharing is not applicable to this article as no data sets were generated or analyzed.

References

Abernathy AD, Celebi ME (2022) The incremental online k-means clustering algorithm and its application
to color quantization. Expert Syst Appl 207(117):927

Ackerman M, Ben-David S, Loker D (2010) Towards property-based classification of clustering paradigms.
In: Advances in neural information processing systems, pp 10–18

Ahalt SC, Krishnamurthy AK, Chen P et al (1990) Competitive learning algorithms for vector quantization.
Neural Netw 3(3):277–290

Akarun L, Yardimci Y, Cetin AE (1997) Adaptive methods for dithering color images. IEEE Trans Image
Process 6(7):950–955

Akinduko AA, Mirkes EM, Gorban AN (2016) SOM: stochastic initialization versus principal components.
Inf Sci 364–365:213–221

Alexandrov VV, Gorsky ND, Mysko SN (1984) Recursive pyramids and their use for image coding. Pattern
Recogn Lett 2(5):301–310

Aloise D, Deshpande A, Hansen P et al (2009) NP-hardness of euclidean sum-of-squares clustering. Mach
Learn 75(2):245–248

Anderson M, Motta R, Chandrasekar S, et al (1996) Proposal for a standard default color space for the inter-
net—sRGB. In: Proceedings of the color and imaging conference, pp 238–245

Andersson P, Nilsson J, Akenine-Möller T et al (2020) FLIP: a difference evaluator for alternating images.
Proc ACM Comput Graph Interact Tech 3(2):15-1-15:23

Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the 18th
annual ACM–SIAM symposium on discrete algorithms, pp 1027–1035

Atsalakis A, Papamarkos N (2006) Color reduction and estimation of the number of dominant colors by
using a self-growing and self-organized neural gas. Eng Appl Artif Intell 19(7):769–786

Atsalakis A, Papamarkos N, Andreadis I (2002) On estimation of the number of image principal colors and
color reduction through self-organized neural networks. Int J Imaging Syst Technol 12(3):117–127

Atsalakis A, Papamarkos N, Kroupis N et al (2004) Colour quantisation technique based on image decom-
position and its embedded system implementation. IEE Proc 151(6):511–524

Avanaki A, Espig K, Kimpe T, et al (2014) Perceptual Uniformity of commonly used color spaces. In: Pro-
ceedings of the medical imaging 2014: digital pathology conference, pp 90410V-1–90410V-6

Awasthi P, Charikar M, Krishnaswamy R, et al (2015) The hardness of approximation of euclidean K-
means. In: Proceedings of the 31st international symposium on computational geometry, pp 754–767

Baarsch J, Celebi ME (2012) Investigation of internal validity measures for K-means clustering. In: Pro-
ceedings of the international multiconference of engineers and computer scientists, pp 471–476

Bader M (2013) Space-filling curves: an introduction with applications in scientific computing. Springer,
Berlin

69  Available at https://​data.​mende​ley.​com/​datas​ets/​vw5ys​9hfxw/2.

https://data.mendeley.com/datasets/vw5ys9hfxw/2

14022	 M. E. Celebi

1 3

Balasubramanian R, Allebach JP (1991a) A new approach to palette selection for color images. J Imaging
Technol 17(6):284–290

Balasubramanian R, Allebach JP (1991b) A new approach to palette selection for color images. In: Proceed-
ings of the SPIE electronic imaging symposium, pp 58–69

Balasubramanian R, Allebach JP, Bouman CA (1994a) Color-image quantization with use of a fast binary
splitting technique. J Opt Soc Am A 11(11):2777–2786

Balasubramanian R, Bouman CA, Allebach JP (1994b) Sequential scalar quantization of color images. J
Electron Imaging 3(1):45–59

Banerjee A, Merugu S, Dhillon IS et al (2005) Clustering with bregman divergences. J Mach Learn Res
6:1705–1749

Baqai FA, Lee JH, Agar AU et al (2005) Digital color halftoning. IEEE Signal Process Mag 22(1):87–96
Barata C, Celebi ME, Marques JS et al (2016) Clinically inspired analysis of dermoscopy images using a

generative model. Comput Vis Image Underst 151:124–137
Barnes ES, Sloane NJA (1983) The optimal lattice quantizer in three dimensions. SIAM J Algebr Discret

Methods 4(1):30–41
Bartholdi JJ III, Platzman LK (1988) Heuristics based on spacefilling curves for combinatorial problems in

euclidean space. Manag Sci 34(3):291–305
Bei CD, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for vector quanti-

zation. IEEE Trans Commun 33(10):1132–1133
Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM

18(9):509–517
Berman D, Treibitz T, Avidan S (2016) Non-local image Dehazing. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp 1674–1682
Bermejo S, Cabestany J (2002) The effect of finite sample size on online K-Means. Neurocomputing

48(1–4):511–539
Bernard Y, Hueber N, Girau B (2020) A fast algorithm to find best matching units in self-organizing maps.

In: Proceedings of the international conference on artificial neural networks, pp 825–837
Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Springer, Berlin
Bezdek JC, Keller J, Krisnapuram R et al (1999) Fuzzy models and algorithms for pattern recognition and

image processing. Kluwer Academic Publishers, Boston
Bhagavathy S, Llach J, Zhai J (2009) Multiscale probabilistic dithering for suppressing contour artifacts in

digital images. IEEE Trans Image Process 18(9):1936–1945
Bing Z, Junyi S, Qinke P (2004) An adjustable algorithm for color quantization. Pattern Recogn Lett

25(16):1787–1797
Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison.

ACM Comput Surv 35(3):268–308
Borgelt C, Yarikova O (2020) Initializing K-means clustering. In: Proceedings of the 9th international con-

ference on data science, technology and applications, pp 260–267
Bottisti D, Mendez L, Dechev D (2012) CuNeuQuant: a CUDA implementation of the NeuQuant Image-

Quantization algorithm. In: Proceedings of the international conference on image processing, com-
puter vision, and pattern recognition

Bottou L (1998) Online learning and stochastic approximations. In: Saad D (ed) On-line learning in neural
networks. Cambridge University Press, Cambridge, pp 9–42

Bragg D (1992) A simple color reduction filter. In: Kirk D (ed) Graphics gems III. Morgan Kaufmann, pp
20–22

Braquelaire JP, Brun L (1997) Comparison and optimization of methods of color image quantization. IEEE
Trans Image Process 6(7):1048–1052

Braudaway GW (1987) Procedure for optimum choice of a small number of colors from a large color palette
for color imaging. In: Proceedings of the electronic imaging conference, pp 71–75

Bregman LM (1967) The relaxation method of finding the common point of convex sets and its application
to the solution of problems in convex programming. USSR Comput Math Math Phys 7(3):200–217

Brucker P (1978) On the complexity of clustering problems. In: Henn R, Korte B, Oettli W (eds) Optimiza-
tion and operations research. Springer, Berlin, pp 45–54

Brun L, Mokhtari M (2000) Two high speed color quantization algorithms. In: Proceedings of the 1st inter-
national conference on color in graphics and image processing, pp 116–121

Brun L, Secroun C (1998) A fast algorithm for inverse colormap computation. Comput Graph Forum
17(4):263–271

Brun L, Trémeau A (2003) Color quantization. In: Sharma G (ed) Digital color imaging handbook. CRC
Press, Boca Raton, pp 589–638

14023Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Buades A, Lisani JL, Morel JM (2011) Dimensionality of color space in natural images. J Opt Soc Am A
28(2):203–209

Budrikis ZL (1972) Visual fidelity criterion and modeling. Proc IEEE 60(7):771–779
Buzo A, Gray, Jr. RMA. H.and Gray, Markel JD (1980) Speech coding based upon vector quantization.

