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Abstract
Color quantization (cq), the reduction of the number of distinct colors in a given image 
with minimal distortion, is a common image processing operation with various applica-
tions in computer graphics, image processing/analysis, and computer vision. The first cq 
algorithm, median-cut, was proposed over 40 years ago. Since then, many clustering algo-
rithms have been applied to the cq problem. In this paper, we present a comprehensive 
overview of the cq algorithms proposed in the literature. We first examine various aspects 
of cq, including the number of distinguishable colors, cq artifacts, types of cq, applications 
of cq, data structures, data reduction, color spaces and color difference equations, and color 
image fidelity assessment. We then provide an overview of image-independent cq algo-
rithms, followed by a detailed survey of image-dependent ones. After presenting a brief 
discussion of pixel mapping, we conclude our survey with an outline of the open problems 
in cq.

Keywords  Color quantization · Color reduction · Vector quantization · Data clustering · 
k-means

1  Introduction

24-bit true-color images have become ubiquitous over the past two decades (Sharma et al. 
1998; Ramanath et  al. 2005). A typical true-color image may contain hundreds of thou-
sands of distinct colors, which complicates its display, storage, transmission, processing, 
and analysis. Color quantization1 (cq) is a common image processing operation that takes 
as input a color image and outputs a reproduction of it with the same spatial dimensions 
but significantly fewer colors. In this paper, we refer to the colors in the true-color input 
image as input colors and those in the reduced-color2 output image as output colors or 
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representative colors (or representatives, for short). Figure 1 shows the Peppers image 
(usc-sipi Image Database3, 512 × 512 pixels) and its quantized versions with 4, 16, 64, and 
256 colors. It can be seen that the reproduction is quite good with only 64 colors and indis-
tinguishable from its original with 256 colors.

cq is composed of two phases  (Orchard and Bouman 1991): color palette4 design 
(the selection of a small set of colors that represents the input colors) and pixel mapping 
(the assignment of each pixel in the input image to one of the representatives). The pri-
mary objective of cq is to reduce the number of distinct colors in a given image to a much 
smaller number with minimal distortion. Since natural images often contain a large number 
of colors, faithful reproduction of such images with a small color palette is a challenging 
problem. In fact, as we will see in Sect. 5, cq can be characterized as a large-scale combi-
natorial optimization problem.

The term color quantization was coined in a little-known paper by Jain and Pratt 
(1972). However, most researchers consider Heckbert (1980, 1982) the inventor of the 
first true cq algorithm. Heckbert described his celebrated median-cut cq algorithm first 
in his Bachelor’s thesis (Heckbert 1980) and then, with slight modifications, in a journal 
paper (Heckbert 1982). In addition to being the first of its kind, Heckbert’s seminal work 
introduced much of the terminology used in the cq literature to this day, described the first 
divisive cq algorithm, proposed bit-cutting as a preprocessing step and k-means as a post-
processing step, developed the first accelerated pixel mapping algorithm, and suggested the 
use of dithering to minimize false contours in the output image. It is thus safe to say that 
Heckbert’s work established cq as a subfield of image processing.

cq can be considered an instance of vector quantization (vq)  (Wu 1992a). In a true-
color red-green-blue (rgb) image, each pixel is represented with 24 bits total (8 bits per 
color component). Assuming a maximum palette size of K = 256 and disregarding the 
space requirements of the palette itself, cq allows us to represent each pixel in the output 
image with only 8 bits, leading to a modest compression ratio of 3:1. However, the pur-
pose of cq is not lossily compressing the input image, but representing it with a signifi-
cantly smaller palette. cq should also not be confused with color (image) segmentation, 
which refers to the partitioning of a given image into disjoint regions that are homogene-
ous in terms of color. Segmentation is a higher level image processing operation, which 
may or may not have cq as a preprocessing step (see Sect. 1.5). In addition, segmentation 
almost invariably entails the use of spatial information, whereas cq generally does not (see 
Sect. 1.3).

1.1 � How many colors can humans distinguish?

The question of how many colors can be distinguished by the human eye has a long history 
dating back to the late 1700s  (Kuehni 2016). Estimates on the number of perceptually 
distinguishable colors range from 10,000 to 400,000,000 (Masaoka et al. 2013; Kuehni 
2016). Factors contributing to the variation in these estimates include the color appear-
ance model, color space, illuminant, just-noticeable difference, and the counting method 
used  (Masaoka et  al. 2013). Nevertheless, more recent computational studies  (Pointer 
and Attridge 1998; Martínez-Verdú et al. 2007; Linhares et al. 2008; Morovic et al. 2012; 

4  Also known as a color map or color (lookup) table.

3  Available at https://​sipi.​usc.​edu/​datab​ase/​datab​ase.​php?​volume=​misc.
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Flinkman et  al. 2012; Masaoka et  al. 2013) reported estimates in the relatively narrow 
range of 1,700,000–2,500,000.

A typical natural image usually contains far fewer than 2,000,000 distinct colors. 
In addition, pairwise correlations between the red, green, and blue components of natu-
ral images are often very high  (Pratt 1970), meaning that colors in such images are 

Fig. 1   Peppers and its various quantized versions
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nonuniformly distributed within the rgb space. Hence, natural images can usually be repre-
sented with a relatively small palette. Figure 2 shows the Baboon (usc-sipi Image Database, 
512 × 512 pixels) and Peppers images along with three-dimensional (3d) visualizations5 
of their colors in the rgb space. Observe that, in both images, the colors are concentrated 
primarily around the main diagonal of the rgb cube, indicating the presence of significant 
spectral correlations.

1.2 � Color quantization artifacts

Due to its lossy (or irreversible) nature, cq inevitably leads to loss of color and fine details. 
Color shifts occur when input colors not in the palette are represented with their near-
est representatives in the output image. Color shifts can cause rare input colors to disap-
pear, especially if the palette is small. Color loss may also cause false contours, which can 
be highly objectionable to the viewer. False contours tend to appear in large, almost uni-
formly colored (or slowly-varying) regions in natural images depicting sky, water, skin, etc. 
Representing such regions with a small palette causes them to split into bands of uniform 
colors, and visually disturbing contours appear between those bands. As mentioned earlier, 
in addition to color loss, cq causes loss of fine details such as texture, leading to the emer-
gence of flat regions. However, flat regions may also be generated intentionally for artistic 
effect, which is referred to as posterization (Chao et al. 2021).

Figure 3 shows the Parrots image (Kodak Lossless True Color Image Suite6, 768 × 512 
pixels) quantized to 16 and 256 colors using the median-cut algorithm. For each quantiza-
tion, we display the true-color input image, reduced-color output image, and a grayscale 
error image that allows us to visualize the differences between the input and output. The 
error image is obtained by amplifying the pixelwise normalized Euclidean ( �2 ) differences 
between the input and output by a factor of four and then negating them for better visuali-
zation. Hence, the cleaner/lighter the error image, the better the reproduction of the input 
image. In the 16-color case, we observe color loss (the teal color in both parrots), false 
contours (in the background), and texture loss (feathers in both parrots). By contrast, the 
256-color output is a significantly better reproduction of the input, exhibiting only subtle 
contouring (in the background).

It is difficult to recover the fine image details lost due to cq (Daly and Feng 2004). To 
this date, only a handful of studies  (Schmitz and Stevenson 1995; Chan and Fung 2005; 
Keysers et al. 2006; Fung and Chan 2004, 2006a, b; Kim et al. 2007; Wang et al. 2019) 
explored the restoration of reduced-color images, an image processing operation referred to 
as color dequantization. False contours resulting from color loss can be addressed using 
various approaches. There are two main strategies: prevention of the appearance of false 
contours and removal of the existing false contours. The primary means of prevention is 
dithering  (Hains et  al. 2003; Baqai et  al. 2005; Monga et  al. 2006), an image process-
ing operation that exploits the spatial integration property of the human visual system 
(hvs) to create the illusion of more colors. Unfortunately, while dithering usually mitigates 
false contours, it does not always eliminate them. In addition, dithering often introduces 
its own artifacts (visible noise, false textures, blurred edges, color impulses, etc.) (Akarun 
et  al. 1997). False contour removal appears to be a more promising direction, and is an 

5  These visualizations were rendered using Color Space 1.1.1 (by Philippe Colantoni).
6  Available at http://​r0k.​us/​graph​ics/​kodak/.

http://r0k.us/graphics/kodak/
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active area of research. However, nearly all existing approaches are designed for grayscale 
images, compressed videos, or high dynamic range images. For an overview of recent 
approaches, refer to Bhagavathy et al. (2009), Luzardo et al. (2017), Huang et al. (2018), 
Song et al. (2020), Tu et al. (2020), and the references therein.

1.3 � Classification of color quantization algorithms

There are several ways to classify cq algorithms:

•	 Image-independent vs. image-dependent  (Gentile et  al. 1990): Image-independent 
algorithms design a universal (or fixed) palette without regard to any particular input 
image, whereas image-dependent ones design a custom (or adaptive) palette based on 
the distribution of the colors in a given input image.

•	 Uniform vs. nonuniform (Heckbert 1982): Uniform algorithms place the representa-
tives uniformly throughout the color space, whereas nonuniform algorithms position 
the representatives nonuniformly based on the distribution of the input colors.

Fig. 2   Baboon and Peppers and their 3d color visualizations
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•	 Scalar vs. vector  (Wu 1992a): Scalar (or componentwise) algorithms treat the input 
image either as a scalar7 image (e.g., by traversing the 3d color space using a space-fill-
ing curve8 (Stevens et al. 1983) or projecting the 3d color data onto its first principal 
component, pc1) or a vector image with uncorrelated components  (Balasubramanian 
et al. 1994b; Pei and Cheng 1995) (each of which can be treated as a scalar image). 
Vector algorithms, on the other hand, treat the input image as a true vector image by 
taking into account the spectral correlations.

•	 Pre-clustering vs. post-clustering  (Dekker 1994): Pre-clustering algorithms first 
divide the input color space into K regions and then compute a representative for each 
region. Post-clustering algorithms, on the other hand, first select K representatives and 
then cluster the input colors around these representatives. Pre-clustering algorithms 

Fig. 3   Parrots image quantized using the median-cut algorithm

7  Buades et al. (2011) demonstrate that the distribution of colors in most natural images can be modeled 
accurately by a 2d manifold rather than a 1d curve. In other words, reducing the color space dimensionality 
(D) from three to one often leads to a severe loss of information.
8  For another application of space-filling curves in cq, see Subsection 1.7.
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compute the palette only once, whereas post-clustering algorithms compute an initial 
palette and then iteratively improve it. Early cq algorithms (1980–2000) tend to be of 
the pre-clustering kind, whereas more recent algorithms are generally of the post-clus-
tering kind.

•	 Hierarchical vs. partitional (Jain et al. 1999): Hierarchical algorithms recursively find 
nested clusters in a top-down (or divisive) or bottom-up (or agglomerative) fashion. 
In contrast, partitional algorithms find all the clusters simultaneously as a partition of 
the data without imposing a hierarchical structure on the data. There are also hybrid 
algorithms (e.g., a hierarchical algorithm followed by a partitional one). Pre-clustering 
algorithms are generally hierarchical, whereas post-clustering algorithms are generally 
partitional.

•	 Context-free vs. contextual (Wu 1992a): Context-free (or non-spatial) algorithms con-
sider only the chromatic characteristics of the input image, whereas contextual (or spa-
tial) algorithms consider both chromatic and spatial information (Joy and Xiang 1996; 
Puzicha et al. 2000; Özdemir and Akarun 2002; Yu and Lo 2003; Papamarkos et al. 
2002; Huang et  al. 2016). While including contextual information in the cq process 
may increase the separation between the color clusters  (Papamarkos et  al. 2002) and 
mitigate artifacts such as false contours (Xiang 2018), these advantages often come at 
the expense of a significantly higher computational cost.

•	 Static vs. dynamic: Static algorithms assume that the palette size (K) is a fixed integer 
to be specified by the user in advance, whereas dynamic algorithms  (Atsalakis et  al. 
2002; Kim and Kehtarnavaz 2005; Atsalakis and Papamarkos 2006; Delon et al. 2007; 
Nikolaou and Papamarkos 2009; Ramella and di Baja 2013; Palomo and Domínguez 
2014; Nieves et  al. 2020) can determine the value of K automatically at run-time. 
Unfortunately, the automatic determination of the number of clusters in a given data set 
is an ill-defined problem (Baarsch and Celebi 2012). In addition, dynamic algorithms 
often require additional user-defined parameters, some of which are unintuitive or dif-
ficult to tune. Finally, dynamic algorithms tend to require a lot more computation than 
the static ones.

A vast majority of cq algorithms proposed to date are image-dependent, nonuniform, 
vector, context-free, and static. Therefore, in this survey, we focus primarily on such 
algorithms.

1.4 � Characteristics of an ideal color quantization algorithm

The following are the characteristics of an ideal cq algorithm:

•	 Effective: Produces minimal distortion.
•	 Efficient: Requires a minimal amount of computational resources (cpu time, memory, 

etc.)
•	 Simple: Is easy to understand and implement9.

9  The popularity of a cq algorithm appears to correlate well with the availability of its open-source imple-
mentations. However, practitioners should be aware of the fact that open-source implementations of popular 
cq algorithms such as median-cut (Heckbert 1982) and octree (Gervautz and Purgathofer 1988) have vary-
ing degrees of quality and faithfulness to the original algorithms.
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•	 Convenient: Requires a minimal number of user-defined parameters. If it has such 
parameters, they are intuitive and easy to determine. In addition, its performance is not 
overly sensitive to the values of these parameters.

•	 Deterministic: For a given input image and parameter values, produces the same out-
put image in every single run.

Unfortunately, many of the above characteristics are in conflict with one another. For 
example, simple and efficient algorithms are not always effective and often randomized 
(or nondeterministic). In addition, some of these characteristics may be undesirable in spe-
cific applications. For instance, if the performance of an algorithm is inadequate in a given 
application, there may not be much to do if the algorithm is deterministic and has no user-
defined parameters. By contrast, a randomized algorithm or an algorithm with user-defined 
parameters can be run multiple times (with different random seeds or parameter values, 
respectively) to obtain better results at the cost of more computation.

1.5 � Applications of color quantization

In the past, cq was necessary due to the limitations of the display hardware, many of 
which could not handle the number of colors in true-color images. Although 24-bit dis-
play hardware have become more common, cq still maintains its practical value. Modern 
applications of cq in computer graphics, image processing/analysis, and computer vision 
include non-photorealistic rendering  (Chao et  al. 2021), image matting  (Chuang et  al. 
2001), image dehazing  (Berman et  al. 2016), image compression  (Cheng and Bouman 
2001), color-to-grayscale conversion (Kuhn et al. 2008), image watermarking/steganogra-
phy  (Tseng and Ding 2012), image segmentation  (Mignotte 2008), content-based image 
retrieval (Mojsilović et al. 2002), color analysis (Celebi et al. 2012b), color-texture analy-
sis (Serrano et al. 2022), saliency detection (Cheng et al. 2015), and skin detection (Phung 
et al. 2005).

In addition to the applications mentioned above, cq is an important problem in its own 
right because of its close connection to the more general vq and data clustering problems. 
The landmark median-cut cq  (Heckbert 1980) and Linde–Buzo–Gray vq  (Linde et  al. 
1980) algorithms were both published in 1980. Since then, the fields of cq and vq have 
followed somewhat parallel developmental paths with some researchers working in both. 
Many vq algorithms have their roots in general-purpose data clustering algorithms, and the 
same is true for many cq algorithms. Conversely, the cq literature has also exerted some 
influence on the data clustering literature  (Wan et  al. 1988; Schreiber 1991; Inaba et  al. 
1994; Yager and Filev 1994; Su and Dy 2007; Yang et al. 2008; Celebi and Kingravi 2012, 
2015). Consequently, advances in cq have led and can lead to advances in vq and data 
clustering.

1.6 � Data structures

In terms of storage, a context-free cq algorithm can be implemented in two equivalent 
ways  (Wan et  al. 1988): spatial-storage and histogram-storage. In the spatial-storage 
scheme, the input color data is represented as an Np × 3 array, where Np = HW denotes the 
number of pixels in the H ×W input image. This scheme is easy to implement, but waste-
ful as it stores repeated colors multiple times. On the other hand, in the histogram-storage 
scheme, each of the Nc input colors is stored only once along with its frequency (or count). 
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This scheme can be more difficult to implement (see below) but often requires less memory 
and results in a faster cq, depending on the values of Np and Nc . Note that, in the remainder 
of this paper, the symbol N is used to denote the size of the input data set, Np or Nc , when-
ever the context does not require differentiation.

A color histogram can be implemented in various ways:

•	 3d representations: A color histogram can be implemented straightforwardly using a 
3d array whose dimensions correspond to the three color components. Each bin of such 
a histogram then stores the frequency of a particular input color. This data structure is 
trivial to implement and requires O(1) time to access any bin. However, it requires a 
considerable amount of memory, which is generally wasted because colors in natural 
images often occupy a small part of the color space (see Fig. 2). For example, the his-
togram of a 24-bit rgb image contains 2563 elements, which require 64MBs of memory 
(assuming a 32-bit data type). For this reason, 24-bit color histograms were considered 
impractical in the early days of cq, prompting researchers to resort to bit-cutting (see 
Sect. 3.1). Reitan (1998) investigates adaptive data structures to capture the nonuniform 
distribution of the input colors in three dimensions, including k-d trees and octrees (see 
Sect. 4.2). These recursive space-partitioning trees achieve much better space utiliza-
tion than a 3d histogram, but this comes at the price of simplicity and time efficiency.

•	 2d representations: To reduce memory requirements, some cq researchers proposed 
the use of a 2d array whose elements are pointers to a 1d data structure, e.g., a binary 
search tree (Balasubramanian and Allebach 1991a; Balasubramanian et al. 1994a; Rei-
tan 1998) or a linked list (Balasubramanian et al. 1994b; Xiang and Joy 1994). For an 
rgb image, the 2d array can be indexed by the red and green components of the input 
colors, while the 1d data structure stores the remaining color component (blue). Such 
a design improves the efficiency of the insertion and search operations by increasing 
the space utilization of the array. Compared to a 3d histogram, which requires O(2563) 
memory, the resulting hybrid data structure requires only O(2562 + Nc) memory.