IEEE Trans Acoust Speech Signal Process 28(5):562–574
Cannon RL, Dave JV, Bezdek JC (1986) Efficient implementation of the Fuzzy C-means clustering algo-

rithms. IEEE Trans Pattern Anal Mach Intell 8(2):248–255
Carlsson G, Memoli F (2010) Characterization, stability and convergence of hierarchical clustering meth-

ods. J Mach Learn Res 11:1425–1470
Cattelan M (2012) Models for paired comparison data: a review with emphasis on dependent data. Stat Sci

27(3):412–433
Çak S, Dizdar EN, Ersak A (1998) A Fuzzy colour quantizer for renderers. Displays 19(2):61–65
Celebi ME (2009) Fast color quantization using weighted sort-means clustering. J Opt Soc Am A

26(11):2434–2443
Celebi ME (2011) Improving the performance of K-means for color quantization. Image Vis Comput

29(4):260–271
Celebi ME (ed) (2015) Partitional clustering algorithms. Springer
Celebi ME, Aydin K (eds) (2016) Unsupervised learning algorithms. Springer
Celebi ME, Kingravi H (2012) Deterministic initialization of the K-means algorithm using hierarchical

clustering. Int J Pattern Recognit Artif Intell 26(7):1250,018
Celebi ME, Kingravi HA (2015) Linear, deterministic, and order-invariant initialization methods for the K

-means clustering algorithm. In: Celebi ME (ed) Partitional clustering algorithms. Springer, Berlin,
pp 79–98

Celebi ME, Zornberg A (2014) Automated quantification of clinically significant colors in dermoscopy
images and its application to skin Lesion classification. IEEE Syst J 8(3):980–984

Celebi ME, Kingravi H, Celiker F (2010) Fast colour space transformations using minimax approximations.
IET Image Proc 4(2):70–80

Celebi ME, Celiker F, Kingravi HA (2011) On Euclidean norm approximations. Pattern Recogn
44(2):278–283

Celebi ME, Kingravi HA, Celiker F (2012a) Comments on ‘on approximating Euclidean metrics by
weighted t-cost distances in arbitrary dimension’. Pattern Recogn Lett 33(10):1422–1425

Celebi ME, Wen Q, Hwang S, et al (2012b) Color quantization of dermoscopy images using the K-means
clustering algorithm. In: Celebi ME, Schaefer G (eds) Color medical image analysis. Springer, Berlin,
pp 87–107

Celebi ME, Kingravi H, Vela PA (2013) A comparative study of efficient initialization methods for the K
-means clustering algorithm. Expert Syst Appl 40(1):200–210

Celebi ME, Hwang S, Wen Q (2014) Colour quantisation using the adaptive distributing units algorithm.
Imaging Sci J 62(2):80–91

Celebi ME, Wen Q, Hwang S (2015) An effective real-time color quantization method based on divisive
hierarchical clustering. J Real-Time Image Proc 10(2):329–344

Celenk M (1990) A color clustering technique for image segmentation. Comput Vis Graph Image Process
52(2):145–170

Chan YH, Fung YH (2005) A regularized constrained iterative restoration algorithm for restoring color-
quantized images. Signal Process 85(7):1375–1387

Chandler DM, Hemami SS (2007) VSNR: a wavelet-based visual signal-to-noise ratio for natural images.
IEEE Trans Image Process 16(9):2284–2298

Chang RF, Chen WT, Wang JS (1992) A fast finite-state algorithm for vector quantizer design. IEEE Trans
Signal Process 40(1):221–225

Chang CH, Xu P, Xiao R et al (2005) New adaptive color quantization method based on self-organizing
maps. IEEE Trans Neural Networks 16(1):237–249

Chang CH, Shibu M, Xiao R (2006) Self organizing feature map for color quantization on FPGA. In:
Omondi AR, Rajapakse JC (eds) FPGA implementations of neural networks. Springer, Berlin, pp
225–245

Chao CKT, Singh K, Gingold Y (2021) PosterChild: blend-aware artistic posterization. Comput Graph
Forum 40(4):87–99

Chaudhuri D, Murthy CA, Chaudhuri BB (1992) A modified metric to compute distance. Pattern Recogn
25(7):667–677

Chen SH, Pan JS (1989) Fast search algorithm for VQ-based recognition of isolated words. IEE Proc I
136(6):391–396

14024	 M. E. Celebi

1 3

Chen MS, Wang SW (1999) Fuzzy clustering analysis for optimizing Fuzzy membership functions.
Fuzzy Sets Syst 103(2):239–254

Cheng H, Bouman CA (2001) Document compression using rate-distortion optimized segmentation. J
Electron Imaging 10(2):460–474

Cheng SC, Yang CK (2001) Fast and novel technique for color quantization using reduction of color
space dimensionality. Pattern Recogn Lett 22(8):845–856

Cheng DY, Gersho A, Ramamurthi B, et al (1984) Fast search algorithms for vector quantization and
pattern matching. In: Proceedings of the IEEE international conference on acoustics, speech, and
signal processing, pp 372–375

Cheng TW, Goldgof DB, Hall LO (1998) Fast Fuzzy clustering. Fuzzy Sets Syst 93(1):49–56
Cheng SS, Xiong Z, Wu X (2002) Fast trellis-coded color quantization of images. Real-Time Imaging

8(4):265–275
Cheng MM, Mitra NJ, Huang X et al (2015) Global contrast based salient region detection. IEEE Trans

Pattern Anal Mach Intell 37(3):569–582
Chuang YY, Curless B, Salesin DH, et al (2001) A Bayesian approach to digital matting. In: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp 264–271
Chung KL, Huang YH, Wang JP et al (2012) Speedup of color palette indexing in self-organization of

Kohonen feature map. Expert Syst Appl 39(3):2427–2432
Cohen-Addad V, Kanade V, Mallmann-Trenn F et al (2019) Hierarchical clustering: objective functions

and algorithms. J ACM 66(4):1–42
Cottrell M, Olteanu M, Rossi F, et al (2016) Theoretical and applied aspects of the self-organizing maps.

In: Proceedings of the 11th international workshop WSOM 2016. Springer, Berlin, pp 3–26
Crevier D (1993) Computing statistical properties of Hue distributions for color image analysis. In: Pro-

ceedings of the SPIE intelligent robots and computer vision XII conference, pp 613–623
Daly SJ, Feng X (2004) Decontouring: prevention and removal of false contour artifacts. In: Proceedings

of the SPIE electronic imaging symposium, pp 130–149
Darken C, Moody J (1990) Fast adaptive K-means clustering: some empirical results. In: Proceedings of

the 1990 international joint conference on neural networks, pp 233–238
Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. In: Proceedings of the

48th annual ACM symposium on theory of computing, pp 118–127
Dasgupta S, Freund Y (2009) Random projection trees for vector quantization. IEEE Trans Inf Theory

55(7):3229–3242
Dekker A (1994) Kohonen neural networks for optimal colour quantization. Netw Comput Neural Syst

5(3):351–367
Delon J, Desolneux A, Lisani JL et al (2007) Automatic color palette. Inverse Problems and Imaging

1(2):265–287
Dembélé D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics

19(8):973–980
DeSieno D (1988) Adding a conscience to competitive learning. In: Proceedings of the IEEE 1988 inter-

national conference on neural networks, pp 117–124
Dixit SS (1991) Quantization of color images for display/printing on limited color output devices. Com-

put Graph 15(4):561–567
Domański M, Bartkowiak M (1998) Compression. In: Sangwine SJ, Horne REN (eds) The colour image

processing handbook. Chapman & Hall, Boca Raton, pp 242–304
Dosselmann R, Yang XD (2011) A comprehensive assessment of the structural similarity index. SIViP

5(1):81–91
Dyer ME, Frieze AM (1985) A simple heuristic for the P-centre problem. Oper Res Lett 3(6):285–288
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE

Trans Evolut Comput 3(2):124–141
Elkan C (2003) Using the triangle inequality to accelerate K-Means. In: Proceedings of the 20th interna-

tional conference on machine learning, pp 147–153
Equitz WH (1984) Fast algorithms for vector quantization picture coding. Master’s thesis, Massachusetts

Institute of Technology
Equitz WH (1989) A new vector quantization clustering algorithm. IEEE Trans Acoust Speech Signal

Process 37(10):1568–1575
Eschrich S, Ke J, Hall LO et al (2003) Fast accurate Fuzzy clustering through data reduction. IEEE

Trans Fuzzy Syst 11(2):262–270
Fairchild MD, Johnson GM (2004) iCAM framework for image appearance, differences, and quality. J

Electron Imaging 13(1):126–138

14025Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Fan Z, Jiang T, Huang T (2017) Active sampling exploiting reliable informativeness for subjective image
quality assessment based on pairwise comparison. IEEE Trans Multimedia 19(12):2720–2735

Farber B, Zeger K (2006) Quantization of multiple sources using nonnegative integer bit allocation. IEEE
Trans Inf Theory 52(11):4945–4964

Feder T, Greene DH (1988) Optimal algorithms for approximate clustering. In: Proceedings of the 20th
annual ACM symposium on theory of computing, pp 434–444

Feldman D (2020) Core-sets: updated survey. In: Ros F, Guillaume S (eds) Sampling techniques for super-
vised or unsupervised tasks. Springer, Berlin, pp 23–44

Fisher L, Van Ness JW (1971) Admissible clustering procedures. Biometrika 58(1):91–104
Fiume E, Ouellette M (1989) On distributed, probabilistic algorithms for computer graphics. In: Proceed-

ings of the graphics interface ’89, pp 211–218
Fletcher P (1991) A SIMD parallel colour quantization algorithm. Comput Graph 15(3):365–373
Flinkman M, Laamanen H, Vahimaa P et al (2012) Number of colors generated by smooth nonfluorescent

reflectance spectra. J Opt Soc Am A 29(12):2566–2575
Fowler RJ, Paterson MS, Tanimoto SL (1981) Optimal packing and covering in the plane are NP-complete.

Inf Process Lett 12(3):133–137
Fox B (1966) Discrete optimization via marginal analysis. Manag Sci 13(3):210–216
Freisleben B, Schrader A (1997) An evolutionary approach to color image quantization. In: Proceedings of

the 1997 IEEE international conference on evolutionary computation, pp 459–464
Fung YH, Chan YH (2004) POCS-based algorithm for restoring colour-quantised images. IEE Proc Vis

Image Signal Process 151(2):119–127
Fung YH, Chan YH (2006) A POCS-based restoration algorithm for restoring halftoned color-quantized

images. IEEE Trans Image Process 15(7):1985–1992
Fung YH, Chan YH (2006) A simulated annealing restoration algorithm for restoring halftoned color-quan-

tized images. Signal Process 21(4):280–292
Garey MR, Johnson D, Witsenhausen HS (1982) The complexity of the generalized Lloyd-Max problem.

IEEE Trans Inf Theory 28(2):255–256
Gentile RS, Allebach JP, Walowit E (1990) Quantization of color images based on uniform color spaces. J

Imaging Technol 16(1):11–21
Geraci F, Pellegrini M, Maggini M, et al (2006) Cluster generation and cluster labelling for web snippets.

In: Proceedings of the 13th international conference on string processing and information retrieval,
pp 25–36

Gersho A, Gray RM (1992) Vector quantization and signal compression. Kluwer Academic Publishers,
Boston

Gervautz M, Purgathofer W (1988) A simple method for color quantization: octree quantization. In: Mag-
nenat-Thalmann N, Thalmann D (eds) New trends in computer graphics. Springer, Berlin, pp 219–231

Ghanbarian A, Kabir E, Charkari N (2007) Color reduction based on ant colony. Pattern Recogn Lett
28(12):1383–1390

Goldberg N (1991) Colour image quantization for high resolution graphics display. Image Vis Comput
9(5):303–312

Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theoret Comput Sci
38(2–3):293–306

González AI, Graña M, Albizuri FX et al (2000) A near real-time evolution-based adaptation strategy for
dynamic color quantization of image sequences. Inf Sci 122(2–4):161–183

Gotsman C, Lindenbaum M (1996) On the metric properties of discrete space-filling curves. IEEE Trans
Image Process 5(5):794–797

Gray RM, Karnin ED (1982) Multiple local optima in vector quantizers. IEEE Trans Inf Theory
28(2):256–261

Großwendt A, Røglin H, Schmidt M (2019) Analysis of Ward’s method. In: Proceedings of the 30th annual
ACM-SIAM symposium on discrete algorithms, pp 2939–2957

Grossberg S (1987) Competitive learning: from interactive activation to adaptive resonance. Cogn Sci
11(1):23–63

Hadizadeh H, Bajic IV, Saeedi P, et al (2011) Good-looking green images. In: Proceedings of the 18th IEEE
international conference on image processing, pp 3177–3180

Hains C, Wang SG, Knox K (2003) Digital color halftones. In: Sharma G (ed) Digital color imaging hand-
book. CRC Press, Boca Raton, pp 385–490

Hamerly G, Drake J (2015) Accelerating Lloyd’s algorithm for K-means clustering. In: Celebi ME (ed) Par-
titional clustering algorithms. Springer, Berlin, pp 41–78

Hanbury A (2003) Circular statistics applied to colour images. Proc Comput Vis Winter Workshop
2003:55–60

14026	 M. E. Celebi

1 3

Hanbury A (2008) Constructing cylindrical coordinate colour spaces. Pattern Recogn Lett 29(4):494–500
Hansen P, Lazić J, Mladenović N (2007) Variable neighbourhood search for colour image quantization.

IMA J Manag Math 18(2):207–221
Hardeberg JY, Bando E, Pedersen M (2008) Evaluating colour image difference metrics for Gamut-mapped

images. Color Technol 124(4):243–253
Harding EF (1967) The number of partitions of a set of N points in K dimensions induced by hyperplanes.

Proc Edinb Math Soc (Ser 2) 15(4):285–289
Har-Peled S, Sadri B (2005) How fast is the K-means method? Algorithmica 41(3):185–202
Hasegawa S, Imai H, Inaba M et al (1993) Efficient algorithms for variance-based K-clustering. In: Shin SY,

Kunii TL (eds) Computer graphics and applications. World Scientific Publishing Co., Singapore, pp
75–88

Hatam M, Masnadi-Shirazi MA (2015) Optimum nonnegative integer bit allocation for wavelet based signal
compression and coding. Inf Sci 297:332–344

Hathaway RJ, Bezdek JC (2006) Extending Fuzzy and probabilistic clustering to very large data sets. Com-
put Stat Data Anal 51(1):215–234

Hathaway RJ, Hu Y (2009) Density-weighted Fuzzy C-means clustering. IEEE Trans Fuzzy Syst
17(1):243–252

Hathaway RJ, Bezdek JC, Huband JM (2006) Maximin initialization for cluster analysis. In: Proceedings of
the 11th iberoamerican congress in pattern recognition, pp 14–26

Hatzinger R, Dittrich R (2012) prefmod: an R package for modeling preferences based on paired compari-
sons, rankings, or ratings. J Stat Softw 48(10):1–31

Heckbert PS (1980) Color image quantization for frame buffer display. Bachelor’s thesis, Massachusetts
Institute of Technology

Heckbert P (1982) Color image quantization for frame buffer display. ACM SIGGRAPH Comput Graph
16(3):297–307

Heckel R, Shah NB, Ramchandran K et al (2019) Active ranking from pairwise comparisons and when
parametric assumptions do not help. Ann Stat 47(6):3099–3126