•	 1d representations: A color histogram can also be represented using a 1d data struc-
ture  (Balasubramanian and Allebach 1991b; Reitan 1998). For example, we can use 
a binary search tree that stores the red, green, and blue components of each (r, g, b) 
color in packed format, e.g., 2562 r + 256 g + b or, equivalently, (r ≪ 16) | (g ≪ 8) | b , 
where ≪ and | denote the bitwise left shift and bitwise or operators, respectively. 
Alternatively, we can use a hash table10 that uses chaining for collision resolu-
tion and a universal hash function of the form  (Celebi 2011; Celebi et  al. 2015) 
ha(r, g, b) =

(
ar r + ag g + ab b

)
mod Ns , where Ns is a prime number and the elements 

of sequence a = (ar, ag, ab) are selected randomly from the set {0, 1,… ,Ns − 1} . The 
binary search tree and hash table require O(Nc) and O(Ns + Nc) memory, respectively.

1.7 � Data reduction

We mentioned earlier that cq can be considered a large-scale combinatorial optimiza-
tion problem. cq researchers have employed various techniques to reduce the scale of this 
problem. Early techniques include taking a uniform (pseudo-)random sample from the 
input image (e.g., sampling 1,024 pixels from a 512 × 512 input image (Dixit 1991)) and 

10  Heckbert (1980) was the first to use hashing in cq.
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reducing the spatial dimensions of the input image (e.g., 2 : 1 sampling in the horizontal 
and vertical directions (Goldberg 1991), which reduces Np by a factor of 4 by eliminating 
every other column and row).

Sampling a 2d image using a pseudo-random sequence is a straightforward opera-
tion. However, such a sampling is not only non-deterministic, but also somewhat nonu-
niform in its coverage of the input pixels, which may bias the cq algorithm  (Thompson 
et  al. 2020). To alleviate these problems, we can use a quasi-random sequence  (Press 
et  al. 2007,  p.  404) instead, which is a deterministic sequence of D-dimensional points 
that fill ℝD more uniformly than uncorrelated D-dimensional pseudo-random points. This 
is illustrated in Fig. 4. Here, the top row shows pseudo-random sequences with increasing 
length from left to right generated using the MT19937 variant of the Mersenne Twister 
algorithm (Matsumoto and Nishimura 1998), while the bottom row shows quasi-random 
sequences with corresponding lengths generated using a Sobol’ sequence  (Sobol’ et  al. 
2011).

There are many quasi-random sequences, including those due to Korobov, Halton, 
Sobol’, Faure, Niederreiter, and Niederreiter and Xing. Among these, Sobol’ sequences are 
often preferred in practice, especially in low dimensions, due to their favorable uniformity 
properties and the availability of efficient generation algorithms. In the context of cq, Cel-
ebi et al. (2014); Thompson et al. (2020) demonstrate that, in addition to being determinis-
tic, quasi-random sampling gives comparable results to pseudo-random sampling.

Some cq algorithms are order-dependent, meaning that they are sensitive to the order 
in which the input colors are processed. Such algorithms will thus be affected by the order 
in which the input image is scanned. A color image with Np pixels can be scanned in Np! 
different ways. The standard scan order is termed a raster scan (or row-major order 
scan), where the image is scanned row by row from top to bottom, and from left to right 
in each row. There are many alternative image scan orders, including serpentine, zigzag, 
diagonal, and spiral. Among these, scan orders defined by space-filling curves are popular 
due to their clustering (or neighborhood-preserving) properties. If two points are close on 
such a curve, they are also close in the image plane; conversely, if two points are close in 
the image plane, they are likely to be close on the curve (Bartholdi III and Platzman 1988).

There are many space-filling curves  (Bader 2013), including the Peano curve, Hil-
bert curve, Morton curve, and Sierpiński curve. Among these, the Hilbert curve is gen-
erally preferred in image processing due to its superior clustering properties  (Gotsman 
and Lindenbaum 1996; Moon et  al. 2001) and the availability of efficient generation 
algorithms. Papamarkos et  al. (2002); Atsalakis et  al. (2002); Atsalakis and Papamarkos 
(2006) use the Hilbert curve to scan the input image prior to cq. It should be mentioned 
that while the clustering properties of space-filling curves can be beneficial in applica-
tions such as image compression  (Alexandrov et  al. 1984; Lempel and Ziv 1986), it is 
unclear if the same is true in cq. An alternative technique is to sample the input image 
following the raster order but with a non-unit step size11 that decreases in each pass, e.g., 
1009, 757, 499, 421, 307, 239, 197,…  (Verevka and Buchanan 1995). Observe that these 
step sizes are taken to be prime numbers to minimize the overlap among the subsets of pix-
els sampled in each pass and that the image is sampled progressively more finely. Finally, 
some cq researchers (Fletcher 1991; Pei and Lo 1998; Chang et al. 2005; Wang et al. 2007) 

11  Scanning an image of size Np pixels in raster order with a step size of P yields a sample of size 
⌈
Np∕P

⌉
 

pixels.
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sample the input image according to the elaborate butterfly order used in fast Fourier 
transform (fft) algorithms (Oppenheim and Weinstein 1972).

The sampling techniques discussed above are oblivious to the objective of cq, and thus 
none of them come with any theoretical performance guarantees. We can develop a theo-
retically sound image sampling technique based on the idea of a coreset, which is a prob-
lem-dependent data summarization technique (Feldman 2020). More specifically, given a 
data set and a machine learning problem, a coreset is a small subset of the data set that 
captures its essential features with respect to the problem. In the context of cq, Valenzuela 
et al. (2018) explore an image sampling technique based on a recent coreset construction 
algorithm (Lucic et al. 2016) designed for the k-means problem (see Subsection 5.3).

1.8 � Notation

Tables 1 and 2 respectively list the acronyms and pseudocode operators used throughout 
the paper.

1.9 � Outline of the survey

In this paper, we provide a comprehensive survey of the cq research conducted since 
1980. Our survey differs from the earlier ones (Domański and Bartkowiak 1998; Brun 
and Trémeau 2003; Xiang 2018) in three significant ways. First, we cover a time period 
that is nearly twice as long (1980–2022 as opposed to 1982–1997 (Domański and Bar-
tkowiak 1998), 1982–2000  (Brun and Trémeau 2003), and 1982–2005  (Xiang 2018)). 
Second, our coverage of the field is more algorithmic than mathematical in nature. For 
example, in addition to providing a textual description of each algorithm, we employ 
pseudocodes to illustrate some of the key ones. Third, while the earlier surveys focus 
primarily on hierarchical algorithms, we focus more on partitional ones, which can 

(a) Pseudo-random (210) (b) Pseudo-random (211) (c) Pseudo-random (212)

(d) Quasi-random (210) (e) Quasi-random (211) (f) Quasi-random (212)

Fig. 4   Comparison of pseudo-random and quasi-random sampling (number of points shown in parentheses)
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attain better results. We should mention that, to keep the paper reasonably concise, we 
do not provide a detailed comparative study of the cq algorithms covered, but instead 
give figures illustrating the behavior of a few prominent algorithms. For quantitative 
comparisons of cq algorithms, refer to Pérez-Delgado and Gallego (2019); Pérez-Del-
gado (2020); Pérez-Delgado and Gallego (2020); Pérez-Delgado (2021) and Abernathy 
and Celebi (2022).

The remainder of this survey is organized as follows. Section 2 gives an overview of 
common color spaces and color difference equations, and discusses color image fidelity 
assessment. Sections  3 through 6 present palette design algorithms. More specifically, 
Sect.  3 describes image-independent algorithms, whereas the following three sections 
present image-dependent algorithms, namely hierarchical algorithms (Sect. 4), partitional 
algorithms (Sect. 5), and metaheuristic algorithms (Sect. 6). Section 7 examines the pixel 

Table 1   Table of acronyms

Acronym Meaning Acronym Meaning

1d/2d/3d 1/2/3-dimensional okm Online km

adu Adaptive distributing units pc Principal component
birch Bal. Iter. Red. Clust. Hier. pim Partition index maxim.
bkm Batch km pm Pixel mapping
cd Color difference pnn Pairwise nearest neighbor
cf Clustering feature psnr Peak snr

cie Int. Comm. on illumination rgb Red-Green-Blue
ciede cie difference equation s-cielab Spatial cielab

cl Competitive learning sbkm Stability-based km

cq Color quantization snr Signal-to-noise ratio
fcm Fuzzy C-means som Self-organizing map
fskm Finite-state km sq Scalar quantization
hvs Human visual system srgb Standard rgb

iokm Incremental okm sse Sum of squared errors
iusq Independent usq tie Triangle inequality Elim.
km K-means ucs Uniform color space
mae Mean absolute error usq Uniform sq

mos Mean-ordered search vq Vector quantization
mse Mean squared error

Table 2   Table of pseudocode operators

Operator Name Effect

x ← v Assignment x equals v
(x, y) ← (v1, v2) Multiple assignment x and y equal v1 and v2 , respectively
x ← y ← v Simultaneous assignment x and y both equal v
p ∨ q Logical disjunction (or) True if p or q is true, false otherwise
p ∧ q Logical conjunction (and) True if p and q are true, false otherwise
p = q Equality True if p and q are equal, false otherwise
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mapping phase, and presents an overview of accelerated pixel mapping algorithms. Finally, 
Sect. 8 concludes the survey, and suggests future research directions.

2 � Color spaces, color difference equations, and color image fidelity 
assessment

In this section, we provide the necessary background information on color science and 
color image processing. We first give a brief overview of common color spaces and color 
difference equations. We then discuss the important but often neglected issues of objective 
and subjective color image fidelity assessment.

2.1 � Color spaces

An important consideration in any color image processing operation is the color space in 
which the operation is conducted. The default rgb space12 is a device-dependent color space 
in which the color components often have high pairwise correlations. In applications where 
true multivariate processing is desired, the input rgb image can be used directly or trans-
formed into an alternative color space for various reasons, including (i) increasing cluster 
separation, (ii) reducing the number of color components (D), (iii) decoupling luminance and 
chromaticity information, (iv) obtaining (approximate) perceptual uniformity, and (v) achiev-
ing invariance to various imaging conditions, such as viewing direction, illumination inten-
sity, and highlights. Among these, (perceptual) uniformity is a common reason to perform 
color space transformations in cq applications. A (perceptually) uniform color space (ucs) 
is one in which equal geometric distances correspond to equal perceived color differences 
(cds). It is well-known that the rgb space, especially in its linear (i.e., non-gamma-corrected) 
form, is perceptually nonuniform. Despite nearly a century of colorimetry research, a per-
fectly uniform color space has not been discovered yet13. However, various approximately 
uniform color spaces have been designed (Kuehni 2003), including the 1960 cie-ucs, 1964 
cie-ucs, osa, cielab/cieluv14, ciecam97, cam02-ucs, and cam16-ucs spaces. Despite the fact 
that they are not perfectly uniform, these spaces are often referred to as ucss.

ucss should not be confused with intuitive color spaces such as Hue-Saturation-Value 
(hsv), Hue-Saturation-Lightness (hsl), and Hue-Saturation-Intensity (hsi). These are cylin-
drical coordinate spaces  (Levkowitz and Herman 1993; Hanbury 2008) used for color 
specification (e.g., designing intuitive color picker tools). The components of these color 
spaces do not accurately model the perceptual attributes of hue, saturation, and lightness, 

13  There is evidence that a ucs is not Euclidean, at least not in three dimensions (Urban et al. 2007).

12  In this paper, we assume that all color image data is encoded in the standard rgb (srgb) space (Ander-
son et al. 1996), which was standardized by the International Electrotechnical Commission (iec) in 1999. 
This means that the red, green, and blue components of the images are nonlinearly coded (i.e., gamma cor-
rected). It is customary to denote such nonlinear components with primes  (Poynton and Funt 2014) (i.e., 
r′ , g′ , and b′ as opposed to r, g, and b, respectively). However, we omit the primes throughout the paper to 

avoid clutter.

14  In 1976, the International Commission on Illumination (cie) recommended two approximately uniform 
color spaces, namely cielab and cieluv. Nearly half a century later, these spaces are still the cie recommen-
dations, although cieluv has fallen out of favor (Fairchild and Johnson 2004). In fact, since its standardiza-
tion, colorimetric research has mostly revolved around the cielab space and its cd equation (Luo 2002).
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and their cd equations do not uniformly represent perceived cds (Robertson 1988). In addi-
tion, hue is a circular quantity (Crevier 1993; Hanbury 2003), which should be described 
using circular statistics (e.g., hue values should be averaged using the circular mean for-
mula rather than the arithmetic mean one.)

2.2 � Color difference equations

Once we have a color space at hand, we need a cd equation to quantify the geometric distance 
between two colors in this space. Assuming that we are working in the rgb space, we can use 
the (unweighted) �2 distance. Let p = (r1, g1, b1) and q = (r2, g2, b2) be two colors in the rgb 
space. The difference between these colors is given by

Similarly, unweighted or weighted �2 distances are commonly used to quantify cds in 
ucss. The best-known ucs and cd equation pair is (cielab, �2 ). Let p = (L1, a1, b1) and 
q = (L2, a2, b2) be two colors in the cielab space. The difference between these colors is 
given by the cie76 cd equation

To address the nonuniformities in the cielab space, the cie standardized progressively 
more advanced equations, namely the cie94 and ciede2000 equations. Despite its superior 
accuracy, due to its mathematical discontinuities  (Sharma et  al. 2005), ciede2000 is sig-
nificantly more complex and difficult to implement than cie94 and cie76. Therefore, among 
the three cd equations mentioned above, cie94 appears to offer the best balance between 
accuracy and complexity (Melgosa and Huertas 2004). Nevertheless, cie76 is still prevalent 
in the color image processing literature.

Given a H ×W color image I and its H ×W reproduction Ĩ , a simple way to measure the 
fidelity of Ĩ is to apply a cie cd equation (cie76, cie94, or ciede2000), or one of their many 
alternatives (Luo 2002), to the two images in a pixelwise manner, that is, by computing the 
cd between each pixel in I and the corresponding pixel in Ĩ . The result is a difference image, 
which is often reduced to a single number by averaging, that is,

where Np = HW and d(⋅, ⋅) is a distance function.
Examples of pixelwise image fidelity metrics in the form of Eq.  (3) include the mean 

absolute error (mae) and mean squared error (mse) metrics corresponding to d = �1 and 
d = �

2
2
 , respectively. To facilitate comparisons, Eq. (3) can be normalized as follows

where 0 = (0, 0, 0) is the origin of the color space. By substituting d = �1 and d = �
2
2
 in 

Eq.  (4), we obtain the normalized mean absolute error (nmae) and normalized mean 
squared error (nmse) metrics, respectively.

(1)d(p, q) =

√
(r1 − r2)

2 + (g1 − g2)
2 + (b1 − b2)

2.

(2)d(p, q) =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2.

(3)ed(I, Ĩ) =
1

Np

H∑
r=1

W∑
c=1

d
(
I(r, c), Ĩ(r, c)

)
,

(4)e[d](I, Ĩ) =
Np ed(I, Ĩ)∑H

r=1

∑W

c=1
d(I(r, c), 0)

,
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Another popular image fidelity metric is the peak signal-to-noise ratio (psnr) given by

where M denotes the maximum possible color component value. For an image with B bits 
per component, we have M = 2B − 1 (e.g., M = 255 for B = 8).

mse/psnr (Wang and Bovik 2009), and to some extent mae, are widely used image fidel-
ity metrics owing to their conceptual and computational simplicity. However, since the 
early days of image processing (Huang et al. 1971), researchers have criticized these met-
rics for disregarding the characteristics of the hvs. The drawbacks of these simplistic met-
rics have prompted the development of perceptually-based metrics in the 1970s (Sakrison 
and Algazi 1971; Stockham Jr. 1972; Budrikis 1972; Mannos and Sakrison 1974). How-
ever, a vast majority of the metrics proposed before the 1990s were designed for grayscale 
images.

2.3 � Objective color image fidelity assessment

The aforementioned cie cd equations were developed based on psychophysical experi-
ments involving uniform color patches (placed against uniform gray backgrounds) viewed 
in controlled conditions. Therefore, such equations are appropriate for assessing color dif-
ferences rather than color image differences. To assess the latter, various color image dif-
ference metrics include a filtering step to simulate the spatial blurring performed by the 
hvs. Examples of such spatiochromatic metrics include the spatial cielab (s-cielab) met-
ric (Zhang and Wandell 1997, 1998; Johnson and Fairchild 2003) and its extensions such 
as the icam metric (Fairchild and Johnson 2004; Johnson et al. 2010) and the more recent 
flip metric (Andersson et al. 2020). These metrics include similar image processing steps 
to approximate the behavior of the hvs  (Johnson et  al. 2010). The input images are first 
transformed into a device-independent color space such as ciexyz or approximate human 
cone responses (lms), and then into an opponent color space. In the opponent space, the 
images are filtered with approximations of human contrast sensitivity functions to remove 
high-frequency information that is imperceptible to the hvs. The filtered images are then 
transformed into a ucs such as cielab wherein pixelwise cds are computed (e.g., using one 
of the cie cd equations described in Subsection 2.2).

Color image fidelity assessment is a complex, interdisciplinary topic that has been the 
subject of active research since the 1990s  (Ortiz-Jaramillo et  al. 2019). Dozens of color 
image fidelity metrics, some with spatial filtering and some without, have been proposed 
in the literature. Comparative studies (Sheikh et al. 2006; Hardeberg et al. 2008; Pedersen 
and Hardeberg 2012; Pedersen 2015; Ponomarenko et al. 2015; Ortiz-Jaramillo et al. 2019) 
reveal that different metrics capture different aspects of image fidelity, and thus there is no 
universally applicable metric. Nevertheless, certain metrics may be more appropriate than 
others in a given application.