Hoare CAR (1971) Proof of a program: find. Commun ACM 14(1):39–45
Höppner F (2002) Speeding up Fuzzy C-means: using a hierarchical data organisation to control the preci-

sion of membership calculation. Fuzzy Sets Syst 128(3):365–376
Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: Proceedings of the 2010 international

conference on pattern recognition, pp 2366–2369
Hou Y, Zheng L, Gould S (2020) Learning to structure an image with few colors. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp 10,116–10,125
Houle G, Dubois E (1986) Quantization of color images for display on graphics terminals. In: Proceedings

of the IEEE global telecommunications conference, pp 1138–1142
Howard N, Harris B (1966) A hierarchical grouping routine (IBM 360/65 Fortran IV Program). Tech. rep.,

University of Pennsylvania Computer Center
Hsieh IS, Fan KC (2000) An adaptive clustering algorithm for color quantization. Pattern Recogn Lett

21(4):337–346
Hsu WL, Nemhauser GL (1979) Easy and hard bottleneck location problems. Discret Appl Math

1(3):209–215
Hu YC, Lee MG (2007) K-means based color palette design scheme with the use of stable flags. J Electron

Imaging 16(3):033,003
Hu YC, Su BH (2008a) Accelerated K-means clustering algorithm for colour image quantization. Imaging

Sci J 56(1):29–40
Hu YC, Su BH (2008b) Accelerated pixel mapping scheme for colour image quantisation. Imaging Sci J

56(2):68–78
Hu YC, Lee MG, Tsai P (2009) Colour palette generation schemes for colour image quantization. Imaging

Sci J 57(1):46–59
Huang SC (2021) An efficient palette generation method for color image quantization. Appl Sci 11(3):1043
Huang YL, Chang RF (2004) A fast finite-state algorithm for generating RGB palettes of color quantized

images. J Inf Sci Eng 20(4):771–782
Huang J, Schultheiss P (1963) Block quantization of correlated gaussian random variables. IEEE Trans

Commun Syst 11(3):289–296
Huang TS, Schreiber WF, Tretiak OJ (1971) Image processing. Proc IEEE 59(11):1586–1609
Huang M, Xia Z, Wang H et al (2012) The range of the value for the Fuzzifier of the Fuzzy C-means algo-

rithm. Pattern Recogn Lett 33(16):2280–2284
Huang HZ, Xu K, Martin RR et al (2016) Efficient, edge-aware, combined color quantization and dithering.

IEEE Trans Image Process 25(3):1152–1162

14027Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Huang Q, Kim HY, Tsai WJ et al (2018) Understanding and removal of false contour in HEVC com-
pressed images. IEEE Trans Circuits Syst Video Technol 28(2):378–391

Hung KL, Chang CC (2002) An improvement of a technique for color quantization using reduction of
color space dimensionality. Informatica 26(1):11–16

Hwang KF, Chang CC (2002) A fast pixel mapping algorithm using principal component analysis. Pat-
tern Recogn Lett 23(14):1747–1753

Hyafil L, Rivest RL (1976) Constructing optimal binary decision trees is NP-complete. Inf Process Lett
5(1):15–17

Ienne P, Thiran P, Vassilas N (1997) Modified self-organizing feature map algorithms for efficient digital
hardware implementation. IEEE Trans Neural Networks 8(2):315–330

Inaba M, Katoh N, Imai H (1994) Applications of weighted voronoi diagrams and randomization to
variance-based K-clustering. In: Proceedings of the 10th annual symposium on computational
seometry, pp 332–339

Jackins CL, Tanimoto SL (1980) Oct-trees and their use in representing three-dimensional objects. Com-
put Graphics Image Process 14(3):249–270

Jain AK, Pratt WK (1972) color image quantization. In: Proceedings of the 1972 national telecommuni-
cations conference, p 34

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323
Jamieson KG, Nowak RD (2011) Active ranking using pairwise comparisons. In: Proceedings of the

25th annual conference on neural information processing systems, pp 2240–2248
Johnson GM, Fairchild MD (2003) A top down description of S-CIELAB and CIEDE2000. Color Res

Appl 28(6):425–435
Johnson GM, Song X, Montag ED et al (2010) Derivation of a color space for image color difference

measurement. Color Res Appl 35(6):387–400
Joy G, Xiang Z (1993) Center-cut for color image quantization. Visual Comput 10(1):62–66
Joy G, Xiang Z (1996) Reducing false contours in quantized color images. Comput Graph 20(2):231–242
Kanungo T, Mount D, Netanyahu N et al (2002) An efficient K-means clustering algorithm: analysis and

implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892
Kasuga H, Yamamoto H, Okamoto M (2000) Color quantization using the fast K-means algorithm. Syst

Comput Japan 31(8):33–40
Kaukoranta T, Fränti P, Nevalainen O (2000) A fast exact GLA based on code vector activity detection.

IEEE Trans Image Process 9(8):1337–1342
Keysers D, Lampert CH, Breuel TM (2006) Color image dequantization by constrained diffusion. In:

Proceedings of the SPIE/IS &T electronic imaging symposium, pp 605,803–1–605,803–10
Khalifa KB, Blaiech AG, Abadi M et al (2020) New hardware architecture for self-organizing map used

for color vector quantization. J Circuits Syst Comput 29(1):2050,002
Kim N, Kehtarnavaz N (2005) DWT-based scene-adaptive color quantization. Real-Time Imaging

11(5–6):443–453
Kim TH, Ahn J, Choi MG (2007) Image dequantization: restoration of quantized colors. Comput Graph

Forum 26(3):619–626
Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern

43:59–69
Kohonen T (1993) Things you haven’t heard about the self-organizing map. In: Proceedings of the IEEE

international conference on neural networks, pp 1147–1156
Kohonen T (2013) Essentials of the self-organizing map. Neural Netw 37:52–65
Koikkalainen P, Oja E (1990) Self-organizing hierarchical feature maps. In: Proceedings of the 1990

IJCNN international joint conference on neural networks, pp 279–284
Kok CW, Chan SC, Leung SH (1993) Color quantization by Fuzzy quantizer. In: Proceedings of the IS

&T/SPIE’s symposium on electronic imaging: science and technology, pp 235–242
Kolen JF, Hutcheson T (2002) Reducing the time complexity of the Fuzzy C-means algorithm. IEEE

Trans Fuzzy Syst 10(2):263–267
Kruger A (1992) Reduction of computer-generated images. PhD thesis, University of Iowa
Kuehni RG (2003) Color space and its divisions: color order from antiquity to the present. Wiley, New York
Kuehni RG (2016) How many object colors can we distinguish? Color Res Appl 41(5):439–444
Kuhn GR, Oliveira MM, Fernandes LA (2008) An improved contrast enhancing approach for color-to-

grayscale mappings. Vis Comput 24(7):505–514
Kurdthongmee W (2008) A novel hardware-oriented Kohonen SOM image compression algorithm and

its FPGA implementation. J Syst Architect 54(10):983–994
Kurdthongmee W (2011) Utilization of a rational-based representation to improve the image quality of a

hardware-based K-SOM quantizer. J Real-Time Image Proc 6(3):199–211

14028	 M. E. Celebi

1 3

Kurdthongmee W (2016) A hardware centric algorithm for the best matching unit searching stage of the
SOM-based quantizer and its FPGA implementation. J Real-Time Image Proc 12(1):71–80

Lai JZC, Liaw YC (2008) Improvement of the K-means clustering filtering algorithm. Pattern Recogn
41(12):3677–3681

Lampinen J, Oja E (1990) Fast computation of Kohonen self-organization. In: Soulié FF, Hérault J (eds)
Neurocomputing: algorithms, architectures and applications. Springer, p 65–74

Lawrence RD, Almasi GS, Rushmeier HE (1999) A scalable parallel algorithm for self-organizing maps
with applications to sparse data mining problems. Data Min Knowl Disc 3(2):171–195