Objective assessment remains to be one of the least explored aspects of cq. A vast 
majority of cq studies employ pixelwise (non-spatial15) image fidelity metrics such as 

(5)ePSNR(I, Ĩ) = 10 log10
M2

e
�
2
2
(I, Ĩ)∕3

,

15  Exceptions include a few cq studies  (Sudha et  al. 2003; Lo et  al. 2003; Yu and Lo 2003; Nolle and 
Schaefer 2007; Schaefer 2014; Schaefer and Nolle 2015) that employ the s-cielab metric.
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the mse/psnr, mae, and their variants, computed mostly in the rgb space. cq researchers 
have generally avoided ucss such as cielab for several reasons: (i) the additional compu-
tational cost of the transformation between rgb and the alternative color space  (Orchard 
and Bouman 1991; Braquelaire and Brun 1997)16; (ii) the higher computational cost of 
cq in the alternative color space17; (iii) the cie cd equations used with cielab are devel-
oped for measuring color differences rather than color image differences (Balasubramanian 
et  al. 1994a, b); iv) performing cq in the nonlinear (gamma-corrected) rgb space is not 
entirely inappropriate as this space is more uniform than the linear (non-gamma-corrected) 
rgb space (Zhang and Wandell 1998; Poynton and Funt 2014; Avanaki et al. 2014); and (v) 
anecdotal evidence that performing cq in an alternative color space does not necessarily 
give better results (Braquelaire and Brun 1997).

Despite the numerous studies proposing new cq algorithms, only a few studies (Ortiz-
Jaramillo et al. 2019; Ramella 2021) focus on the assessment of cq. Ortiz-Jaramillo et al. 
(2019) and Ramella (2021) both use the tid2013 database  (Ponomarenko et  al. 2015), 
which contains 25 reference color images and their distorted versions (each reference image 
is subjected to 24 types of distortions, including cq, applied at 5 levels.) Only two fidel-
ity metrics are common to both studies, mse/psnr18 and structural similarity (ssim) (Wang 
et  al. 2004), which is perhaps the most prevalent metric after mse/psnr. Ortiz-Jaramillo 
et al. investigate 25 metrics, and conclude that the two mse metrics based on the cie76 
and ciede2000 equations and the s-cielab metric are among the best. On the other hand, 
Ramella investigates nine metrics and concludes that weighted snr (wsnr)19, multiscale 
ssim (msssim)20, and visual snr (vsnr)21 perform the best22. mse/psnr, the simplest metrics 
tested, outperform ssim in both studies. Perhaps this is not surprising given that ssim can be 
derived as a function of psnr, and thus the values of the two metrics are often highly cor-
related (Hore and Ziou 2010; Dosselmann and Yang 2011).

2.4 � Subjective color image fidelity assessment

So far, we have focused on the objective assessment of cq. The complementary assessment 
methodology is known as subjective assessment. Broadly speaking, there are two kinds 
of subjective assessment methodologies (Pérez-Ortiz et al. 2019): rating and ranking. In 
a rating experiment, human observers rate the quality of the presented images based on 
a categorical (e.g., 5: excellent, 4: good, 3: fair, 2: poor, and 1: bad) or continuous inter-
val (e.g., [0, 100]) scale. On the other hand, in a ranking experiment, observers compare 

16  There are, however, accelerated color space transformations with negligible loss of accuracy  (Celebi 
et al. 2010).
17  For example, cielab components are often represented in floating-point format to avoid loss of precision. 
Such a data representation, however, leads to slower computations than an integer representation.
18  Ortiz-Jaramillo et al. (2019) compute two separate mse metrics in the cielab space, one using the cie76 
equation and the other using the ciede2000 one. By contrast, Ramella (2021) computes psnr, and by exten-
sion mse, in the rgb space.
19  wsnr is computed in the Fourier domain after filtering the two images with approximations of the human 
contrast sensitivity functions (Mannos and Sakrison 1974; Mitsa and Varkur 1993).
20  msssim is a variant of ssim computed over a range of scales (Wang et al. 2003).
21  vsnr is an hvs-based fidelity metric computed in the wavelet domain (Chandler and Hemami 2007).
22  All three metrics are originally defined for grayscale images.
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the presented images. The simplest ranking method is pairwise comparison, where two 
images are compared, typically on a binary scale (e.g., better or worse).

Rating-based assessment is more appropriate when the images are easily distinguishable 
from one another. Once the subjective experiment is completed, we can easily compute 
mean opinion scores  (Streijl et al. 2016) from the observer responses and then order the 
images based on their perceived quality. However, rating experiments require careful train-
ing of the observers to establish a common understanding of the rating scale. On the other 
hand, ranking-based assessment is more appropriate when the images are relatively diffi-
cult to distinguish. As mentioned earlier, a common type of ranking is pairwise compari-
sons, which are simpler to perform because it is easier for humans to compare pairs of 
images than rate them individually. Thus, such ranking experiments require little training 
compared to rating experiments. The pairwise comparison method has two major draw-

backs. First, for Ni images, a complete and balanced design requires 
(
Ni

2

)
 trials per 

observer23. Second, it is nontrivial to obtain a quality ordering of the images from the com-
parison matrix. The former drawback can be alleviated using an efficient comparison-based 
sorting algorithm  (Silverstein and Farrell 2001; Maystre and Grossglauser 2017) or an 
active sampling algorithm (Jamieson and Nowak 2011; Xu et al. 2011; Ye and Doermann 
2014; Fan et al. 2017; Li et al. 2018; Heckel et al. 2019; Mikhailiuk et al. 2021), which 
reduces the number of pairwise comparisons from O(N2

i
) to often O(Ni logNi) with negli-

gible loss of accuracy in the final ordering of the images. As for the latter drawback, there 
are a variety methods  (Cattelan 2012; Liu et  al. 2019) and software24  (Wickelmaier and 
Schmid 2004; Turner and Firth 2012; Hatzinger and Dittrich 2012) to analyze pairwise 
comparison data.

Subjective assessment has found limited application in cq for several reasons. First, it 
is nontrivial to design subjective experiments because of the number and diversity of fac-
tors involved (experiment method and its parameters, experimental environment, observer 
selection and training, etc.) Second, it is costly to conduct subjective experiments in terms 
of time and effort. Third, the statistical analysis of subjective experimental data may be 
challenging  (Tsukida and Gupta 2011; Pérez-Ortiz and Mantiuk 2017). Fourth, subjec-
tive experiments may be influenced by observer biases as well as inter- and intra-observer 
variability. cq studies employing subjective assessment to date have involved only ranking 
experiments. Specifically, Hadizadeh et al. (2011) and Huang et al. (2016) employ pairwise 
comparisons, whereas Montagne et al. (2006) employ setwise comparisons, where observ-
ers order multiple images from the best to the worst.

It is important to emphasize that assessment, both in its objective and subjective forms, 
is useful not only for validating cq algorithms, but also for optimizing them (i.e., determin-
ing optimal values for their user-defined parameters). This optimization aspect of assess-
ment can be crucial for cq algorithms with multiple user-defined parameters.

23  By contrast, a rating experiment requires only Ni trials per observer (Mantiuk et al. 2012).
24  There are also software for conducting pairwise comparison experiments (Vuong et al. 2018).
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3 � Image‑independent algorithms

In Sect. 1, we mentioned that cq algorithms can be broadly classified into two categories: 
image-independent algorithms that design a universal palette without regard to any par-
ticular input image and image-dependent ones that design a custom palette based on the 
distribution of the colors in a given input image. In this section, we discuss the  image-
independent algorithms.

3.1 � Uniform quantization

In general, image-independent algorithms place the representatives uniformly throughout 
the color space because of their need to achieve reasonable image quality for a wide variety 
of input images (Gentile et al. 1990). A small universal palette (e.g., with K < 16 colors) 
can be designed manually based on geometric considerations (Paeth 1990, 1991). The sim-
plest way to design a large universal palette is through independent uniform scalar quan-
tization (iusq), which involves applying uniform scalar quantization (usq) to each color 
component independently (Jain and Pratt 1972; Gentile et al. 1990). Note that iusq is a spe-
cial case of independent scalar quantization (isq)  (Balasubramanian et al. 1994b), which 
itself is a primitive form of product (code) vector quantization (Sabin and Gray 1984).

iusq can be implemented most efficiently using bit-cutting (Joy and Xiang 1993), that 
is, truncating the least significant bits of each color component. For simplicity of discus-
sion, let us assume that we are working in the rgb space with B bits per component, and we 
cut the same number C of bits from each component, reducing the number of bits per com-
ponent to B̂ = B − C . This means that our independent uniform scalar quantizer has L = 2B̂ 
(output) levels per component and the width of each quantization interval is W = 2C . 
Consequently, the ith ( i ∈ {0,… , L − 1} ) interval is given by [iW, iW +W − 1] . The above 
quantizer then divides the rgb space into L × L × L subcubes of identical dimensions 
( W ×W ×W ), reducing the number of distinct colors in the space from 23B to L3 = 23B̂ . 
In other words, iusq cannot be used to quantize a given image to an arbitrary number of 
colors. Partly because of this, iusq is generally used as a preprocessor for image-dependent 
cq algorithms (see below) rather than a standalone cq algorithm.

Thanks to the separable nature of the above quantizer, we can quantize a given image 
very efficiently without resorting to computationally costly nearest neighbor searches in 
three dimensions. In order to map a given input color (r, g, b), all we have to do is to per-
form three simple univariate mapping operations, one for each component. If v ∈ {r, g, b} 
falls in the ith quantization interval on its corresponding color axis, then v maps to the left 
endpoint25 of that interval, that is, iW. Computationally, we can determine the output level 
corresponding to v in one of two equivalent ways: (i) W⌊v∕W⌋ , and (ii) (v ≫ C) ≪ C . The 
latter is usually more efficient because it involves only bitwise right shift ( ≫ ) and left shift 
( ≪ ) operators.

Let us now examine a common iusq configuration, namely cutting C = 3 bits from each 
B = 8-bit color component of the rgb space. We have L = 28−3 = 32 output levels per 
component and the width of each quantization interval is W = 23 = 8 . This quantizer then 
divides the rgb space into 32 × 32 × 32 subcubes of dimensions 8 × 8 × 8 , reducing the 

25  This convention is adopted for computational simplicity. In the sq literature, it is more common to use 
the interval’s midpoint so as to minimize mse (Gersho and Gray 1992, p. 151).
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number of distinct colors in the space from 224 = 16, 777, 216 to 215 = 32, 768 . The quanti-
zation intervals on each color axis (from left to right) are [0, 7], [8, 15], … , [240, 247], and 
[248, 255]. A given a component value v on a particular color axis maps to the output level 
8⌊v∕8⌋ or, equivalently, (v ≫ 3) ≪ 3.

Figure  5 shows the Peppers image and its uniformly quantized versions where 
C ∈ {1, 2,… , 7} bits are cut from each color component. For each case, we also show the 
corresponding error image. Observe that with each bit cut, the number of distinct colors 
drops significantly even though the overall visual quality of the image is preserved with as 
few as 5 bits per component.

Heckbert (1982) was the first to use iusq as a preprocessing step for an image-dependent 
cq algorithm. He cut C = 3 bits from each B = 8-bit color component both to reduce the 
memory requirements of his 3d histogram and to accelerate the subsequent divisive clus-
tering process. Following Heckbert, high-resolution iusq has been used as a preprocessor 
for many hierarchical cq algorithms. Note that while iusq is generally effective at reduc-
ing the amount of color data to be clustered (see Fig. 5), it is known to cause false con-
tours, especially in large, almost uniformly colored regions (Balasubramanian et al. 1994a; 
Xiang and Joy 1994). Therefore, unless time or memory efficiency is of prime importance, 
iusq should be applied in moderation (e.g., by cutting 1 bit (Necaise 1998) or, at most, 2 
bits (Shufelt 1997) from each 8-bit color component.) In fact, Stokes et al. (1992) empiri-
cally determine that 7.4 bits per component is required in the rgb space to avoid percepti-
ble quantization artifacts.

So far, we have examined the case where we cut the same number of bits from each 
component of the rgb space. Recall that Heckbert, and many subsequent cq researchers, 
performed 3-3-3 bit-cutting in the rgb space, which divides the space into 32 × 32 × 32 
subcubes. Joy and Xiang (1993), however, perform 3-2-4 bit-cutting26 to partially compen-
sate for the perceptual nonuniformity of the rgb space. Such an uneven bit-cutting scheme 
divides the rgb space into 32 × 64 × 16 rectangular boxes. Both 3-3-3 and 3-2-4 schemes 
require the same amount of memory. However, in accordance with the sensitivity of the 
hvs to each primary color component, the 3-2-4 scheme represents the green component at 
a higher resolution at the expense of a lower resolution in the blue component. Similarly, 
Balasubramanian et al. (1994a, 1994b) propose 1-0-2 bit-cutting.

The computational simplicity of iusq stems from its separable and uniform nature. How-
ever, implementing such a quantizer is straightforward and efficient only in an orthotope-
shaped color space such as rgb, wherein quantization cells are rectangular. Several stud-
ies (Jain and Pratt 1972; Gentile et al. 1990; Yu and Chen 2006) demonstrate that iusq is 
not only more difficult to implement, but also less effective in alternative color spaces (e.g., 
yCbCr , yiq, and i1i2i3 (Ohta et al. 1980)), even if they are linear transformations of rgb.

3.2 � Nonuniform quantization

In the previous section, we discussed iusq, which involves applying uniform sq to each 
color component independently. While uniform sq is optimal for a uniform distribution, 
such is rarely the case for the red, green, and blue components of natural images (Wan and 
Kuo 1998). A more effective solution is to perform isq nonuniformly using a scalar quan-
tizer such as the Lloyd–Max quantizer (Lloyd 1982; Max 1960), which is equivalent to the 

26  This scheme is inspired by the itu-r bt.601 luminance equation: y = 0.299r + 0.587g + 0.114b.
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k-means algorithm in one dimension. For a given resolution, a nonuniform scalar quan-
tizer tends to produce less distortion than a uniform scalar quantizer. In addition, given a 
B-bit color component, the number of output levels (L) in a nonuniform quantizer can be 
arbitrary ( L ∈ {1,… , 2B} ), whereas L must be a power of two in a uniform quantizer. It is 
important to note that nonuniform sq need not be suboptimal or inefficient. In fact, optimal 
nonuniform sq can be performed in linear time using dynamic programming (Wu 1991b; 
Wu and Zhang 1993).

A nonuniform scalar quantizer captures the distribution of a given color component bet-
ter than a uniform scalar quantizer, but the independent application of a scalar quantizer 

Fig. 5   Peppers and its various uniformly quantized versions (subfigure captions indicate the number of bits 
per input color and the number of distinct colors in the reduced-color image in parentheses)
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to each color component disregards the spectral correlations. Colors in natural images 
are seldom distributed uniformly in the rgb space. Thus, an independent scalar quan-
tizer tends to allocate representatives to regions where few input colors reside, leading 
to wasted representatives. In fact, regardless of how it is performed, an independent sca-
lar quantizer divides the 3d rgb space into rectangular boxes (or parallelepipeds) using 
axis-parallel planes. A vector quantizer, on the other hand, divides the space into convex 
polyhedra using oblique planes, leading to a more effective tessellation27 of the space. 
In fact, vq can be superior to isq even in an uncorrelated color space (Gersho and Gray 
1992, pp. 345–349). Finally, as mentioned earlier, an independent scalar quantizer is rigid 
in terms of the number of quantization cells it can generate. By contrast, a vector quantizer 
can generate an arbitrary number of quantization cells. The only advantages of isq over vq 
are then its simplicity and efficiency.

In the above discussion, we assumed that the number of bits per color component is a 
user-defined integer. From a distortion minimization perspective, it makes sense to allo-
cate bits to the components adaptively according to their variances. Let X =

(
X1,… ,XD

)
 

be a D-dimensional random vector. Given a bit budget Bsum , the bit allocation problem 
is to determine the optimal bit allocation vector b = (b1,… , bD) , where bd is the num-
ber of bits for Xd , that minimizes the sum of mses of the resulting quantizers subject to ∑D

d=1
bd ≤ Bsum (Gersho and Gray 1992, pp. 225–257). Assuming that each component Xd 

is identically distributed with zero mean and variance �2
d
 , Huang and Schultheiss (1963) 

prove that the dth component of the optimal solution is given by

It is important to note that the optimal bit allocation vector given by the above equation 
may have non-integer or even negative components. A greedy algorithm due to Fox (1966) 
generates non-negative integer allocations, albeit suboptimally. Starting from a zero bit 
allocation vector, Fox’s algorithm iterates Bsum times, allocating one bit in each iteration 
to the quantizer that needs it the most (the neediness of a quantizer is measured by its mse 
given its current bit allocation.) In the high-resolution regime, Fox’s algorithm simplifies 
as follows  (Ramstad 1982): for each quantizer, take the standard deviation of the corre-
sponding component as the initial demand and each time a bit is allocated to a quantizer, 
reduce its demand by a factor of two.

The bit allocation problem is np-hard (Mohr 2002). Various approximation algorithms 
have been proposed for this problem since the 1960s. For representative algorithms, refer 
to Farber and Zeger (2006), Hatam and Masnadi-Shirazi (2015), and the references therein.

We have discussed universal palette design using independent uniform/nonuniform sq 
with fixed/adaptive bit allocation. A more systematic, albeit computationally more expen-
sive, way to design a large universal palette is to apply vq to a synthetic image that contains 
all possible colors in equal numbers28. For example, Gentile et al. (1990) design a universal 
palette of a given size using the k-means algorithm.

(6)bd =
Bsum

D
+

1

2
log2

�2
d�∏D

d=1
�2
d

�1∕D
.

27  In an asymptotically optimal quantization of a uniform 3d distribution, each quantization cell has the 
shape of a truncated octahedron rather than a cube (Barnes and Sloane 1983).
28  This could be a 4096 × 4096 rgb image with 224 distinct colors or the same image uniformly quantized 
using bit-cutting.
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Regardless of the design algorithm used, for a given input image and palette size, a 
universal palette almost always produces inferior results compared to a custom palette, and 
the more nonuniform the distribution of the input colors, the worse the universal palette. 
Consequently, cq researchers turned to image-dependent algorithms in the early 1980s, and 
research on image-independent algorithms declined rapidly. Before we close this section, 
we should mention two interesting image-independent approaches in passing: sampling 
in the cielab space based on a Fibonacci lattice (Mojsilović and Soljanin 2001; Soljanin 
2002) and trellis-coded quantization (Cheng et al. 2002).

4 � Hierarchical algorithms

We now turn to image-dependent cq algorithms that design a custom palette for a given 
input image. In this section, we describe hierarchical algorithms in detail.

4.1 � Divisive hierarchical algorithms

As mentioned in Sect. 1, hierarchical algorithms can be divided into two categories: divi-
sive and agglomerative. Since agglomerative algorithms typically have at least O(N2) time 
complexity, most hierarchical cq algorithms are divisive. Therefore, we first examine those 
algorithms.

A divisive algorithm partitions the 3d color space of the input image into K nonoverlap-
ping regions using (K − 1) planes each of which is uniquely defined by a normal vector and 
a point. Each of these regions corresponds to a cluster, which is represented by the centroid 
(or mean) of the input colors that fall into that region. The set of these K centroids is then 
taken as the palette. Note that, in general, the resulting partition is not a nearest neighbor 
partition (aka Voronoi partition). In other words, the nearest centroid to a given input 
color is not necessarily the centroid of the region that contains the color.

The four main heuristics used by divisive algorithms are described below (Sproull 1991; 
Reitan 1999; Celebi et al. 2015).

Selection of a splitting strategy: Following tree-structured vector quantizers  (Buzo 
et al. 1980), most divisive algorithms employ binary splitting29, which is accomplished in 
one of two ways. One strategy, named the blind recursion strategy, is to split every clus-
ter in each iteration (Buzo et al. 1980), which results in K clusters after lgK iterations. A 
more common strategy, named the iterative strategy, is to split a selected cluster in each 
iteration, obtaining K clusters after (K − 1) iterations. Geometrically, the color space of the 
input image is partitioned into K subspaces by a sequence of (K − 1) split operations. Note 
that the number of binary splits that can be performed to obtain K subspaces equals the 

number of full binary trees having exactly K leaves, 1
K

(
2K − 2

K − 1

)
 , which is too large to 

permit exhaustive enumeration even for relatively small values of K. For example, the 
number of all possible splits equals 9, 694, 845 and 14, 544, 636, 039, 226, 909 for K = 16 
and K = 32 , respectively.

29  We can generalize divisive algorithms to generate trees with greater branching factors than two (Mak-
houl et al. 1985) or even with variable branching factors (Schmidl et al. 1993).
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The blind recursion strategy leads to a height-balanced tree30, and is easier to imple-
ment. On the other hand, the iterative strategy is more flexible, and often results in a more 
effective distortion minimization  (Wu 1992b). In the remainder of this discussion, we 
assume that the iterative strategy is used.

Selection of the next cluster to be split: We have seen that a complete enumeration of 
all possible binary splits is computationally intractable. Consequently, a heuristic divisive 
algorithm must have a mechanism to determine the order of binary splits. In other words, 
the algorithm should select an appropriate cluster in each iteration, and then split it into 
two subclusters31. Possible choices for the next cluster to be split include:

size criterion: the cluster with the greatest size (or cardinality),
range criterion: the cluster with the greatest range on any color axis,
eigenvalue criterion: the cluster with the greatest dominant eigenvalue,
eigenvalue times size criterion: the cluster with the greatest product of its dominant 
eigenvalue and size,
sse criterion: the cluster with the greatest sum of squared errors (sse)32, and
look-ahead sse criterion: the cluster whose split would lead to the greatest reduction in 
the sse.

Among these criteria, the first two are computationally the simplest ones. However, while 
the range criterion is sensitive to noise, the size criterion favors large (i.e., populated) clus-
ters without considering their homogeneity. In other words, based on the size criterion, a 
large yet homogeneous cluster (i.e., one with a relatively small sse) may be split, while a 
small yet heterogenous cluster (i.e., one with a relatively large sse) may not be.

The eigenvalue criterion selects the cluster with the greatest dispersion along the pc1 
of its covariance matrix. Computing the covariance matrix of a cluster requires linear time 
in the size of the cluster. The pc1 of this matrix can then be computed efficiently using the 
power method. The sse criterion selects the least homogeneous cluster, that is, the one that 
contributes most to the total sse. It can be shown that the eigenvalue and eigenvalue times 
size criteria are approximations of the sse criterion (Brun and Trémeau 2003).

For a given splitting plane orientation and position (see below), the look-ahead sse crite-
rion selects the cluster whose split would lead to the greatest reduction in the sse. Let Pi be 
the cluster to be split in a given iteration and Pl

i
 and Pr

i
 be the resulting subclusters. The sse 

reduction achieved by splitting Pi is given by SSE(Pi) −
(
SSE(Pl

i
) + SSE(Pr

i
)
)
 . This shows 

that the sse criterion is, in fact, an approximation of the look-ahead sse criterion, where 
the influence of the second term, that is, the sum of the sses of the subclusters, is disre-
garded. To determine the (stepwise) optimal cluster, the look-ahead criterion requires that 
two clusters be tentatively split in each iteration (except the first one), resulting in a total of 
2(K − 2) tentative splits. Therefore, depending on the other decisions and the implementa-
tion strategy, this criterion may be computationally expensive.

30  As Wu (1992a) notes, in a search tree, keeping the tree balanced is necessary to achieve logarithmic 
query time in the worst-case. However, in the palette design phase, distortion minimization is more impor-
tant than achieving a balanced palette, while in the pixel mapping phase, we are concerned with amortized, 
rather than worst-case, time complexity.
31  In the first iteration, we split the only cluster that contains the entire data set.
32  For a formal definition of sse, see Eq. (12) in Subsection 5.3. Some cq researchers use the terms vari-
ance and sse synonymously even though, strictly speaking, the variance of a given cluster equals its mean 
squared error, that is, its sum of squared errors divided by its size.
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Among the six criteria discussed above, the sse criterion strikes a good balance between 
effectiveness and efficiency. Note that for any of these criteria, in each iteration, only the 
statistics (size, range, dominant eigenvalue, etc.) of the two most recently formed clusters 
need to be computed since the statistics of the remaining clusters have been computed in 
earlier iterations.

Selection of the splitting plane orientation: Once the algorithm decides which cluster 
to split (say, Pi ), it needs to determine the splitting plane orientation. An optimal plane 
is one that minimizes SSE(Pl

i
) + SSE(Pr

i
) . Assuming that Pi is sufficiently large and its 

colors are in general position, there are O(n3
i
) ways to split Pi into two subclusters using a 

plane (Harding 1967), where ni is the size of Pi . Currently, the best algorithm for optimal 
binary splitting in 3d space requires O(n3

i
) time (Hasegawa et al. 1993), which is impracti-

cal for large data sets such as color image data. Therefore, we need an efficient heuristic to 
determine a suboptimal splitting plane. Intuitively, we need to orient the plane orthogonal 
to the direction in which the data dispersion is the greatest. Thus, the plane may be orthog-
onal to the color axis with the greatest range, the color axis with the greatest variance, the 
pc1 of the cluster, or another carefully selected axis. Among these choices, the pc1 is the 
most sensible one, as this is the direction along which the data spread is the greatest. In 
fact, it can be shown that pc1 is the optimal choice for multivariate Gaussian data  (Das-
gupta and Freund 2009). A computationally cheaper alternative is to use the color axis 
with the greatest variance. Note that when the splitting axis is one of the coordinate axes, 
the color space is partitioned into rectangular boxes using axis-parallel cuts, as in conven-
tional decision trees (Safavian and Landgrebe 1991). By contrast, when the splitting axis is 
the pc1, which is a linear combination of the coordinate axes, the cuts are oblique and the 
resulting subspaces are convex polyhedra, as in oblique decision trees (Murthy et al. 1994).

Selection of the splitting plane position: The final decision concerns the selection of 
the splitting plane position, that is, the point where the plane intersects the splitting axis. 
The splitting plane may pass through the mean, the median, the radius-weighted mean (see 
below), or another carefully selected point on the splitting axis. The rationale behind the 
choice of the median point is that the resulting subclusters will contain approximately the 
same number of colors. This makes sense when building multidimensional search trees, 
e.g., k-d trees  (Bentley 1975), but for the purpose of partitioning, there is no sound jus-
tification to require that each cluster contain nearly the same number of colors without 
considering the distribution of these colors (Wan et al. 1988). In fact, it can be shown that 
the mean point is the optimal choice for multivariate Gaussian data (Dasgupta and Freund 
2009), and also that the mean is closer to the optimal splitting point than the median for 
any non-symmetric continuous univariate distribution (Wu and Witten 1985).

Figure 6 illustrates a divisive clustering algorithm on a 2d toy data set with four com-
pact and well-separated clusters (Ruspini 1970). This algorithm employs an iterative binary 
splitting strategy, where, in each iteration, the cluster with the greatest sse is split along the 
coordinate axis with the greatest variance at the mean point. After three splits, the algo-
rithm obtains four clusters whose centroids are denoted by stars in Fig. 6d.

Now that we have discussed the issues surrounding the design of heuristic divisive cq 
algorithms, we describe several representative algorithms that fit into this framework.

As mentioned in Sect. 1, the first divisive cq algorithm was the median-cut algorithm, 
which was proposed by Heckbert in his 1980 Bachelor’s thesis (Heckbert 1980), and later 
published as a journal paper (Heckbert 1982). In his thesis, the author proposed median-
cut as an iterative algorithm that splits the cluster with the greatest range on any color 
axis, along the same axis at the median point. On the other hand, in his paper, the author 
described median-cut as a (blind) recursive algorithm that splits every cluster in each 
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iteration along the color axis with the greatest range at the median point. Historically, some 
cq researchers considered median-cut a recursive algorithm  (Watanabe 1988; Wan et  al. 
1988; Wu 1992b, a), while others considered it an iterative algorithm (Gervautz and Pur-
gathofer 1988; Orchard and Bouman 1991; Joy and Xiang 1993). In the modern literature, 
however, median-cut is often regarded as an iterative algorithm that splits the largest clus-
ter in each iteration (Reitan 1999).

Wan et al.’s marginal variance minimization algorithm (Wan et al. 1988, 1990) splits 
the cluster with the greatest sse along the color axis whose split would lead to the greatest 
reduction in marginal variance (more accurately, marginal sse). For a given color axis, both 
the optimal splitting point and the resulting reduction in marginal variance can be com-
puted in linear time using Otsu’s thresholding algorithm33 (Otsu 1979), which is equivalent 
to optimal 2-means clustering on histogrammed data. Note that this algorithm is not a true 
(multivariate) variance-based algorithm, as the variances are computed along the individ-
ual color axes, hence the qualifier marginal.

Orchard and Bouman’s oblique-cut algorithm (Orchard and Bouman 1991) splits the 
cluster with the greatest eigenvalue along its pc1 at the mean point. This is the first divisive 
cq algorithm that features oblique cuts.

Wu’s variance minimization algorithm (Wu 1991a) improves upon Wan et al.’s algo-
rithm by splitting the cluster with the greatest sse along the color axis whose split would 
lead to the greatest reduction in true variance (more accurately, sse). For a given color axis, 
the algorithm considers each component value (in order), and computes the reduction in 
the sse that would be attained if this point were taken as the splitting point. This is the first 
divisive cq algorithm based on true variance minimization. A less efficient version of the 
same algorithm was proposed earlier by Milvang (1987).

In a later study, Wu (1992b) improves upon his variance minimization algorithm by 
splitting the selected cluster in each iteration along its pc1. The optimal splitting point 
is found using the same linear-time plane sweeping approach proposed earlier by the 
author  (Wu 1991a). The oblique splitting plane is then adjusted iteratively using the 
2-means algorithm34. This, of course, amounts to performing a local optimization over the 
two most recently formed clusters. The author experiments with two different criteria to 
select the next cluster to be split: the sse and the look-ahead sse.

Regardless of the way it is performed, binary splitting is at best a greedy (or stepwise-
optimal) approach that makes each splitting decision regardless of its impact on subsequent 
splits (Wu 1992a). Wu’s optimal principal quantization algorithm (Wu 1992a) improves 
upon his earlier work based on the observation that the pc1s of the subclusters resulting 
from the first few splits remain approximately the same as the pc1 of the image. Hence, 
the first four to eight splits are performed simultaneously over the pc1 of the image using 
a linear-time dynamic programming algorithm. The algorithm then obtains K clusters by 
splitting this initial partition iteratively in a binary manner using the algorithm proposed 
earlier by the same author (Wu 1992b).

Joy and Xiang’s center-cut algorithm (Joy and Xiang 1993) is similar to the iterative 
median-cut algorithm described in Heckbert’s thesis (Heckbert 1980). The only difference 
is that, in each iteration, the former algorithm splits the selected cluster along its color axis 
with the greatest range at the center (i.e., mid-range) rather than the median. Using the 

33  Other thresholding algorithms (Yang and Tsai 1998) can be used as well.
34  A more elaborate approach would be to adjust all t ( t ∈ {1,… ,K − 1} ) splitting planes simultaneously 
after split t using (t + 1)-means clustering (Howard and Harris 1966).
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center as the splitting point is not only computationally cheaper, but also reduces the clus-
ter volume by half in an attempt to limit the maximum distortion.

Liu and Chang’s algorithm (Liu and Chang 1995) first finds the best split axis for each 
candidate cluster by tentatively splitting the cluster along each of the color axes at the mean 
point, and computing the corresponding reduction in the sse. The algorithm then splits the 
cluster whose best split axis would lead to the greatest reduction in the sse.

Yang and Lin’s radius-weighted mean-cut algorithm (Yang and Lin 1996) splits the 
cluster with the greatest sse along the line passing through the radius-weighted mean and 
the cluster centroid at the radius-weighted mean point35. The radius-weighted mean of a 
cluster is the weighted mean of its colors, where the weight of a color is given by its �2 
distance to the cluster centroid.

Braquelaire and Brun’s algorithm (Braquelaire and Brun 1997) splits the cluster with 
the greatest sse along the color axis with the greatest variance. The optimal splitting point 

Fig. 6   Illustration of a divisive clustering algorithm on a toy data set ( K = 4)

35  If the radius-weighted mean and centroid coincide, the splitting plane is taken orthogonal to the color 
axis with the greatest variance.
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Fig. 7   Comparison of divisive cq 
algorithms (number of distinct 
colors shown in parentheses)
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is determined using a faster and more robust variant of Wu’s linear-time plane sweeping 
approach (Wu 1991a).

Celebi et  al.’s variance-cut algorithm  (Celebi et  al. 2015) splits the cluster with the 
greatest sse along the color axis with the greatest variance at the mean point. This axis-
parallel splitting plane is then adjusted iteratively using an accelerated 2-means algorithm.

Ueda et  al.’s algorithm  (Ueda et  al. 2017) splits the cluster with the greatest product 
of its dominant eigenvalue and size. The splitting point is determined using linear dis-
criminant analysis, which happens to optimize the same criterion as Otsu’s thresholding 
algorithm.

Figure 7 compares three divisive cq algorithms, namely median-cut, oblique-cut, and 
variance-cut, on the Peppers image. It can be seen that variance-cut, which uses the sse 
criterion to select the next cluster to be split, outperforms oblique-cut, which uses the less 
accurate eigenvalue criterion. Not surprisingly, median-cut, which uses the size criterion, 
performs the worst.

Table 3 compares the divisive cq algorithms described in this section based on the heu-
ristics used in their design.

4.2 � Agglomerative hierarchical algorithms

An agglomerative clustering algorithm starts with N singleton clusters, each containing 
a single color. These clusters are repeatedly merged (pairwise) until K of them remain. 
Various criteria can be used to measure the distance (or similarity) between a pair of 
clusters. The following merging criteria are prevalent: single linkage, complete linkage, 
unweighted average linkage, weighted average linkage, centroid linkage, median linkage, 
and minimum variance.

A naive agglomerative clustering algorithm generates K clusters by iterating (N − K) 
times, merging the nearest (or most similar) pair of clusters in each iteration. Like most 
greedy algorithms, this naive algorithm is not guaranteed to find the optimal partition36. 
Clearly, the time complexity of the algorithm is O(N3) . While time-optimal O(N2) formu-
lations for the aforementioned merging criteria exist (Müllner 2013), some of these algo-
rithms are slow in practice, and many of them are difficult to implement. This is in stark 
contrast to the divisive clustering algorithms that can be implemented in O(N) time.

Among the merging criteria mentioned earlier, Ward’s minimum variance criterion (and 
its associated algorithm) (Ward 1963) is one of the most popular (Murtagh and Legendre 
2014). Starting from N singleton clusters with a total sse of zero, in each iteration, Ward’s 
algorithm merges the pair of clusters with the least merger cost, that is, the pair whose 
union would lead to the least increase in the sse. Let Pi (with size ni and centroid mi ) and 
P𝚤 (with size n𝚤 and centroid m𝚤 ) be a pair of clusters. The following are straightforward to 
prove:

•	 The merger cost for this pair is 
(
nin𝚤∕(ni + n𝚤)

)‖‖mi −m𝚤
‖‖22 , the weighted �2

2
 distance 

between mi and m𝚤;
•	 The size of the combined cluster is (ni + n𝚤) ; and

36  Global optimality can be guaranteed only in the case of single linkage clustering. However, despite its 
theoretically appealing properties (Fisher and Van Ness 1971; Van Ness 1973; Ackerman et al. 2010; Carls-
son and Memoli 2010), single linkage is generally not preferred due to its tendency to generate elongated 
clusters.
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•	 The centroid of the combined cluster is (nimi + n𝚤m𝚤)∕(ni + n𝚤).