Lee E, Schmidt M, Wright J (2017) Improved and simplified inapproximability for K-means. Inf Process
Lett 120:40–43

Lempel A, Ziv J (1986) Compression of two-dimensional data. IEEE Trans Inf Theory 32(1):2–8
Leung CS, Ho TY, Xiao Y (2010) GPU color quantization. In: Engel W (ed) GPU Pro: advanced rendering

techniques. A K Peters, p 3–13
Levkowitz H, Herman GT (1993) GLHS: a generalized lightness, Hue, and saturation color model. CVGIP

55(4):271–285
Li J, Mantiuk RK, Wang J, et al (2018) Hybrid-MST: a hybrid active sampling strategy for pairwise prefer-

ence aggregation. In: Proceedings of the 32nd international conference on neural information process-
ing systems, pp 3479–3489

Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun
28(1):84–95

Linhares JMM, Pinto PD et al (2008) The number of discernible colors in natural scenes. J Opt Soc Am A
25(12):2918–2924

Liu TS, Chang LW (1995) Fast color image quantization with error diffusion and morphological operations.
Signal Process 43(3):293–303

Liu Q, Crispino M, Scheel I, et al (2019) Model-based learning from preference data. Annu Rev Stat Appl
pp 329–354

Liu Y, Sun J, Yao Q, et al (2018) A scalable heterogeneous parallel SOM based on MPI/CUDA. In: Pro-
ceedings of the 10th Asian conference on machine learning, pp 264–279

Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–136
Lo KC, Chan YH, Yu M (2003) Colour quantization by three-dimensional frequency diffusion. Pattern Rec-

ogn Lett 24(14):2325–2334
Lucic M, Bachem O, Krause A (2016) Strong coresets for hard and soft bregman clustering with applica-

tions to exponential family mixtures. In: Proceedings of the 19th international conference on artificial
intelligence and statistics, pp 1–9

Luo MR (2002) Development of colour-difference formulae. Rev Prog Color Relat Top 32(1):28–39
Luzardo G, Aelterman J, Luong H, et al (2017) Real-time false-contours removal for inverse tone mapped

HDR content. In: Proceedings of the 25th ACM international conference on multimedia, pp
1472–1479

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceed-
ings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297

Mahajan M, Nimbhorkar P, Varadarajan K (2009) The planar K-means problem is NP-hard. In: Proceedings
of the 3rd international workshop on algorithms and computation, pp 274–285

Makhoul J, Roucos S, Gish H (1985) Vector quantization in speech coding. Proc IEEE 73(11):1551–1588
Mannos JL, Sakrison DJ (1974) The effects of a visual fidelity criterion of the encoding of images. IEEE

Trans Inf Theory 20(4):525–536
Mantiuk RK, Tomaszewska A, Mantiuk R (2012) Comparison of four subjective methods for image quality

assessment. Comput Graph Forum 31(8):2478–2491
Martínez-Verdú F, Perales E, Chorro E et al (2007) Computation and visualization of the MacAdam limits

for any lightness, Hue angle, and light source. J Opt Soc Am A 24(6):1501–1515
Masaoka K, Berns RS, Fairchild MD et al (2013) Number of discernible object colors is a conundrum. J Opt

Soc Am A 30(2):264–277
Masuyama S, Ibaraki T, Hasegawa T (1981) The computational complexity of the M-center problems on the

plane. Trans IEICE Jpn 64(2):E-57-64
Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator. ACM Trans Model Comput Simul 8(1):3–30
Max J (1960) Quantizing for minimum distortion. IRE Trans Inf Theory 6(1):7–12
Maystre L, Grossglauser M (2017) Just sort it! A simple and effective approach to active preference learn-

ing. In: Proceedings of the 34th international conference on machine learning, pp 2344–2353
Megiddo N, Supowit KJ (1984) On the complexity of some common geometric location problems. SIAM J

Comput 13(1):182–196

14029Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Melgosa M, Huertas R (2004) Relative significance of the terms in the CIEDE2000 and CIE94 color-differ-
ence formulas. J Opt Soc Am A 21(12):2269–2275

Mignotte M (2008) Segmentation by fusion of histogram-based K-means clusters in different color spaces.
IEEE Trans Image Process 17(5):780–787

Mikhailiuk A, Wilmot C, Pérez-Ortiz M, et al (2021) Active sampling for pairwise comparisons via approx-
imate message passing and information gain maximization. In: Proceedings of the 25th international
conference on pattern recognition, pp 2559–2566

Milvang O (1987) An adaptive algorithm for color image quantization. In: Proceedings of the 5th scandina-
vian conference on image analysis, pp 43–47

Mitsa T, Varkur KL (1993) Evaluation of contrast sensitivity functions for the formulation of quality meas-
ures incorporated in halftoning algorithms. In: Proceedings of the 1993 IEEE international confer-
ence on acoustics, speech, and signal processing, pp 301–304

Mohr AE (2002) Bit allocation in sub-linear time and the multiple-choice knapsack problem. In: Proceed-
ings of the data compression conference, pp 352–361

Mojsilović A, Soljanin E (2001) Color quantization and processing by fibonacci lattices. IEEE Trans Image
Process 10(11):1712–1725

Mojsilović A, Hu J, Soljanin E (2002) Extraction of perceptually important colors and similarity measure-
ment for image matching, retrieval, and analysis. IEEE Trans Image Process 11(11):1238–1248

Monga V, Damera-Venkata N, Evans BL (2006) Color image halftoning. In: Lukac R, Plataniotis KN (eds)
Color image processing: methods and applications. CRC Press, Boca Raton, pp 157–183

Montagne C, Lelandais S, Smolarz A et al (2006) Adaptive color quantization using the “Baker’s transfor-
mation’’. J Electron Imaging 15(2):023,015

Moon B, Jagadish HV, Faloutsos C et al (2001) Analysis of the clustering properties of the Hilbert space-
filling curve. IEEE Trans Knowl Data Eng 13(1):124–141

Morovic J, Cheung V, Morovic P (2012) Why we don’t know how many colors there are? In: Proceedings of
the conference on colour in graphics, imaging, and vision, pp 49–53

Mulier FM, Cherkassky VS (1995) Statistical analysis of self-organization. Neural Netw 8(5):717–727
Müllner D (2013) fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. J Stat

Softw 53(9):1–18
Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms

implement Ward’s criterion? J Classif 31(3):274–295
Murthy SK, Kasif S, Salzberg S (1994) A system for induction of oblique decision trees. J Artif Intell Res

2(1):1–32
Necaise RD (1998) Improvements to the color quantization process. PhD thesis, College of William & Mary
Nieves JL, Gomez-Robledo L, Chen YJ et al (2020) Computing the relevant colors that describe the color

palette of paintings. Appl Opt 59(6):1732–1740
Nikolaou N, Papamarkos N (2009) Color reduction for complex document images. Int J Imaging Syst Tech-

nol 19(1):14–26
Nolle L, Schaefer G (2007) Colour map design through optimization. Eng Optim 39(3):327–343
Ohta YI, Kanade T, Sakai T (1980) Color information for region segmentation. Comput Graphics Image

Process 13(3):222–241
Omran MG, Engelbrecht AP, Salman A (2005) A color image quantization algorithm based on particle

swarm optimization. Informatica 29(3):261–269
Oppenheim AV, Weinstein CJ (1972) Effects of finite register length in digital filtering and the fast Fourier

transform. Proc IEEE 60(8):957–976
Orchard M, Bouman C (1991) Color quantization of images. IEEE Trans Signal Process 39(12):2677–2690
Ortiz-Jaramillo B, Kumcu A, Platisa L et al (2019) Evaluation of color differences in natural scene color

images. Signal Process 71:128–137
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern

9(1):62–66
Özdemir D, Akarun L (2002) Fuzzy algorithm for color quantization of images. Pattern Recogn

35(8):1785–1791
Ozkan I, Turksen IB (2007) Upper and lower values for the level of fuzziness in FCM. Inf Sci

177(23):5143–5152
Paeth AW (1990) Mapping RGB triples onto four bits. In: Glassner A (ed) Graphics gems I. Morgan Kauf-

mann, pp 233–245
Paeth AW (1991) Mapping RGB triples onto 16 distinct values. In: Arvo J (ed) Graphics gems II. Morgan

Kaufmann, pp 143–146
Pal NR, Bezdek JC (2002) Complexity reduction for “large image’’ processing. IEEE Trans Syst Man

Cybern 32(5):598–611

14030	 M. E. Celebi

1 3

Palomo EJ, Domínguez E (2014) Hierarchical color quantization based on self-organization. J Math Imag-
ing Vis 49(1):1–19

Papamarkos N, Atsalakis AE, Strouthopoulos CP (2002) Adaptive color reduction. IEEE Trans Syst Man
Cybern 32(1):44–56

Park JH, Kim SH, Lee JC, et al (2022) Scalable color quantization for task-centric image compression.
ACM Trans Multimed Comput Commun Appl

Parker JK, Hall LO (2014) Accelerating Fuzzy-C means using an estimated subsample size. IEEE Trans
Fuzzy Syst 22(5):1229–1244

Pedersen M (2015) Evaluation of 60 full-reference image quality metrics on the CID:IQ. In: Proceedings of
the 2015 IEEE international conference on image processing, pp 1588–1592

Pedersen M, Hardeberg JY (2012) Full-reference image quality metrics: classification and evaluation. Found
Trends Comput Graph Vis 7(1):1–80

Pei SC, Cheng CM (1995) Dependent scalar quantization of color images. IEEE Trans Circuits Syst Video
Technol 5(2):124–139

Pei SC, Lo YS (1998) Color image compression and limited display using self-organization Kohonen map.
IEEE Trans Circuits Syst Video Technol 8(2):191–205

Pei SC, Chuang YT, Chuang WH (2006) Effective palette indexing for image compression using self-organ-
ization of Kohonen feature map. IEEE Trans Image Process 15(9):2493–2498

Pérez-Delgado ML (2015) Colour quantization with ant-tree. Appl Soft Comput 36:656–669
Pérez-Delgado ML (2018) Artificial ants and fireflies can perform colour quantisation. Appl Soft Comput

73:153–177
Pérez-Delgado ML (2019) The color quantization problem solved by swarm-based operations. Appl Intell

49:2482–2514
Pérez-Delgado ML (2020) Color quantization with particle swarm optimization and artificial ants. Soft

Comput 24:4545–4573
Pérez-Delgado ML (2021) Revisiting the iterative ant-tree for color quantization algorithm. J Vis Commun

Image Represent 78(103):180
Pérez-Delgado ML, Gallego JAR (2019) A hybrid color quantization algorithm that combines the greedy

orthogonal Bi-partitioning method with artificial ants. IEEE Access 7:128,714-128,734
Pérez-Delgado ML, Gallego JAR (2020) A two-stage method to improve the quality of quantized images. J

Real-Time Image Proc 17(3):581–605
Pérez-Ortiz M, Mantiuk RK (2017) A practical guide and software for analysing pairwise comparison

experiments. https://​arxiv.​org/​abs/​1712.​03686
Pérez-Ortiz M, Mikhailiuk A, Zerman E et al (2019) From pairwise comparisons and rating to a unified

quality scale. IEEE Trans Image Process 29:1139–1151
Phung SL, Bouzerdoum A, Chai D (2005) Skin segmentation using color pixel classification: analysis and

comparison. IEEE Trans Pattern Anal Mach Intell 27(1):148–154
Pointer MR, Attridge GG (1998) The number of discernible colours. Color Res Appl 23(1):52–54
Ponomarenko N, Jin L, Ieremeiev O et al (2015) Image database TID2013: peculiarities, results and per-

spectives. Signal Process 30:57–77
Poynton C, Funt B (2014) Perceptual uniformity in digital image representation and display. Color Res Appl

39(1):6–15
Pratt WK (1970) Spatial transform coding of color images. IEEE Trans Commun Technol 19(6):980–992
Press WH, Teukolsky SA, Vetterling WT et al (2007) Numerical recipes: the art of scientific computing, 3rd

edn. Cambridge, Cambridge University Press
Puzicha J, Held M, Ketterer J et al (2000) On spatial quantization of color images. IEEE Trans Image Pro-

cess 9(4):666–682
Ra SW, Kim JK (1993) A fast mean-distance-ordered partial codebook search algorithm for image vector

quantization. IEEE Trans Circuits Syst II 40(9):576–579
Ramanath R, Snyder WE, Yoo Y et al (2005) Color image processing pipeline. IEEE Signal Process Mag

22(1):34–43
Ramella G (2021) Evaluation of quality measures for color quantization. Multimed Tools Appl

80:32,975-33,009
Ramella G, di Baja GS (2013) A new technique for color quantization based on histogram analysis and clus-

tering. Int J Pattern Recognit Artif Intell 27(3):1360,006
Ramstad TA (1982) Sub-band coder with a simple adaptive bit-allocation algorithm: a possible candidate

for digital mobile telephony? In: Proceedings of the IEEE international conference on acoustics,
speech, and signal processing, pp 203–207

Reitan PJ (1998) 3D visualization of color image histograms. Comput Netw ISDN Syst
30(20–21):2025–2035

https://arxiv.org/abs/1712.03686

14031Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Reitan PJ (1999) Hybrid approaches to color image quantization. PhD thesis, University of Maryland,
Baltimore County

Ren M, Wang Z, Jiang J (2019) A self-adaptive FCM for the optimal Fuzzy weighting exponent. Int J
Comput Intell Appl 18(2):1950,008

Ritter HJ, Schulten K (1988) Kohonen’s self-organizing maps: exploring their computational capabili-
ties. In: Proceedings of the IEEE 1988 international conference on neural networks, pp 109–116

Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407
Robertson PK (1988) Visualizing color Gamuts: a user interface for the effective use of perceptual color

spaces in data displays. IEEE Comput Graph Appl 8(5):50–64
Rumelhart D, Zipser D (1985) Feature discovery by competitive learning. Cogn Sci 9(1):75–112
Ruspini EH (1970) Numerical methods for Fuzzy clustering. Inf Sci 2(3):319–350
Sabin MJ, Gray RM (1984) Product code vector quantizers for waveform and voice coding. IEEE Trans

Acoust Speech Signal Process 32(3):474–488
Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst

Man Cybern 21(3):660–674
Sakrison DJ, Algazi VR (1971) Comparison of line-by-line and two-dimensional encoding of random

images. IEEE Trans Inf Theory 17(4):386–398
Schaefer G (2014) Soft computing-based colour quantisation. EURASIP J Image Video Process

2014(1):1–9
Schaefer G, Nolle L (2015) A hybrid color quantization algorithm incorporating a human visual percep-

tion model. Comput Intell 31(4):684–698
Schaefer G, Zhou H (2009) Fuzzy clustering for colour reduction in images. Telecommun Syst

40(1):17–25
Schaefer G, Zhou H, Celebi ME et al (2011) Rough colour quantisation. Int J Hybrid Int Syst 8(1):25–30
Schaefer G, Hu Q, Zhou H et al (2012) Rough C-means and Fuzzy rough C-means for colour quantisa-

tion. Fund Inform 119(1):113–120
Scheunders P (1997) A genetic C-means clustering algorithm applied to color image quantization. Pat-

tern Recogn 30(6):859–866
Schmidl TM, Cosman PC, Gray RM (1993) Unbalanced non-binary tree-structured vector quantizers.

In: Proceedings of the 27th asilomar conference on signals, systems and computers, pp 1519–1523
Schmitz BE, Stevenson RL (1995) Color palette restoration. Graph Models Image Process 57(5):409–419
Schreiber T (1991) A voronoi diagram based adaptive K-means-type clustering algorithm for multidi-

mensional weighted data. In: Proceedings of the international workshop on computational geom-
etry, pp 265–275

Schwämmle V, Jensen ON (2010) A simple and fast method to determine the parameters for Fuzzy C
-means cluster analysis. Bioinformatics 26(22):2841–2848

Serrano C, Lazo M, Serrano A et al (2022) Clinically inspired skin lesion classification through the
detection of dermoscopic criteria for basal cell carcinoma. J Imaging 8(7):197

Shafer SA, Kanade T (1987) Color Vision. In: Shapiro SC (ed) Encyclopedia of artificial intelligence,
vol 1. Wiley, New York, pp 124–131

Sharma G, Vrhel MJ, Trussell HJ (1998) Color imaging for multimedia. Proc IEEE 86(6):1088–1108
Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: implementation notes,

supplementary test data, and mathematical observations. Color Res Appl 30(1):21–30
Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality

assessment algorithms. IEEE Trans Image Process 15(11):3440–3451
Sheikholeslami G, Chatterjee S, Zhang A (1998) WaveCluster: a multi-resolution clustering approach

for very large spatial databases. In: Proceedings of the 24th international conference on very large
data bases, pp 428–439

Shufelt JA (1997) Texture analysis for enhanced color image quantization. Graph Models Image Process
59(3):149–163

Silverstein DA, Farrell JE (2001) Efficient method for paired comparison. J Electron Imaging 10(2):394–398
Sobol’ IM, Asotsky D, Kreinin A et al (2011) Construction and comparison of high-dimensional Sobol’

generators. Wilmott 56:64–79
Soljanin E (2002) Writing sequences on the plane. IEEE Trans Inf Theory 48(6):1344–1354
Song Q, Su GM, Cosman PC (2020) Efficient debanding filtering for inverse tone mapped high dynamic

range videos. IEEE Trans Circuits Syst Video Technol 30(8):2575–2589
Sproull RF (1991) Refinements to nearest-neighbor searching in K-dimensional trees. Algorithmica

6(4):579–589
Stevens RJ, Lehar AF, Preston FH (1983) Manipulation and presentation of multidimensional image

data using the Peano scan. IEEE Trans Pattern Anal Mach Intell 5(5):520–526

14032	 M. E. Celebi

1 3

Stockham TG Jr (1972) Image processing in the context of a visual model. Proc IEEE 60(7):828–842
Stokes M, Fairchild MD, Berns RS (1992) Precision requirements for digital color reproduction. ACM

Trans Graph 11(4):406–422
Streijl RC, Winkler S, Hands DS (2016) Mean opinion score (MOS) revisited: methods and applications.

Multimed Syst 22(2):213–227
Su MC, Chang HT (2000) Fast self-organizing feature map algorithm. IEEE Trans Neural Netw

11(3):721–733
Su T, Dy JG (2007) In search of deterministic methods for initializing K-means and Gaussian mixture

clustering. Intell Data Anal 11(4):319–338
Sudha N, Srikanthan T, Mailachalam B (2003) A VLSI architecture for 3-D self-organizing map based

color quantization and its FPGA implementation. J Syst Architect 48(11–12):337–352
Szilágyi L, Benyó Z, Szilágyi SM, et al (2003) MR brain image segmentation using an enhanced Fuzzy

C-means algorithm. In: Proceedings of the 25th annual international conference of the IEEE engi-
neering in medicine and biology society, pp 724–726

Szilágyi L, Dénesi G, Kovács L, et al (2014) Comparison of various improved-partition Fuzzy C-means
clustering algorithms in fast color reduction. In: Proceedings of the 2014 IEEE 12th international
symposium on intelligent systems and informatics, pp 197–202

Szilágyi L, Dénesi G, Enăchescu C (2016) Fast color quantization via Fuzzy clustering. In: Proceedings
of the international conference on neural information processing, pp 95–103

Taşdizen T, Akarun L, Ersoy C (1998) Color quantization with genetic algorithms. Signal Process
12(1):49–57

Thomas SW (1991) Efficient inverse color map computation. In: Arvo J (ed) Graphics gems II. Aca-
demic Press, Cambridge, pp 116–125

Thompson S, Celebi ME, Buck KH (2020) Fast color quantization using MacQueen’s K-means algo-
rithm. J Real-Time Image Proc 17(5):1609–1624

Trapp M, Pasewaldt S, Döllner J (2019) Techniques for GPU-based color quantization. In: Proceedings
of the 27th international conference in central Europe on computer graphics, visualization and
computer vision, pp 81–87

Tseng HW, Ding WB (2012) Reversible data hiding scheme for colour images based on pixel clustering
and histogram shifting. Imaging Sci J 60(1):47–53

Tsukida K, Gupta MR (2011) How to analyze paired comparison data. Tech. Rep. UWEETR-2011-0004,
University of Washington

Tu Z, Lin J, Wang Y et al (2020) Adaptive debanding filter. IEEE Signal Process Lett 27:1715–1719
Turnbull D, Elkan C (2005) Fast recognition of musical genres using RBF networks. IEEE Trans Knowl

Data Eng 17(4):580–584
Turner H, Firth D (2012) Bradley-Terry models in R: the BradleyTerry2 package. J Stat Softw

48(9):1–21
Uchiyama T, Arbib MA (1994a) An algorithm for competitive learning in clustering problems. Pattern

Recogn 27(10):1415–1421
Uchiyama T, Arbib MA (1994b) Color image segmentation using competitive learning. IEEE Trans Pat-

tern Anal Mach Intell 16(12):1197–1206
Ueda Y, Koga T, Suetake N et al (2017) Color quantization method based on principal component analy-

sis and linear discriminant analysis for Palette-based image generation. Opt Rev 24(6):741–756
Urban P, Rosen MR, Berns RS et al (2007) Embedding non-euclidean color spaces into euclidean color

spaces with minimal isometric disagreement. J Opt Soc Am A 24(6):1516–1528
Valenzuela G, Celebi ME, Schaefer G (2018) Color quantization using coreset sampling. In: Proceedings

of the 2018 IEEE international conference on systems, man, and cybernetics, pp 2096–2101
Van Hulle MM (2012) Self-organizing maps. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of natu-

ral computing. Springer, Berlin, pp 585–622
Van Ness JW (1973) Admissible clustering procedures. Biometrika 60(2):422–424
Vattani A (2009) K-means requires exponentially many iterations even in the plane. In: Proceedings of

the 25th annual symposium on computational geometry, pp 324–332
Velho L, Gomez J, Sobreiro MVR (1997) Color image quantization by pairwise clustering. In: Proceed-

ings of the 10th Brazilian symposium on computer graphics and image processing, pp 203–210
Verevka O, Buchanan JW (1995) Local K-means algorithm for colour image quantization. In: Proceed-

ings of the graphics/vision interface conference, pp 128–135
Vuong J, Kaur S, Heinrich J et al (2018) Versus—a tool for evaluating visualizations and image quality

using a 2AFC methodology. Visual Inf 2(4):225–234
Wan X, Kuo CCJ (1998) A new approach to image retrieval with hierarchical color clustering. IEEE

Trans Circuits Syst Video Technol 8(5):628–643

14033Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Wan SJ, Wong SKM, Prusinkiewicz P (1988) An algorithm for multidimensional data clustering. ACM
Trans Math Softw 14(2):153–162

Wan SJ, Prusinkiewicz P, Wong SKM (1990) Variance-based color image quantization for frame buffer
display. Color Res Appl 15:52–58