About 20 years after the publication of Ward’s seminal paper, Equitz (1984, 1989) redis-
covered Ward’s algorithm under the name pairwise nearest neighbor algorithm (pnn), 
and applied it to the vq problem. Later, Velho et al. (1997) rediscovered the same algo-
rithm under the name pairwise clustering algorithm, and applied it to the cq problem. 
Finally, more than half a century after its introduction, Großwendt et al. (2019) discovered 
two important theoretical properties of Ward’s algorithm. First, it gives a 2-approximation 
for the sse objective if the clusters in the optimal K-partition37 are well separated. Second, 
it recovers the optimal K-partition if the clusters are well separated and satisfy a (size) bal-
ance condition.

Now that we have introduced conventional agglomerative clustering and described 
Ward’s algorithm in some depth, we proceed with a discussion of the three most prominent 
agglomerative algorithms in the cq literature, namely the octree, pnn, and birch algorithms.

The first agglomerative cq algorithm was the octree algorithm proposed by Gervautz 
and Purgathofer (1988). The algorithm is based on the octree (Jackins and Tanimoto 1980), 
a tree data structure in which each internal node has eight children. The octree is a gener-
alization of the quadtree to three dimensions. Thus, an octree can be used to partition a 3d 
space recursively. The root of such an octree represents the entire space; the children of 
the root correspond to suboctants of the space; the grandchildren of the root correspond to 
sub-suboctants; and so on. An octree of depth eight can thus represent all possible colors 
in the 24-bit rgb space. In this color octree, the depth of a node is proportional to its color 
homogeneity, with the leaf nodes initially representing the input colors.

Given an input image, the octree algorithm makes one pass over the image, attempting 
to insert the input colors successively into an initially empty octree. For each pixel, the 
algorithm descends the tree to determine if the pixel’s color is already present in the tree. 
If the color has been inserted previously, the statistics of the corresponding leaf (e.g., the 
number of distinct colors represented by the leaf, and the sums of the red, green, and blue 
components of those colors) are updated. On the other hand, a previously unseen color 
results in one of two actions. If there are fewer than K leaves, the new color is inserted into 
the tree as a leaf node. Otherwise, the tree is reduced in a bottom-up manner so that the 
number of leaves remains equal to K. Once the algorithm scans through the entire image in 
the above manner, the set of mean colors of the leaf nodes is taken as the palette.

The reduction operation involves identifying a suitable internal node at the maximum 
depth, assigning the mean color of its children to this node, and then deleting the children. 
In other words, the selected internal node is transformed into a leaf node whose color rep-
resents the mean color of its former children. Note that the height of the tree decreases over 
time due to reductions.

The octree algorithm stores at most K leaves and (K − 1) internal nodes at any given 
time. Hence, the algorithm requires only O(K) memory. This memory-efficient formulation 
sets the algorithm apart from its divisive rivals that require O(N) memory.

The octree algorithm has made a significant impact on the cq literature. Another influ-
ential agglomerative approach is based on the pnn algorithm, which, as mentioned earlier, 
is identical to Ward’s algorithm. In fact, several agglomerative cq algorithms (Balasubra-
manian and Allebach 1991a; Dixit 1991; Xiang and Joy 1994; Velho et al. 1997; Brun and 

37  For a formal definition of K-partition, see Eq. (7) in Sect. 5.
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Mokhtari 2000) are variants of the pnn algorithm. The popularity of the pnn algorithm in 
cq can be attributed to the algorithm’s least-squares formulation, which links it to k-means 
and explains its tendency to generate roughly spherical clusters.

Figure  8 shows the Peppers image quantized to 8 colors using the octree algorithm. 
It can be seen that, compared to divisive algorithms, octree spreads the distortion more 
evenly throughout the output image at the expense of increased mean distortion (Xiang and 
Joy 1994). In Subsection 5.2, we will describe another algorithm, maximin, that minimizes 
the maximum distortion in a more systematic manner.

Following Equitz (1989), Balasubramanian and Allebach (1991a) propose an acceler-
ated pnn algorithm based on the k -d tree (Bentley 1975), a multivariate generalization of 
the binary search tree that facilitates a wide range of associative queries, including nearest 
neighbor queries. A k-d tree can be used to partition a multidimensional space recursively. 
Each internal node of a conventional k-d tree partitions the data that it represents into two 
subsets using a hyperplane orthogonal to one of the coordinate axes and passing through 
the median point. Leaf nodes (or buckets), on the other hand, store the data points. The tree 
is built recursively by splitting the node under examination provided that it contains more 
than a predefined number of data points (this threshold is referred to as the bucket size). 
Observe the similarity of the k-d tree construction method to the divisive median-cut algo-
rithm. In their implementation, Balasubramanian and Allebach split each node along the 
color axis with the greatest variance at the mean, rather than the median, point. Note also 
that, instead of an axis-parallel k-d tree, a more adaptive divisive algorithm (e.g., one that 
splits the node with the greatest sse in each iteration along its pc1) could be used to obtain 
a better initial partition.

Recall that a naive implementation of the pnn algorithm starts with N singleton clusters 
and ends with K clusters after performing (N − K) mergers. In each iteration, the algorithm 
identifies a pair of clusters with the least merger cost. Clearly, searching for an optimal 
pair of clusters requires O(N2) time, resulting in an overall time complexity of O(N3) . On 
the other hand, the accelerated pnn algorithm considers only the pairs of clusters whose 
centroids reside in the same k-d tree bucket. In each iteration, the algorithm visits each 
bucket to determine an optimal pair of clusters to merge. Only a predefined fraction of 
these pairs are merged because some buckets may not have any close pairs. The mergers 
are performed in ascending order of their costs. Once these mergers are completed, the tree 
is balanced to account for the centroids lost/gained as a result of the mergers. Balancing is 
accomplished by merging small buckets with their neighbors and splitting large buckets. 
This three-step process (optimal pair search, mergers, and tree balancing) continues until K 
clusters remain. The set of centroids of these clusters is then taken as the palette.

The accelerated algorithm described above has a time complexity of O(N logN) (Equitz 
1989). This is a significant improvement over the O(N3) complexity of the naive algo-
rithm. However, while the naive algorithm is stepwise optimal, the accelerated algorithm 
is clearly not. Unfortunately, we are not aware of any cq studies that compare the effective-
ness of the two pnn algorithms thoroughly. In addition to its lack of stepwise optimality, the 
accelerated algorithm is more difficult to implement than its naive counterpart.

Another way to accelerate the pnn algorithm for cq is to reduce the number of input 
colors prior to clustering. For example, Dixit (1991) employs uniform random sampling 
for data reduction, while both Velho et al. (1997) and Brun and Mokhtari (2000) employ 
uniform quantization.
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Dixit (1991) presents an approximate agglomerative algorithm that resembles pnn. The 
algorithm starts by sampling the input image uniformly at random38. The colors of the 
sampled pixels are stored in a table of size T as initial clusters, in ascending order of their 
size ( T ≤ S due to duplicates). This table is traversed from top to bottom, merging pairs of 
clusters. Let Pi be the cluster under examination at a given time. An optimal match for Pi 
from the remaining set {Pi+1,… ,PT} of clusters based on the pnn merger cost formula is 
determined. Let P𝚤 be the optimal match for Pi . The pair (Pi,P𝚤) is merged, and either one 
of them is replaced with the combined cluster (i.e., its size and centroid) in the table. The 
matched pair is excluded from the current iteration of the optimal matching process, and 
the algorithm proceeds with finding a match for the next unmatched cluster. Once T/2 pairs 
of clusters are merged, the next iteration starts. Hence, each iteration halves the size of the 
table (i.e., the number of clusters), and the algorithm continues to iterate until K clusters 
remain. Assuming an initial table size of T = O(K logK) , the time complexity of this algo-
rithm is O(K2 logK).

Fig. 8   Peppers image quantized using the octree algorithm

38  The author reports that a sample of size S = 1, 024 pixels suffices for a 512 × 512 input image.
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The birch (Balanced Iterative Reducing and Clustering using Hierarchies) algo-
rithm  (Zhang et  al. 1997) provides a scalable approach to clustering data sets that are 
too large to fit in memory. The algorithm first generates a compact summary of the data 
set through a single pass. This summary is represented by an in-memory, height-bal-
anced tree called clustering feature-tree (cf-tree). Given a set X = {x1,… , xN} ⊂ ℝ

D 
of N data points in D dimensions, the cf representing X  is the triplet CF(X) = (N, s, ss) 
where s =

∑N

i=1
xi is the sum of the data points and ss =

∑N

i=1
��xi��2 is the sum of their 

�
2
2
 norms. Essentially, CF(X) is a three-number summary of X  based on its first three 

moments. Various summary statistics for X  (e.g, centroid and radius—see below) can be 
computed from CF(X) without having access to the individual data points. In addition, cfs 
are additive in that given two disjoint subsets X1 and X2 with their corresponding sum-
maries CF(X1) = (N1, s1, ss1) and CF(X2) = (N2, s2, ss2) , the cf of their union is simply 
CF(X1 ∪ X2) = (N1 + N2, s1 + s2, ss1 + ss2).

Each leaf node in a cf-tree stores at most Nl cfs, each representing a summary of a sub-
set of data points. Each internal node, on the other hand, stores at most Ni cfs, one for each 
of its children. Thus, both types of nodes represent summaries of subsets of data points. 
The cfs in a leaf node, however, must satisfy a compactness requirement: the radius39 
of a cf must be less than a predefined threshold T. Because of this compactness require-
ment (Sheikholeslami et al. 1998) and its particular cf representation, birch tends to gen-
erate spherical clusters. The size of the cf-tree is primarily controlled by the user-defined 
parameters Nl , Ni , and T.

After obtaining a hierarchical summary of X  in the form of a cf-tree, birch clusters the 
leaves of the tree using another clustering algorithm such as Ward’s algorithm. This pro-
cess is fast since there are far fewer leaves in CF(X) than data points in X .

The advantages of birch over conventional agglomerative clustering algorithms include 
its time40 and memory efficiency and its resistance to outliers. On the other hand, birch is 
difficult to implement, and its flexible formulation comes at the cost of about a dozen user-
defined parameters.

Bing et al. (2004) adapt the birch algorithm to the cq problem. The authors first obtain 
an initial palette of size 2K by building a cf-tree from the input colors. The most frequent 
color in the initial palette is selected as the base color of an intermediate palette (of size 
K). The remaining colors in the initial palette are ordered according to their weighted dis-
tances to this base color. The weighted distance between the base color and any other color 
is computed as the product of the frequency of the latter color and the �2 distance between 
the two colors (the frequency and distance terms are raised to the powers of user-defined 
parameters Wf  and Wd , respectively.) The (K − 1) colors in the initial palette with the great-
est weighted distances are added to the intermediate palette. The final palette is obtained 
by merging the non-selected colors in the initial palette with their nearest colors in the 
intermediate palette. The time complexity of the resulting cq algorithm is O(N) . In addi-
tion to the three birch-related parameters (i.e., Nl , Ni , and T), the algorithm has two other 
user-defined parameters ( Wf  and Wd ). The authors experiment with (Wf ,Wd) = (1, 1) and 
(Wf ,Wd) = (1, 2) . Note that the part of the algorithm that selects K colors from the ini-
tial palette aims to select colors that are both frequent and dissimilar to the base color. 

39  The radius r of X  is given by r =
�∑N

i=1
��xi − x̄

��2∕N , where x̄ = s∕N is the centroid of X  . Given 

CF(X) , the radius can be computed as r =
�

ss∕N − ‖x̄‖2.
40  The tree building phase requires only O(N) time.
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However, the algorithm can easily select multiple frequent colors that are each dissimilar to 
the base color, yet similar to each other.

The main drawback of conventional hierarchical clustering algorithms is that their split-
ting/merging decisions are irreversible. Once a divisive algorithm splits a cluster, it cannot 
recover the same cluster later. Similarly, once an agglomerative algorithm merges a pair of 
clusters, it cannot split them later. In general, the cumulative effect of erroneous decisions is 
more significant in agglomerative algorithms because such algorithms execute (N − K) steps, 
starting from singleton clusters that contain very little information (Williams 1971). By con-
trast, divisive algorithms execute only (K − 1) steps, starting from a cluster that contains the 
entire data set. Another drawback of conventional hierarchical clustering algorithms is that 
many of them do not optimize a particular objective function (Dasgupta 2016; Cohen-Addad 
et al. 2019). Without an explicit objective, it is difficult not only to compare such algorithms 
but also to analyze their theoretical properties. Nevertheless, divisive hierarchical algorithms 
are efficient (requiring linear time in N and linear or logarithmic time in K), and most of them 
are deterministic and relatively easy to implement. Therefore, such algorithms are often used 
to initialize partitional algorithms, which are discussed in the next section.

5 � Partitional algorithms

Due to limited computational resources, early cq algorithms (1980–2000) were mostly 
hierarchical. In the early 2000s, researchers turned to partitional cq algorithms, which can 
achieve better results if they are initialized properly.

Given a data set X = {x1,… , xN} ⊂ ℝ
D and an integer K ( K ∈ {1,… ,N} ), a partitional 

algorithm divides X  into a collection P = {P1,… ,PK} of K exhaustive, mutually exclu-
sive, and nonempty subsets, that is, 

The family P of sets is called a K-partition and the subsets P1,… ,PK are termed its 
clusters. Clearly, the above conditions imply that n1 +⋯ + nK = N.

The number of ways in which a set of N objects can be divided into K nonempty subsets 

is given by 1

K!

∑K

i=0
(−1)K−i

�
K

i

�
iN , which can be approximated by KN∕K! for fixed K as 

N → ∞ . For example, even for a tiny set of size 100, there are 0.2755 ⋅ 1094 ways to parti-
tion this set into 10 nonempty subsets. Therefore, exhaustive search is computationally 
infeasible, except in special cases.

Virtually all partitional clustering algorithms applied to the cq problem to date are 
center-based algorithms. Like hierarchical cq algorithms, these center-based partitional cq 
algorithms represent each cluster Pi with a center ci . Once the clustering process is com-
pleted, the set C = {c1,… , cK} of centers is then taken as the palette. Consequently, we use 
the terms center and representative interchangeably in this section.

(7a)
⋃K

i=1
P
i
= X (exhaustive)

(7b)P
i
∩ P𝚤 = ∅, i, 𝚤 ∈ {1,… ,K}, i ≠ 𝚤 (mutually exclusive)

(7c)n
i
= |P

i
| > 0, i ∈ {1,… ,K} (nonempty)
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5.1 � The popularity algorithm

The popularity algorithm41  (Heckbert 1982) is conceptually the simplest cq algorithm. 
It first builds a low-resolution (or coarse) color histogram of the input image using bit-
cutting42. The set of K most frequent colors in this histogram is then taken as the palette.

Let Nb be the number of bins in the histogram. The simplest way to determine the K 
largest bins is to sort the histogram in O(Nb logNb) time using a comparison-based algo-
rithm such as quicksort. A more efficient approach is to first find the Kth largest element in 
O(Nb) time using a partition-based selection algorithm such as quickselect (Hoare 1971), 
and then take the K elements that are greater than or equal to it.

The popularity algorithm may produce acceptable results on synthetic images with 
large, uniformly colored regions, but it generally performs poorly on natural images with a 
wide range of colors. The algorithm tends to overrepresent the background colors, which 
are usually of limited interest. In addition, it is sensitive to the resolution of the histogram. 
If the resolution is too high, it may fail to locate K prominent peaks, or it may select fre-
quent yet similar colors. On the other hand, if the resolution is too low, significant color 
shifts may occur.

The popularity algorithm considers only the frequency of the histogram colors, and dis-
regards their diversity. Braudaway (1987) proposes a modified popularity algorithm that 
considers both frequency and diversity. The algorithm starts by building a low-resolution 
color histogram of the input image, and then selecting the most frequent color as the first 
center ( c1 ). The remaining (K − 1) centers are selected successively as follows. Suppose 
that the algorithm is at the beginning of iteration i ( i ∈ {2,… ,K} ), that is, it has just 
selected ci−1 . Before selecting ci , to avoid selecting a color that is frequent yet similar to 
ci−1 , the algorithm reduces the frequency of each histogram color c by a factor of �
1 − e−C‖c−ci−1‖2

�−1

 , where C is a user-defined positive number. This function reduces the 
frequency of ci−1 to zero so that it cannot be selected again. The frequencies of ci−1 ’s near-
est neighbors are reduced severely so that they are unlikely to be selected. Finally, the fre-
quencies of ci−1 ’s sufficiently distant neighbors are left unchanged. With a proper C value, 
the modified popularity algorithm can significantly outperform the standard one. Celebi 
et  al. (2014, 2015) report good results with C = 0.25 . Note that Yager and Filev (1994) 
later proposed a similar clustering algorithm under the name mountain algorithm.

Figures 9 and 10 compare the original and modified popularity algorithms on the Tux 
(credits43, 327 × 360 pixels) and Peppers images, respectively. In each case, the input image 
is preprocessed using 3-3-3 bit-cutting (cutting fewer bits makes little difference for Tux, 
but leads to worse results for Peppers). As expected, both algorithms perform fairly well 
on the synthetic image (with the modified algorithm producing slightly better results). On 
the other hand, the original algorithm performs very poorly on the natural image because 
it simply selects the most frequent 8 colors, which all happen to be shades of red, without 
considering their separation.

41  Less commonly known as the populosity algorithm (Velho et al. 1997).
42  In the context of divisive cq algorithms, the primary purpose of bit-cutting is to reduce time and mem-
ory requirements. For the popularity algorithm and its variants, however, bit-cutting is necessary to detect 
the dominant peaks of the color histogram effectively.
43  Courtesy of Larry Ewing (lewing@isc.tamu.edu) and the gimp
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Fig. 9   Comparison of popularity-based cq algorithms on a synthetic image
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5.2 � The maximin algorithm

The maximin algorithm  (Gonzalez 1985) selects c1 arbitrarily from X  and the remain-
ing (K − 1) centers are selected successively as follows. In iteration i ( i ∈ {2,… ,K} ), ci is 
selected to be the data point with the greatest minimum-distance to the previously selected 

Fig. 10   Comparison of popularity-based cq algorithms on a natural image
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(i − 1) centers, that is, C(i−1) = {c1,… , ci−1} . In other words, ci is selected to be xj∗ ∈ X  
with index

where �
(
xj, C

(i−1)
)
 is the distance between xj and its nearest center in C(i−1) , that is,

where d(⋅, ⋅) is a metric.
If there are multiple candidates for xj∗ , a common tie-breaking rule is to select the data 

point with the smallest index. Using the K centers given by this algorithm, we can con-
struct a Voronoi partition of X  by assigning each data point to its nearest center.