Wang Z, Bovik AC (2009) Mean squared error: love it or leave it? A new look at signal fidelity measures.
IEEE Signal Process Mag 26(1):98–117

Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In:
Proceedings of the 37th Asilomar conference on signals, systems and computers, pp 1398–1402

Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural
similarity. IEEE Trans Image Process 13(4):600–612

Wang CH, Lee CN, Hsieh CH (2007) Sample-size adaptive self-organization map for color images quanti-
zation. Pattern Recogn Lett 28(13):1616–1629

Wang Y, Pan Z, Li R (2018) Performance re-evaluation on “codewords distribution-based optimal combi-
nation of equal-average equal-variance equal-norm nearest neighbor fast search algorithm for vector
quantization encoding. IEEE Trans Image Process 27(2):718–720

Wang Y, Huang H, Wang C, et al (2019) GIF2Video: color dequantization and temporal interpolation of
GIF images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
1419–1428

Wang S, Sun Y, Bao Z (2020) On the efficiency of K-means clustering: evaluation, optimization, and algo-
rithm selection. Proc VLDB Endow 14(2):163–175

Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244
Watanabe T (1988) A fast algorithm for color image quantization using only 256 colors. Syst Comput Jpn

19(3):64–72
Wen Q, Celebi ME (2011) Hard vs. Fuzzy C-means clustering for color quantization. EURASIP J Adv Sig-

nal Process 1:118–129
Wickelmaier F, Schmid C (2004) A Matlab function to estimate choice model parameters from paired-com-

parison data. Behav Res Methods Instrum Comput 36(1):29–40
Williams WT (1971) Principles of clustering. Annu Rev Ecol Syst 2:303–326
Wittek P, Gao SC, Lim IS et al (2017) somoclu: an efficient parallel library for self-organizing maps. J Stat

Softw 78(9):1–21
Wu X (1991a) Efficient statistical computations for optimal color quantization. In: Arvo J (ed) Graphics

gems II. Academic Press, Cambridge, pp 126–133
Wu X (1991b) Optimal quantization by matrix searching. J Algorithms 12(4):663–673
Wu X (1992a) Color quantization by dynamic programming and principal analysis. ACM Trans Graph

11(4):348–372
Wu X (1992b) Statistical colour quantization for minimum distortion. In: Falcidieno B, Herman I, Pienovi C

(eds) Computer graphics and mathematics. Springer, Berlin, pp 189–202
Wu KL (2012) Analysis of parameter selections for Fuzzy C-means. Pattern Recogn 45(1):407–415
Wu X, Witten IH (1985) A fast K-means type clustering algorithm. Tech. Rep. 85/197/10, University of

Calgary
Wu KL, Yang MS (2006) Alternative learning vector quantization. Pattern Recogn 39(3):351–362
Wu X, Zhang K (1993) Quantizer monotonicities and globally optimal scalar quantizer design. IEEE Trans

Inf Theory 39(3):1049–1053
Wu X, Kumar V, Quinlan JR et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37
Xiang Z (1997) Color image quantization by minimizing the maximum intercluster distance. ACM Trans

Graph 16(3):260–276
Xiang Z (2018) Color quantization. In: Gonzalez TF (ed) Handbook of approximation algorithms and

metaheuristics, 2nd edn. CRC Press, Boca Raton, pp 691–709
Xiang Z, Joy G (1994) Color image quantization by agglomerative clustering. IEEE Comput Graph Appl

14(3):44–48
Xiao Y, Feng RB, Han ZF et al (2015) GPU accelerated self-organizing map for high dimensional data.

Neural Process Lett 41(3):341–355
Xie YF, Liu JH, Zhang CF et al (2016) Codewords distribution-based optimal combination of equal-average

equal-variance equal-norm nearest neighbor fast search algorithm for vector quantization encoding.
IEEE Trans Image Process 25(12):5806–5813

Xu Q, Jiang T, Yao Y, et al (2011) Random partial paired comparison for subjective video quality assess-
ment via HodgeRank. In: Proceedings of the 19th ACM international conference on multimedia, pp
393–402

Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern
24(8):1279–1284

14034	 M. E. Celebi

1 3

Yair E, Zeger K, Gersho A (1992) Competitive learning and soft competition for vector quantizer design.
IEEE Trans Signal Process 40(2):294–309

Yang CY, Lin JC (1996) RWM-Cut for color image quantization. Comput Graph 20(4):577–588
Yang CK, Tsai WH (1998) Color image compression using quantization, thresholding, and edge detection

techniques all based on the moment-preserving principle. Pattern Recogn Lett 19(2):205–215
Yang MS, Wu KL, Hsieh JN et al (2008) Alpha-cut implemented Fuzzy clustering algorithms and switching

regressions. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(3):588–603
Ye P, Doermann D (2014) Active sampling for subjective image quality assessment. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp 4249–4256
Yoo I, Luo X, Wang Y, et al (2020) GIFnets: differentiable GIF encoding framework. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp 14473–14482
Yu CH, Chen SY (2006) Universal colour quantisation for different colour spaces. IEE Proc Vis Image Sig-

nal Process 153(4):445–455
Yu MP, Lo KK (2003) Contextual algorithm for color quantization. J Electron Imaging 12(3):442–447
Yu J, Yang MS (2005) Optimality test for generalized FCM and its application to parameter selection. IEEE

Trans Fuzzy Syst 13(1):164–176
Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the FCM. IEEE Trans Syst Man

Cybern Part B (Cybernetics) 34(1):634–639
Yuan G, Goldberg M (1988) A sequential initialization technique for vector quantizer design. Pattern Rec-

ogn Lett 7(3):157–161
Zhang X, Wandell BA (1997) A spatial extension of CIELAB for digital color-image reproduction. J Soc

Inform Display 5(1):61–63
Zhang X, Wandell BA (1998) Color image fidelity metrics evaluated using image distortion maps. Signal

Process 70(3):201–214
Zhang T, Ramakrishnan R, Livny M (1997) BIRCH: a new data clustering algorithm and its applications.

Data Min Knowl Disc 1(2):141–182
Zhao Y, Sheong FK, Sun J et al (2013) A fast parallel clustering algorithm for molecular simulation trajecto-

ries. J Comput Chem 34(2):95–104
Zhou K, Yang S (2019) Fuzzifier selection in Fuzzy C-means from cluster size distribution perspective.

Informatica 30(3):613–628
Zhou H, Schaefer G, Sadka A et al (2009) Anisotropic mean shift based Fuzzy C-means segmentation of

dermoscopy images. IEEE J Select Top Signal Proces 3(1):26–34

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Forty years of color quantization: a modern, algorithmic survey
	Abstract
	1 Introduction
	1.1 How many colors can humans distinguish?
	1.2 Color quantization artifacts
	1.3 Classification of color quantization algorithms
	1.4 Characteristics of an ideal color quantization algorithm
	1.5 Applications of color quantization
	1.6 Data structures
	1.7 Data reduction
	1.8 Notation
	1.9 Outline of the survey

	2 Color spaces, color difference equations, and color image fidelity assessment
	2.1 Color spaces
	2.2 Color difference equations
	2.3 Objective color image fidelity assessment
	2.4 Subjective color image fidelity assessment

	3 Image-independent algorithms
	3.1 Uniform quantization
	3.2 Nonuniform quantization

	4 Hierarchical algorithms
	4.1 Divisive hierarchical algorithms
	4.2 Agglomerative hierarchical algorithms

	5 Partitional algorithms
	5.1 The popularity algorithm
	5.2 The maximin algorithm
	5.3 The K-means algorithm
	5.4 The fuzzy C-means algorithm
	5.5 The self-organizing map algorithm

	6 Metaheuristic algorithms
	7 Pixel mapping
	8 Conclusions and future research directions
	References