We mentioned earlier that c1 can be selected arbitrarily44. A simple strategy is to select 
a data point uniformly at random from X  , but this would render the algorithm nondeter-
ministic. A convenient and deterministic alternative is to select the data point nearest to the 
centroid of X  given by x̄ = (1∕N)

∑N

j=1
xj . Now that c1 is selected deterministically, maxi-

min becomes completely deterministic.
An interesting feature of maximin is that the algorithm selects exactly one center from 

each of the K clusters if X  is composed of compact and separated clusters, that is, if each of 
the possible intra-cluster distances is less than each of the possible inter-cluster ones (Hath-
away et al. 2006). This can be expressed mathematically as follows

This greedy algorithm was originally developed as a 2-approximation for the discrete k 
-center problem, which is defined as follows. Given a set X  of N data points in a met-
ric space, find K representative data points (or centers) such that the maximum distance 
between any data point and its nearest center is minimized. If D or K is not fixed, the prob-
lem with d = �2 is np-hard even on the plane (Fowler et al. 1981; Masuyama et al. 1981; 
Megiddo and Supowit 1984). In fact, it is np-hard to approximate this problem to within 
a factor of less than 2  (Hsu and Nemhauser 1979). Hence, maximin is the best possible 
polynomial-time approximation algorithm for this problem.

The pseudocode for maximin is given in Algorithm  145. It is important to note that 
while the algorithm works with any distance, its approximation guarantee holds only for 
metric distances. However, for the case of d = �2 , there is no need to compute the square 
root because the algorithm requires only relative distances.

Clearly, a naive implementation46 of Algorithm  1 requires O(NK) time. Feder and 
Greene (1988) propose an elaborate 2-approximation algorithm for the k-center problem 

(8)j∗ = argmax
j∈{1,…,N}

�
(
xj, C

(i−1)
)
,

(9)𝛿
(
xj, C

(i−1)
)
= min

𝚤∈{1,…,i−1}
d(xj, c𝚤),

(10)

min
i, 𝚤 ∈ {1,… ,K},

i ≠ 𝚤

min
x∈Ci,x

�∈C𝚤
d(x, x�)

max
i∈{1,…,K}

max
x,x�∈Ci

d(x, x�)
> 1.

44  For color image data, one option is the most frequent color (Houle and Dubois 1986).
45  For conciseness, we omit the handling of exceptional cases such as data points equidistant to multiple 
centers.
46  For faster implementations of maximin, refer to Geraci et al. (2006), Zhao et al. (2013), and Borgelt and 
Yarikova (2020).
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(with any �p metric) with O(N logK) time complexity, which is optimal under the algebraic 
computation tree model.

Maximin can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where 

each data point xj has a nonnegative weight wj associated with it. These weights might 
reflect the importance of individual data points or relative frequencies of groups of data 
points. For example, in a cq application, the weighted algorithm may be computationally 
advantageous if we already have a color histogram of the input image at hand.

Without loss of generality, we assume that the weights add up to one, that is, ∑N

j=1
wj = 1 . The objective function for the weighted k -center problem is identical to that 

for the unweighted problem, with the exception that the distances are weighted.
The weighted maximin algorithm  (Dyer and Frieze 1985) selects a data point with 

the greatest weight as c1 . In iteration i ∈ {2,… ,K} , ci is selected to be the data point with 
the greatest minimum-weighted-distance to the previously selected (i − 1) centers. In other 
words, ci is selected to be xj∗ ∈ X  with index

As in the unweighted algorithm, if there are multiple candidates for xj∗ , we employ a tie-
breaking rule. Using the K centers given by this algorithm, we can construct a Voronoi 
partition of X  by assigning each data point to its nearest center.

Maximin performs well on well-separated data sets provided that there are no outli-
ers. Turnbull and Elkan (2005) suggest applying maximin to a small random subset of 
X  to reduce the possibility of selecting outliers as centers. Maximin also runs faster 
on such a subset. Assuming that the clusters are equal in size, it can be shown that a 
random subset of size N̂ = ⌈CK lnK⌉ for some constant C > 1 contains at least one data 
point from each of the K clusters with probability greater than 

(
1 − K1−C

)
 . For example, 

for K = 32 and C = 2 , we need a subset of size N̂ = 222 and the probability of selecting 

(11)j∗ = argmax
j∈{1,…,N}

wj�
(
xj, C

(i−1)
)
.



13992	 M. E. Celebi 

1 3

at least one data point from each cluster exceeds 0.96. Observe that the size N̂  of the 
subset is independent of the size N of the full data set. Celebi (2009, 2011) reports good 
results with C = 2.

Maximin was applied to the cq problem first by Houle and Dubois (1986) and later by 
Goldberg (1991) and Xiang (1997). Xiang’s implementation differs from the earlier ones 
by its use of the cluster centroids rather than the centers selected by the standard algorithm. 
As mentioned earlier, the cluster centroids can be obtained by first assigning each data 
point to its nearest center, and then averaging the data points in each cluster.

Figure 11 shows the Peppers image quantized to 8 colors using Xiang’s variant of the 
maximin algorithm. The almost uniformly dark error image confirms that the algorithm 
spreads the distortion more or less evenly throughout the image in an attempt to minimize 
the maximum distortion (i.e., objectionable color shifts)  (Xiang and Joy 1994; Celebi 
2011; Celebi et al. 2015). In fact, if the goal is to minimize the mean distortion, maximin 
may not be appropriate because it gives an N-approximation for the k-means problem in the 
worst case. Due to its tendency to sacrifice mean distortion, several studies (Reitan 1999; 
Celebi 2009, 2011; Celebi et al. 2014, 2015; Thompson et al. 2020) conclude that maximin 
is inferior to most other cq algorithms. Nevertheless, maximin can be used as an effec-
tive and deterministic initializer for more elaborate partitional clustering algorithms such 
as batch k-means and online k-means, as demonstrated recently by Thompson et al. (2020).

The maximin algorithm aims to maximize the dispersion of the representatives in the 
color space or, equivalently, their diversity. Hsieh and Fan (2000) propose a modified 
maximin algorithm that considers both the frequency and diversity of colors. The algo-
rithm first builds a low-resolution color histogram of the input image, and then traverses 
this histogram in descending order of frequency. The most frequent color is taken as c1 . 
The second most frequent color is taken as c2 provided that its �2 distance to the nearest 
previously selected center is greater than a user-defined threshold T; otherwise, the next 
most frequent color is considered. The remaining (K − 2) centers are selected similarly.

Hsieh and Fan (2000) recommend setting T = 3
√
2553∕K initially. If the algorithm fails 

to select K centers after going through the histogram, T is reduced by a small amount, 
and the clustering process is restarted. The set of K centers selected is taken as the initial 
palette. Clusters are formed around the initial representatives by assigning each histogram 
color to its nearest representative. The set of weighted centroids of these clusters is then 
taken as the final palette. This algorithm is sensitive to the value of T. If T is too small, 
frequent yet similar colors may be included in the initial palette. On the other hand, if T is 
too large, rare colors may be selected, or the histogram may be exhausted before K colors 
can be selected.

More recently, Huang (2021) proposed another modified maximin algorithm47. The 
algorithm first builds a builds a low-resolution color histogram of the input image. The 
most frequent color is taken as c1 . In iteration i ( i ∈ {2,… ,K} ), ci is selected to be the data 
point with the greatest product of the square root of its frequency and its minimum-distance 
to the previously selected (i − 1) centers. Compared to Hsieh and Fan’s algorithm, Huang’s 
algorithm has the advantage of not requiring a threshold value. However, �2

2
 distance and 

square root of frequency are incommensurable quantities. For example, the distance term 
may dominate in small images, whereas the frequency term may dominate in large images. 
Hence, both terms should be normalized by their observed maximums in the input image.

47  Yuan and Goldberg (1988) proposed a similar algorithm in the context of vq.
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5.3 � The K‑means algorithm

A popular clustering objective function is the sum of errors (se) given by

where �(x, C) denotes the Bregman divergence (Bregman 1967) between x and its nearest 
center in C = {c1,… , cK} , that is,

where dB(x, ci) denotes the Bregman divergence between x and ci . It is important to note 
that, unlike the discrete k-center objective, the set C of centers in objective (12) is not con-
strained to be a subset of X .

Bregman divergences are a family of nonmetric distance functions that includes the 
squared Euclidean distance ( �2

2
 ), squared Mahalanobis distance, Kullback–Leibler diver-

gence, and Itakura–Saito divergence. In practice, the most popular Bregman divergence is 
�
2
2
 , in which case Eq. (12) is referred to as the sum of squared errors (sse).

(12)JSE =
∑
x∈X

�(x, C),

(13)�(x, C) = min
i∈{1,…,K}

dB(x, ci),

Fig. 11   Peppers image quantized using Xiang’s maximin algorithm
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For any Bregman divergence, it can be shown that the optimal center ci for cluster Pi is 
given by the centroid of the cluster (Banerjee et al. 2005), that is,

where ni denotes the size of Pi.
For K > 1 , the k -means problem48 (km), that is, minimizing Eq. (12) with d = �

2
2
 , is a 

nonsmooth and nonconvex optimization problem with numerous local minima. If D or K 
is not fixed, the problem is np-hard49 even for K = 2 ( D ≥ 2) (Aloise et al. 2009) or D = 2 
( K ≥ 2)  (Vattani 2009; Mahajan et al. 2009). Recently, Awasthi et al. (2015) proved that 
there exists a constant 𝜀 > 0 such that it is np-hard to approximate this problem to within a 
factor of (1 + �) . Later, Lee et al. (2017) established that � ≥ 0.0013.

Among the heuristics for the km problem, the (batch) k -means algorithm50 (bkm) is 
the simplest and most popular one (Celebi 2015). The algorithm is based on the idea that it 
is easy to determine the optimal clusters when the centers are fixed and, similarly, it is easy 
to determine the optimal centers when the clusters are fixed. The algorithm starts with K 
arbitrary centers, typically selected uniformly at random from X  . It then alternates between 
an assignment step and an update step until a predefined termination criterion is met. In the 
assignment step, each data point is assigned to its nearest center using Eq. (13), whereas, 
in the update step, each center is recomputed as the mean of all data points assigned to it 
using Eq. (14). This is an alternating minimization procedure because in the assignment 
step, the centers are held constant and the partition is optimized, whereas in the update 
step, the partition is held constant and the centers are optimized.

The pseudocode for bkm is given in Algorithm 251. In each iteration, we first assign 
each data point to its nearest center, and then update the size and vector sum of the cor-
responding cluster. After computing the Voronoi partition of X  in this manner, we recom-
pute each center as the ratio between its vector sum and size. These iterations continue 
until the relative change in the centers between two consecutive iterations drops below a 
threshold, that is,

where c(t)
i

 is the center of Pi at the end of iteration t ( t = 1, 2,… ) and � ≥ 0 is a user-defined 
threshold. The cases � = 0 and 𝜀 > 0 correspond to termination upon convergence and 
early termination, respectively.

Another common termination criterion is to stop the iterations whenever the relative 
change in the sse between two consecutive iterations drops below a threshold (Linde et al. 

(14)ci =
1

ni

∑
x∈Pi

x,

(15)
1

K

K∑
i=1

‖‖‖c
(t−1)

i
− c

(t)

i

‖‖‖2
‖‖‖c

(t−1)

i

‖‖‖2 +
‖‖‖c

(t)

i

‖‖‖2
≤ �,

48  In the clustering literature, k -means may refer to an objective function to be minimized or the best-
known algorithm for minimizing this objective.
49  In the early cq literature, the hardness of the km problem was incorrectly attributed to various authors, 
including Hyafil and Rivest (1976), Brucker (1978), and Garey et al. (1982).
50  Also known as the Lloyd’s algorithm (Lloyd 1982), generalized Lloyd algorithm (gla) (Gray and Karnin 
1982), or Linde–Buzo–Gray algorithm (lbg) (Linde et al. 1980).
51  As before, we omit the handling of exceptional cases such as empty clusters or data points equidistant to 
multiple centers.
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1980), that is, 
(
SSE(t−1) − SSE(t)

)
∕SSE(t−1) ≤ � , where SSE(t) denotes the sse at the end of 

iteration t ( t = 1, 2,… ) with SSE(0) = ∞ , and � ≥ 0 is a user-defined threshold ( � = 0.001 
and � = 0.0001 are commonly used in the literature.)

bkm can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where each 

data point xj has a nonnegative weight wj associated with it. Without loss of generality, 
we assume that the weights add up to one, that is, 

∑N

j=1
wj = 1 . The objective function 

for the weighted k -means problem is identical to that for the unweighted problem, with 
the exception that the distances are weighted. The optimal center ci for Pi is given by the 
weighted centroid of the cluster, that is,

The pseudocode for the weighted (batch) k -means algorithm can be obtained by making 
two simple modifications to Algorithm 2: (1) ni ← ni + 1 should be ni ← ni + wj , and (2) 
ĉi ← ĉi + xj should be ĉi ← ĉi + wjxj.

bkm is undoubtedly the most popular hard partitional clustering algorithm  (Wu et  al. 
2008). Its popularity can be attributed to several reasons:

•	 It is conceptually simple and easy to implement.
•	 It has a time complexity linear in N, D, and K, that is, O(NDK) per iteration. For this 

reason, it can be used to initialize more expensive clustering algorithms. Furthermore, 
numerous sequential and parallel acceleration techniques are available in the literature.

•	 It is guaranteed to converge to a local minimum of its objective in a finite number of 
iterations.

•	 It is insensitive to the order in which the data points are processed.

(16)ci =
1∑

xj∈Pi
wj

�
xj∈Pi

wjxj.
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On the other hand, bkm has several significant disadvantages:

•	 It is designed to discover spherical clusters that are well separated. In other words, it is 
unsuitable for discovering arbitrary shaped or overlapping clusters.

•	 It tends to discover clusters of approximately equal size.
•	 Because of the nonconvexity of its objective and its descent formulation, it converges 

to a local minimum, which can be arbitrarily far from a global minimum. For the same 
reasons, it is sensitive to the selection of the initial cluster centers.

It is important to note that these drawbacks are shared by many other partitional clustering 
algorithms (Celebi 2015).

Heckbert (1982) was the first to suggest using bkm52 to improve the palette generated 
by a divisive cq algorithm such as median-cut. However, Heckbert and several other early 
cq researchers (Wu and Witten 1985; Wan et al. 1988, 1990; Orchard and Bouman 1991; 
Wu 1992b) deemed bkm to be computationally impractical53 due to its iterative nature. This 
negative perception of bkm prompted the development of various efficient divisive cq algo-
rithms between the early 1980s and the early 2000s.

Adaptations of bkm to the cq problem primarily focus on two issues: (i) obtaining bet-
ter local minima through adaptive initialization, and (ii) accelerating the algorithm. The 
former concerns the algorithm’s effectiveness, whereas the latter concerns its efficiency. 
However, these issues are not independent, as initialization also affects convergence.

We first examine the issue of initialization. Recall that the km objective is a nonsmooth 
and nonconvex function with numerous local minima. Hence, a local search algorithm 
such as bkm is expected to converge to a local minimum nearest to the initial configura-
tion. Unfortunately, such a local minimum can be far from a global minimum, especially 
in a large data set. Therefore, initialization is crucial for bkm and its variants (Celebi and 
Kingravi 2012; Celebi et al. 2013; Celebi and Kingravi 2015). Adverse effects of improper 
initialization include empty clusters, slower convergence, and a higher chance of getting 
stuck in a poor local minimum.

The most popular initialization method is random selection, where K data points are 
selected uniformly at random from X  . This method is likely to select data points from 
dense regions, but it has no mechanism to avoid selecting nearby data points. In a cq appli-
cation, this method is likely to select frequent colors without considering their diversity. 
Another popular initialization method is the maximin algorithm. Recall that, unlike ran-
dom selection, maximin considers diversity but not frequency. There are dozens of other 
initialization methods (Celebi et al. 2013) of which k -means++ (Arthur and Vassilvitskii 
2007) is the most well-known. In this paper, we refer to these as generic initialization 
methods because they are not specifically designed for color image data.

As mentioned earlier, we can also use a hierarchical cq algorithm (e.g., median-cut) as 
an initializer. We refer to these as image-specific initialization methods. Celebi (2011) 
compares seven generic and seven image-specific methods as initializers for bkm. Not sur-
prisingly, the author finds that image-specific methods are generally more effective and 
efficient than the generic ones because the former are specifically designed for color image 
data. Celebi also demonstrates that bkm reduces the mse produced by various hierarchical 

52  Various cq researchers incorrectly cite Shafer and Kanade (1987) or Celenk (1990) in the context of bkm.
53  For example, Wu and Witten (1985) report execution times ranging from 12 to 34 hours for 256 × 256 
images ( K = 256).
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cq algorithms by an average of 18–50% and, in general, the more ineffective the hierar-
chical algorithm by itself, the more bkm improves upon it. For example, bkm initialized 
using median-cut gives, on average, 47% lower mse than median-cut alone. This compre-
hensive experiment refutes the claim made by some of the early cq researchers (Heckbert 
1982; Wan et al. 1988, 1990; Orchard and Bouman 1991) that bkm offers only a marginal 
improvement over hierarchical cq algorithms.

We now turn to the issue of acceleration. A naive implementation of Algorithm 2 can 
take a long time to cluster a large data set. This is because the algorithm computes NK �2

2
 

distances per iteration, each of which requires (2D − 1) additions and D multiplications. 
Hence, we can accelerate bkm by reducing one or more of the following quantities54:

•	 Number of data points (N): In most applications, N is the dominant factor in the execu-
tion time, as N ≫ D and N ≫ K . Sampling and weighting are two common ways to 
reduce N. Note that most algorithms that employ sampling are approximate.

•	 Number of clusters (K): Given a data point, many accelerated algorithms try to deter-
mine its nearest center without computing the distance between the data point and all K 
centers. In other words, these algorithms aim to compute fewer than NK distances per 
iteration. Representative algorithms of this kind are described below.

•	 Cost of distance computations: Dimensionality reduction may be used to reduce 
the number of attributes per data point (D), thereby accelerating the distance com-
putations. Dimensionality reduction may also accelerate convergence and facilitate 
clustering by eliminating irrelevant, redundant, or noisy attributes. Other ways to 
accelerate distance computations include numerical approximations, geometric 
identities, and partial distance elimination (see below). Note that algorithms that 
employ dimensionality reduction or numerical approximations are usually approxi-
mate.

•	 Number of iterations: We can accelerate convergence by reducing N, D, or K, increas-
ing the convergence threshold ( � ), or using a better initialization method. However, 
none of these modifications is guaranteed to accelerate convergence, and each one is 
likely to affect the final centers generated by bkm.

Numerous accelerated bkm algorithms have been proposed since the 1980s. We first describe 
two approximate algorithms briefly, and then discuss three exact algorithms in detail.

Huang and Chang (2004) propose the finite-state k -means algorithm (fskm)55. The 
first iteration of fskm is the same as that of bkm. In each of the subsequent iterations, when 
searching for the nearest center to a given data point, the algorithm considers only the Kf  
nearest neighbors of the center to which the data point was assigned in the previous itera-
tion. This strategy is faster since the nearest center search is performed in a smaller set 
of Kf  centers rather than the entire set of K centers. Here, Kf  is a user-defined number in 

54  In this paper, an exact accelerated algorithm refers to an accelerated algorithm that generates the same 
output as the corresponding naive algorithm when started from identical initial conditions. On the other 
hand, an approximate accelerated algorithm refers to an accelerated algorithm that generates approxi-
mately the same output as the corresponding naive algorithm when started from identical initial conditions. 
We restrict ourselves to sequential acceleration techniques, as opposed to parallel ones, as the former tech-
niques are more appropriate for and common in cq applications. Note that a sequential acceleration algo-
rithm does not necessarily have a lower time complexity than its naive counterpart.
55  This algorithm was proposed for vq earlier by Chang et al. (1992).
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the range [1, K]. If Kf = K , fskm reduces to bkm. Otherwise, the former approximates the 
latter.

In each iteration (except the first one), fskm first computes the pairwise �2
2
 distances 

between the K centers, and then determines the Kf  nearest neighbors of each center. If the 
latter is accomplished using a partition-based selection algorithm such as quickselect, the 
assignment step of fskm requires O(K2D + K2 min{Kf , logK} + NDKf ) time. Compar-
ing this to the O(NDK) complexity of the assignment step of bkm, we see that fskm can 
be faster than bkm only if Kf ≪ K . Huang and Chang report that, for K = 256 , fskm with 
Kf = 8 is 16 to 28 times faster than bkm, while obtaining similar results. Unfortunately, the 
authors do not suggest a systematic way to set Kf .

Hu and Lee (2007) propose another approximate bkm algorithm, which we refer to as 
the stability-based k -means algorithm (sbkm)56. The first T iterations of sbkm are the 
same as those of bkm. In the subsequent iterations, the clustering process is accelerated 
based on the concepts of center stability and point activity. More specifically, if a center 
does not move by more than Δ units (as measured by the �2

2
 distance) in two successive 

iterations, it is classified as stable. Furthermore, data points previously assigned to stable 
centers are classified as inactive.

In each iteration, only unstable centers and active points participate in the clustering 
process. During the first T iterations, all K centers are considered unstable and all N data 
points are considered active. As the iterations progress, the number of unstable centers, 
and thus the number of active data points, decreases rapidly, resulting in increasingly faster 
iterations. The authors report that sbkm with T = 10 and Δ = 1 is 4 to 21 times faster than 
bkm, while obtaining similar results.

It is important to stress that, unlike their predecessor (bkm), fskm and sbkm are not guar-
anteed to converge. Therefore, these algorithms should be terminated early, as discussed 
earlier.

We now turn to exact approaches for accelerating bkm. The simplest way to acceler-
ate bkm is the partial distance elimination technique (Cheng et al. 1984; Bei and Gray 
1985). Let x be a data point, c be a candidate nearest center, and the minimum distance 
between x and the previously examined centers be dmin (initialized to ∞ ). It is easy to see 
that we can abort the computation of ‖x − c‖2

2
 as soon as the (partial) distance between 

the first d̂ attributes of x and c exceeds the current minimum distance, that is, whenever ∑d̂

d=1
(xd − cd)

2 > dmin , where d̂ ∈ {1,… ,D}.
Searching for the nearest center to a data point using the standard �2

2
 distance requires 

(2D − 1) additions and D multiplications, whereas the above elimination technique requires 
2d̂ additions, d̂ multiplications, and d̂ comparisons. Therefore, this technique is advan-
tageous only if d̂ ≪ D , which is often the case when D is reasonably large. Otherwise, 
the time saved by the early termination of the full distance computation is offset by the 
additional time spent on comparisons. In our experience, for low-dimensional data such as 
color image data, the cost of additional comparisons often renders this technique slower 
than direct computation.

The partial distance elimination technique aims to accelerate bkm by reducing the cost 
of distance computations. By contrast, most accelerated bkm algorithms aim to reduce the 
number of distance computations. Consider a data point x , two centers ci and c𝚤 , and a 
distance metric d(⋅, ⋅) . By the triangle inequality, we have d(ci, c𝚤) ≤ d(x, ci) + d(x, c𝚤) . 

56  An exact version of this algorithm was proposed earlier by Kaukoranta et al. (2000).



13999Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Therefore, if we know that 2d(x, ci) ≤ d(ci, c𝚤) , we can conclude that d(x, ci) ≤ d(x, c𝚤) 
without having to compute d(x, c𝚤) . Note that for d = �

2
2
 , the (relaxed) triangle inequal-

ity test becomes 4‖‖x − ci
‖‖22 ≤ ‖‖ci − c𝚤

‖‖22 . In an efficient implementation, we can avoid 
repeated multiplications by 4 by premultiplying the pairwise �2

2
 distances between the cent-

ers by 1/4.
The triangle inequality elimination algorithm (tie)  (Chen and Pan 1989) precom-

putes the pairwise �2
2
 distances between the centers at the beginning of each iteration. The 

(K − 1) distances associated with each center are then sorted in ascending order. Now, con-
sider a data point x that was assigned to cluster Pk in the previous iteration57. We compare 
x against the centers in ascending order of their distances from center ck using the triangle 
inequality test. If the test fails, we compute the �2

2
 distance between x and the current center 

under consideration; otherwise, we abort the search because we know that the test will suc-
ceed for the remaining centers in the sorted list.

The pseudocode for tie is given in Algorithm 3. In the pseudocode, di is an array of dis-
tances associated with center ci (e.g., upon sorting, di𝚤 denotes ci ’s distance to its 𝚤 th near-
est center.) On line 15, the function ����_�����(di) sorts the input array di in ascending 
order, and returns an array pi that contains the indices of the sorted values in the unsorted 
input array, that is, pi1 is the index of the smallest value in di , pi2 is the index of the second 
smallest value in di , and so on.

On lines 28–30 of Algorithm  3, we declare the candidate center c𝚤 to be the nearest 
center to xj in one of two cases: (i) c𝚤 is closer to xj than its current nearest center; or (ii) c𝚤 
has the same distance to xj as its current nearest center, but the index of the former center 
is less than that of the latter one. Strictly speaking, the second test is not necessary, but, 
as discussed earlier in this section, if there are multiple centers equidistant to the query 
data point, the center with the smallest index is conventionally taken as the nearest center. 
Therefore, without the second test, the tie algorithm may not give identical results to a 
standard bkm implementation.

Another popular accelerated bkm algorithm is the mean-ordered search algorithm 
(mos) (Ra and Kim 1993), which is based on the idea that two data points can be matched 
approximately based on their means. Let x be a data point and c be a candidate nearest 
center. The mos algorithm uses the following inequality

where mx =
1

D

∑D

d=1
xd and mc =

1

D

∑D

d=1
cd are the means of x and c , respectively. Conse-

quently, if c satisfies

where dmin is the �2
2
 distance between x and its current nearest center, then c can be elimi-

nated from consideration without having to compute ‖x − c‖2
2
 . This is because inequalities 

(17) and (18) imply dmin < ‖x − c‖2
2
 , which means that c cannot possibly be closer to x 

than its current nearest center. The computation of the right side of (18) is cheaper than that 
of ‖x − c‖2

2
 provided that the means are precomputed; the former requires one addition and 

two multiplications, whereas the latter requires (2D − 1) additions and D multiplications. 

(17)D
�
mx − mc

�2
≤ ‖x − c‖2

2
,

(18)dmin < D
(
mx − mc

)2
,

57  We can arbitrarily assign all data points to P1 before the first iteration.
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The means of the data points can be computed before clustering, whereas those of the cent-
ers can be computed at the beginning of each iteration.

Inequality (17) alone is insufficient to design an efficient search algorithm. We also 
need to start the search from a center that is likely to be the nearest center to x (this way, 
we can ensure that the lower bound dmin in (18) is small, which allows us to eliminate a 
large number of candidate centers). Fortunately, there is a simple solution: we can sort 
the centers based on their means (or, equivalently, their sums), and locate the center that 
has the nearest mean to x ’s using binary search. Let ci be this tentative match. Starting 
from ci , we can then traverse the centers in “up” and “down” fashion until we locate the 
nearest center. An additional benefit of this search scheme is that once we encounter a 
center that satisfies (18), we can terminate the search in the current direction since the 
centers further toward the current extreme end cannot possibly be closer to x than its 
current nearest center. In other words, if we are going in the up direction and ci−1 satis-
fies (18), we can eliminate centers ci−1,… , c1 . Similarly, if we are going in the down 
direction and ci+1 satisfies (18), we can eliminate centers ci+1,… , cK.

The pseudocode for mos is given in Algorithm 4. For efficiency reasons, we represent 
each data point/center by its sum, rather than its mean (the sums of xj and ci are denoted 
by sp

j
 and sc

i
 , respectively.) The function �������({sc

1
,… , sc

K
}, s

p

j
) finds the index of the 

center with the nearest sum to xj ’s using binary search. The purpose of the ����_����� 
function was explained earlier in the description of the tie algorithm. Let ci be the tenta-
tive match for xj . We traverse the sorted set of centers in the following order: ci+1 , ci−1 , 
ci+2 , ci−2 , and so on.

It should be noted that more elaborate approaches for accelerating bkm have been pro-
posed in the literature (Hamerly and Drake 2015; Wang et al. 2020). These include algo-
rithms based on k-d trees (Kanungo et al. 2002; Lai and Liaw 2008) and more sophis-
ticated uses of the triangle inequality  (Elkan 2003). Some of these algorithms  (Elkan 
2003) are not suitable for low-dimensional data such as color image data, as they incur 
significant overhead to create and update auxiliary data structures. Others  (Kanungo 
et  al. 2002; Lai and Liaw 2008) provide acceleration comparable to tie and mos, but 
are difficult to understand or implement. In contrast, tie and mos are conceptually sim-
ple, relatively easy to implement, and incur negligible computational overhead, making 
them ideal candidates for cq.

Several exact accelerated bkm algorithms for cq have been proposed in the literature. 
Kasuga et al. (2000) first use a divisive clustering algorithm to obtain K initial centers, 
and then form Km macroclusters around these centers. When searching for the nearest 
center to a data point x , the algorithm computes distances from x to only these Km mac-
roclusters and to certain centers in specific macroclusters, which are determined using 
the triangle inequality. For K = 256 , the authors recommend Km = 2

√
K , and estimate 

the theoretical speed-up of their algorithm to be roughly 
√
K . However, they report a 

modest 4-fold speed-up.
Hu and Su (2008a); Hu et  al. (2009) propose an algorithm that combines tie with 

mos. The authors report 2.5- to 14-fold speed-up over bkm. Celebi (2009, 2011) presents 
a weighted tie algorithm. The author reports a maximum of 392-fold speed-up over bkm 
(with an average of 62-fold). More recently, Huang (2021) proposed an algorithm based 
on a variant of mos.

Numerous elimination conditions such as those used in tie and mos have been pro-
posed in the literature (Xie et al. 2016; Wang et al. 2018). In general, the more condi-
tions used in an accelerated bkm algorithm, the larger the reduction in the number of 
distance computations. However, using an excessive number of conditions to minimize 
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the search space aggressively may take more time than computing �2
2
 distances directly, 

especially in low dimensions.
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Before moving on to other km variants, we make a few remarks on the bkm algorithm 
and its accelerated variants:

•	 bkm does not require an unbounded number of iterations to converge  (Equitz 
1989). It can be shown that for a 24-bit color image with N pixels, bkm requires at 
most 3 ⋅ 2562 ⋅ N5 iterations  (Har-Peled and Sadri 2005). However, bkm converges 
much faster in practice, requiring only a few hundred iterations for typical color 
images58 (Thompson et al. 2020). Furthermore, since most of the progress is made in 
earlier iterations, the algorithm can be terminated early.

•	 Starting bkm with a more effective initializer does not guarantee a better sse or faster 
convergence. However, there are initialization methods that generally outperform oth-
ers in both respects (Celebi et al. 2013).

•	 It can be misleading to compare the efficiency of initialization methods based on the 
number of bkm iterations they lead to. For example, we can use an elaborate and com-
putationally expensive initializer to achieve faster convergence (Celebi 2011).

•	 An approximate bkm algorithm does not necessarily converge or, if it does, it does not 
do so faster than standard bkm (Huang and Chang 2004).

•	 An approximate bkm algorithm does not necessarily perform worse than standard bkm 
in terms of sse (Huang and Chang 2004).

•	 Most acceleration techniques for bkm involve geometric inequalities that can lead to 
numerical instabilities when implemented using finite-precision arithmetic.

•	 Sampling the input image does not guarantee a faster convergence because while each 
iteration will be faster, there may be more of them.

•	 An accelerated bkm algorithm does not necessarily run faster than a naive one. Most 
accelerated algorithms pay off only if K is sufficiently large.

•	 It can be misleading to compare the efficiency of accelerated bkm algorithms based on 
the number of distance computations they require. This is because an accelerated algo-
rithm may perform multiple tests to reduce the number of distance computations drasti-
cally at the cost of significant computational overhead.

MacQueen (1967) proposes an online formulation of the bkm algorithm. The two km algo-
rithms differ in when and how they update the cluster centers. The online k -means algo-
rithm (okm) updates the nearest center immediately after the presentation of each data 
point, whereas bkm recomputes all centers after the presentation of the entire set of data 
points.

The pseudocode for okm is given in Algorithm 5. Here, ����(l, u) is a uniform random 
number generator that returns an integer between l and u (inclusive), ni denotes the number 
of data points assigned to ci (or, equivalently, the number of times ci has been updated), 
and P ≥ 0 denotes the user-defined exponent of the learning rate, which is explained 
below. With MacQueen’s choice of P = 1 , the combination of statements ni ← ni + 1 and 
ci ← ci + n−P

i
(xr − ci) reduces to ci ← (nici + xr)∕(ni + 1) , which ensures that ci represents 

the mean of all data points assigned to it.
Assuming a single pass over X  , that is, N presentations, the time complexity of okm is 

dominated by the nearest center search operations, which take O(NDK) time. This com-
plexity is identical to that of bkm. However, in terms of the actual number of arithmetic 

58  In general, the exact number of iterations depends on the number, dimensionality, and distribution of the 
data points, the number of clusters sought, and the initial centers.
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operations, an okm pass costs slightly more than a bkm pass due to the additional random 
number generation and learning rate computation operations. It is important to notice that 
the total computational requirements of the two algorithms are often substantially different. 
This is because, in practice, the online algorithm is often terminated after one pass or, at 
most, a few passes, whereas the batch algorithm converges after many passes59. Therefore, 
the online algorithm can be significantly faster than the batch one (Thompson et al. 2020; 
Abernathy and Celebi 2022).

Unlike its batch counterpart, okm traverses the data points randomly. This random pres-
entation reduces the sensitivity of the algorithm to the order in which the data points are 
processed. In this regard, random presentation has been shown to be superior to cyclic 
presentation, that is, x1, x2,… , xN , x1, x2,…  (Mulier and Cherkassky 1995; Bermejo and 
Cabestany 2002). In fact, cyclic presentation is likely to introduce bias into the learning 
procedure, especially in redundant data such as color image data.

The okm algorithm can also be viewed as an instance of the competitive learning (cl) 
paradigm (Rumelhart and Zipser 1985; Grossberg 1987), which is a form of unsupervised 
learning (Celebi and Aydin 2016) closely related to neural networks (Ahalt et al. 1990). In 
a basic cl algorithm, we have a randomly distributed set of (neural) units that compete for 
the right to respond to a given subset of inputs (Rumelhart and Zipser 1985). Whenever an 
input is presented, the most closely matching unit (typically in the �2 sense) is declared the 
winner, and moved toward the input. Since only the winner is adapted, this learning para-
digm is termed hard competitive learning (or winner-take-all learning)60.

Let x(t) be the input at time t ( t = 1, 2,… ) and c(t) be the winner (with respect to the �2 
distance). The adaptation equation for c(t) is given by

where � ∈ [0, 1] is the learning rate, which is typically a monotonically decreasing func-
tion of time. The larger the � value, the more emphasis is given to the new input, and hence 

(19)c(t) = c(t − 1) + �(t)(x(t) − c(t − 1)),

59  Thompson et  al. (2020) show that a single-pass variant of bkm is faster than okm, but performs very 
poorly.
60  For a discussion of the alternative soft competitive learning (or winner-take-most learning) paradigm, 
see Subsection 5.5.
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the faster the learning. However, very large values of � may prevent the algorithm from 
converging. In general, � is selected to satisfy the Robbins–Monro conditions (Robbins and 
Monro 1951) given by 

 These conditions ensure that the learning rate decreases fast enough to suppress the noise, 
but not too fast to avoid premature convergence. Under mild regularity conditions, this 
algorithm converges almost surely to a local minimum (Bottou 1998).

Rearranging the terms in Eq. (19), we obtain

which indicates that the new center c(t) is a convex combination of the old center c(t − 1) 
and the input x(t) . In other words, values of � in [0, 1] move c along the line segment join-
ing c and x.

The choice �(t) = t−P with P ∈ (0.5, 1] guarantees converge. The value P = 1 gives us 
the most popular rate in the stochastic approximation literature (i.e., the harmonic rate), 
�(t) = 1∕t , which coincides with MacQueen’s choice. This rate leads to the fastest asymp-
totic convergence for K = 1  (Yair et  al. 1992). In practice, data sets are finite ( N < ∞ ), 
and we seek multiple clusters ( K > 1 ). In addition, the clustering problem is nonstationary 
because the subsets of data that fall into each cluster change through the iterations (Darken 
and Moody 1990). Therefore, the asymptotically optimal harmonic rate is often subopti-
mal in practice. More specifically, �(t) = 1∕t decays too rapidly for K > 1 . Multiple stud-
ies (Darken and Moody 1990; Wu and Yang 2006; Thompson et al. 2020) recommend the 
so-called square root rate, �(t) = 1∕

√
t , instead.

It is interesting to note that, while there are numerous exact accelerated bkm algo-
rithms (Hamerly and Drake 2015; Wang et al. 2020), to the best of our knowledge, there 
is no exact accelerated okm algorithm. This is because it is difficult to accelerate okm in an 
exact manner due to the frequent center updates. In fact, online algorithms such as okm are 
often accelerated (approximately) through better learning rate schedules. Fortunately, with 
an appropriate schedule, a one-pass okm implementation can be orders of magnitude faster 
than its many-pass batch counterpart (Thompson et al. 2020; Abernathy and Celebi 2022). 
Thus, there is little need to accelerate okm algorithmically.

Thompson et al. (2020) apply the okm algorithm (with maximin initialization and square 
root learning rate) to the cq problem. The authors demonstrate that, compared to the batch 
algorithm (with maximin initialization), the (one-pass) online algorithm is easier to imple-
ment, 41 to 300 times faster, and gives very similar results.

Abernathy and Celebi (2022) improve upon Thompson et  al. (2020)’s okm algorithm 
by integrating the initialization method into the clustering algorithm. Their incremental 
online k -means clustering algorithm (iokm) begins by setting c0 to the centroid x̄ of X  
(for K = 1 , this choice of c0 is clearly optimal). It then adds 2t+1 new centers in iteration t 

(20a)lim
t→∞

�(t) = 0,

(20b)
∞∑
t=1

�(t) = ∞,

(20c)
∞∑
t=1

𝜂(t)2 < ∞.

(21)c(t) = �(t)x(t) + (1 − �(t))c(t − 1),
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( t ∈ {0,… , log2 K − 1} ) by splitting each of the existing centers into two. When a center ck 
is split, the left child inherits its parent’s attributes (i.e., c2k+1 = ck ), whereas the right child 
becomes a slightly perturbed version of its parent (i.e., c2k+2 = ck + � where � is an arbi-
trary vector of small positive �2 norm). The set of final K centers is then taken as the pal-
ette. Note that in the description above, we assumed that K is a power of two for simplicity. 
If this is not the case, we perform ⌊log2 K⌋ iterations as described above, and then perform 
one last iteration in which we split only K − 2⌊log2 K⌋ of the centers from the previous itera-
tion. The authors demonstrate that their initialization-free iokm algorithm (with � = 0 and 
square root learning rate) is easier to implement and more effective than its predecessor, 
okm.

The simple cl algorithm described above sometimes encounters the so-called dead 
unit problem, where certain units never win the competition and hence never learn, typ-
ically because of poor initialization. From a clustering perspective, such units represent 
empty clusters that do not contribute to the clustering quality. Uchiyama and Arbib (1994a, 
1994b) propose the adaptive distributing units algorithm (adu), a modified cl algorithm 
that alleviates the dead unit problem. adu starts with a single unit, whose center is given 
by the centroid x̄ of X  . In each iteration, a data point is selected uniformly at random from 
X  , and the nearest unit (with respect to the �2 distance) is declared the winner. This unit is 
then updated by moving its center closer to the data point, and incrementing its win count. 
New units are added by splitting existing units that win a user-specified number of times, 
until the number of units reaches K. This splitting policy prevents the formation of dead 
units by preventing certain units from monopolizing the competition. Note that when a new 
unit is generated by duplicating an existing unit, the two units are temporarily colocated. 
Whenever a data point to which these two units are the nearest is presented, one of these 
units becomes the winner and gets updated, while the other remains unchanged. Hence, the 
problem of two identical units moving together cannot occur.

The pseudocode for adu is given in Algorithm 6. The symbols Tmax and Nmax denote the 
maximum number of iterations (or presentations) and the win count threshold, respectively. 
It can be shown that Tmax ≥ (2K − 3)Nmax guarantees that K units are generated upon ter-
mination  (Uchiyama and Arbib 1994b). Unlike most partitional algorithms described in 
this section, adu does not require initialization, which makes the algorithm even easier to 
implement than okm. However, like okm, adu is somewhat sensitive to the order in which 
the data points are processed.

Celebi et  al. (2014) adapt adu to the cq problem. The authors report com-
petitive results with bkm using the following parameter values: Nmax = 400

√
K , 

Tmax = (2K − 3)(K + 7)Nmax , and � = 0.015 . Note that with a constant learning rate � = C , 
a cl algorithm converges to a neighborhood of a solution whose size is proportional to C. 
We can reduce the size of this neighborhood, and thus the variance of the solutions, by 
reducing C. This is why � should be a small positive number.
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Fig. 12   Comparison of km-based cq algorithms
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Figure 12 compares two km variants, weighted tie (Celebi 2011) and adu (Celebi et al. 
2014), on the Peppers image. It can be seen that the error image for weighted tie is slightly 
cleaner than that for adu, and both algorithms produce significantly better results than the 
non-km-based cq algorithms described so far.

5.4 � The fuzzy C‑means algorithm

Given a data set X =
{
x1,… , xN

}
⊂ ℝ

D , a real matrix U = [uij]K×N represents a hard K 
-partition of X  if its elements satisfy three conditions (Bezdek 1981) 

 The ith row of U  , i.e., Ui =
(
ui1,… , uiN

)
 , represents the characteristic function of cluster 

Pi : uij = 1 if xj ∈ Pi , and 0 otherwise; condition (22b) means that each xj belongs to exactly 
one of the K clusters; condition (22c) means that no cluster is empty and no cluster is all of 
X  , that is, K ∈ {2,… ,N} . For obvious reasons, U  is called a partition matrix (or mem-
bership matrix). Note that in the fuzzy clustering literature, the symbol C is often used to 
denote the number of clusters. However, in the following discussion, we continue to use the 
symbol K for consistency.

(22a)uij ∈ {0, 1} i ∈ {1,… ,K}, j ∈ {1,… ,N},

(22b)
K∑
i=1

uij = 1 j ∈ {1,… ,N},

(22c)0 <

N∑
j=1

uij < N i ∈ {1,… ,K}.
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The concept of hard K-partition can be generalized by relaxing condition  (22a) as 
uij ∈ [0, 1] , in which case the partition matrix U  is said to represent a fuzzy K -parti-
tion of X  . In such a partition matrix, the total membership of each xj is still 1, but since 
uij ∈ [0, 1] for all i, xj may have an arbitrary distribution of membership among the K 
fuzzy clusters.

The fuzzy c -means algorithm (fcm) is a generalization of bkm in which data points 
can belong to multiple clusters (Bezdek 1981). The algorithm aims to generate an optimal 
fuzzy K-partition of X  by minimizing

where M ∈ [1,∞) is a user-defined weighting exponent that controls the degree of mem-
bership sharing among the fuzzy clusters. In many applications, this weighting expo-
nent is taken in the range [1.1,  5], with M = 2 an overwhelming favorite (Bezdek et  al. 
1999, p. 34). Note that M = 2 is computationally advantageous, as this is the only value 
that leads to an integer exponent in the partition matrix update equation given next.

Like its hard counterpart, fcm is based on alternating minimization. In each iteration, we 
first update the cluster memberships as follows

for all i and j.
Based on the updated memberships, we then update center ci (for all i) as follows

which is the weighted centroid of X  . These iterations continue until termination criterion 
(15) is satisfied.

The larger the M value, the fuzzier the membership assignments. As M
+
→ 1 , fcm con-

verges to a bkm solution. Conversely, as M → ∞ it can be shown that uij → 1∕K for all i 
and j, so ci → x̄ (for all i), the centroid of X .

The pseudocode for fcm is given in Algorithm  761. A naive implementation of fcm 
requires O(NDK2) time per iteration, which is quadratic in K. The pseudocode gives an 
O(NDK) formulation due to Kolen and Hutcheson (2002).

fcm can be extended to deal with weighted data X = {x1,… , xN} ⊂ ℝ
D , where each 

data point xj has a nonnegative weight wj associated with it. Without loss of generality, we 
assume that the weights add up to one, that is, 

∑N

j=1
wj = 1 . The objective function for the 

weighted fuzzy c -means problem is identical to that for the unweighted problem, with 
the exception that the distances are weighted. The optimal center ci for Pi is given by the 
weighted centroid of X  , that is,

(23)JFCM =

N∑
j=1

K∑
i=1

uM
ij

‖‖‖xj − ci
‖‖‖
2

2
,

(24)uij =

⎡
⎢⎢⎢⎣

K�
𝚤=1

⎛
⎜⎜⎜⎝

���xj − ci
���
2

2

���xj − c𝚤
���
2

2

⎞
⎟⎟⎟⎠

1∕(M−1)⎤
⎥⎥⎥⎦

−1

,

(25)ci =
1∑N

j=1
uM
ij

N�
j=1

uM
ij
xj,

61  For conciseness, we omit the handling of exceptional cases such as empty clusters or data points coinci-
dent with centers.
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The pseudocode for the weighted fuzzy c -means algorithm can be obtained by making 
two simple modifications to Algorithm 7: (1) ni ← ni + m should be ni ← ni + wjm , and (2) 
ĉi ← ĉi + mxj should be ĉi ← ĉi + wjmxj.

Despite its linear time complexity, fcm can be slow when dealing with large data sets. 
Various accelerated fcm algorithms have been proposed since the 1980s. Nearly all of these 
algorithms are inexact, as they involve numerical approximations  (Cannon et  al. 1986; 
Höppner 2002) or sampling (followed by optional weighting) (Cheng et al. 1998; Pal and 
Bezdek 2002; Eschrich et al. 2003; Hathaway and Bezdek 2006; Hathaway and Hu 2009; 
Parker and Hall 2014). Furthermore, most of these algorithms attain only modest (e.g., 
2- to 6-fold) speed-ups. It is important to emphasize that fcm is more difficult to accelerate 
than bkm because the former algorithm involves soft (or partial) memberships, whereas the 
latter one involves hard (or binary) memberships.

The earliest applications of fcm to the cq problem were described by Kok et al. (1993) 
and Çak et al. (1998). The former study does not report any numerical results. In addition, 
both studies omit crucial details such as the value of the weighting exponent used in the 
experiments.

The first rigorous study of fuzzy clustering in cq was conducted by Özdemir and Akarun 
(2002). The authors modify the fcm objective to maximize the so-called partition index 

(26)ci =
1∑N

j=1
wju

M
ij

N�
j=1

wju
M
ij
xj.
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defined for data point xj as pj =
∑K

i=1
uM
ij

 , which quantifies how well xj has been classified. 
If the classification is relatively unambiguous ( uij ≈ 1 for some i, that is, xj is much closer 
to a particular center than it is to other centers), pj approaches its maximum value of one. 
If, on the other hand, the classification is relatively ambiguous ( uij ≈ 1∕K for all i, that is, 
xj is nearly equidistant to all K centers), pj approaches its minimum value of K1−M.

The fcm objective (23) can be modified to incorporate the sum of partition indices for 
all data points as follows

The fcm-like alternating optimization algorithm to minimize this modified objective is 
called the partition index maximization algorithm (pim). The center update equation for 
pim is identical to that for fcm. On the other hand, the membership update equation for pim 
is given by

for all i and j, which reduces to the membership update equation for fcm for R = 0 . To pre-
vent undefined values in the above equation, we set uij = 1 if ‖‖‖xj − ci

‖‖‖2 ≤ R . This means 
that we classify xj in a hard manner if it falls in the spherical region of radius R centered at 
ci , and in a soft manner based on Eq. (28) otherwise. The greater the radius R, the more 
data points are classified in a hard manner, and hence the faster the pim algorithm (com-
pared to fcm)62. However, R cannot be too large because otherwise, pim ceases to be a fuzzy 
clustering algorithm. Özdemir and Akarun recommend setting R to a user-defined fraction 
C of the �2

2
 distance between the nearest two centers, that is, R = Cmini≠𝚤

‖‖ci − c𝚤
‖‖22 , where 

C ∈ [0, 0.5) . The authors report good results with M = 1.3 and C = 0.49 . Yang et al. (2008) 
suggest C ∈ [0, 0.25) because C ≥ 0.25 might violate condition (22b).

Wen and Celebi (2011) implement accelerated variants of bkm and fcm, and compare the 
resulting cq algorithms. Both algorithms feature sampling of the input image (2 : 1 sam-
pling in the horizontal and vertical directions) as well as weighting. bkm is further accel-
erated using the tie algorithm described in Subsection  5.3. The authors investigate four 
hierarchical cq algorithms to initialize bkm and fcm: median-cut, octree, marginal variance 
minimization, and variance minimization. Four fcm variants63 are tested: FCM1.25 FCM1.5 , 
FCM1.75 , and FCM2.0 , where the subscripts indicate the values of the weighting exponent. 
In terms of mae, all bkm and fcm variants perform similarly. In general, as M is increased, 
the mse attained by fcm increases, with FCM1.25 performing slightly better than bkm. With 
respect to efficiency, bkm vastly outperforms fcm. In particular, bkm is 92 times faster than 
fcm, on average.

Schaefer and Zhou (2009); Schaefer (2014) apply several fuzzy/rough clustering algo-
rithms to the cq problem. These algorithms include standard fcm, multistage random 

(27)JPIM =

N∑
j=1

K∑
i=1

uM
ij

‖‖‖xj − ci
‖‖‖
2

2
− R

N∑
j=1

K∑
i=1

uM
ij
.

(28)uij =

⎡
⎢⎢⎢⎣

K�
𝚤=1

⎛
⎜⎜⎝

���xj − ci
���2 − R

���xj − c𝚤
���2 − R

⎞
⎟⎟⎠

2∕(M−1)⎤
⎥⎥⎥⎦

−1

,

62  In practice (Celebi 2009), pim is only slightly faster than fcm because the former is based on �2 distances, 
whereas the latter is based on �2

2
 distances.

63  Recall that fcm with M = 1 is identical to bkm.
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sampling fcm  (Cheng et  al. 1998), enhanced fcm  (Szilágyi et  al. 2003), anisotropic mean-
shift-based fcm  (Zhou et  al. 2009), rough c-means  (Schaefer et  al. 2011), and fuzzy rough 
c-means  (Schaefer et  al. 2012). Their experiments demonstrate that, when initialized with 
randomly selected centers, these algorithms perform similarly on average for K = 16 . While 
some of these algorithms may be faster than naive fcm, they also have more user-defined 
parameters, and many of them are more difficult to implement.

Due to its fuzzy nature, fcm is expected to be less sensitive to noise, cluster overlap, 
and initialization than its hard counterpart. However, in the context of cq, these potential 
advantages of fcm have been demonstrated only to a limited extent (Szilágyi et al. 2014, 
2016). In addition, despite significant efforts from fuzzy clustering researchers (Chen and 
Wang 1999; Dembélé and Kastner 2003; Yu et al. 2004; Yu and Yang 2005; Ozkan and 
Turksen 2007; Schwämmle and Jensen 2010; Huang et al. 2012; Wu 2012; Ren et al. 2019; 
Zhou and Yang 2019), there is still no universally accepted method to set the weighting 
exponent.

Figure 13 shows the Peppers image quantized to 8 colors using Wen and Celebi’s vari-
ant of the fcm algorithm with M = 2 . It can be seen that the error image for fcm is darker in 
most parts than that for tie (shown in Fig. 12c), indicating that fcm produces more distor-
tion than its hard counterpart.

Fig. 13   Peppers image quantized using Wen and Celebi’s fcm algorithm
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5.5 � The self‑organizing map algorithm

In Subsection 5.3, we discussed the dead unit (or empty cluster) problem that plagues hard 
cl algorithms such as okm, especially when they are initialized poorly. We then presented a 
modified cl algorithm that alleviates the dead unit problem. Recall that hard cl algorithms 
adapt only the winner unit in each iteration. Therefore, units initialized near high-density 
regions of the data space may monopolize the competition, whereas those initialized near 
low-density regions may become perpetual losers. In this subsection, we describe another 
approach to address the dead unit problem, the so-called soft competitive learning (or 
winner-take-most learning) paradigm.

Soft cl algorithms adapt not only the winner, but also some of the losers so that they are 
not completely excluded from the competition. Among these algorithms, Kohonen’s self-
organizing map algorithm (som) (Kohonen 1982) is one of the most prominent. The som 
algorithm performs a nonlinear, topology-preserving mapping from a high-dimensional 
data manifold to a low-dimensional (typically 1d or 2d) lattice  (Van  Hulle 2012). Here, 
topology (or neighborhood) preservation means topologically close (or neighboring) units 
respond to similar inputs.

The competitive stage of som is identical to that of okm: in each iteration, a data point 
selected uniformly at random from X  is presented, which induces a competition for activa-
tion among the K units. The two algorithms differ in their cooperative stage: while okm 
adapts only the winner unit using Eq. (19), som adapts both the winner unit i∗ and its lattice 
neighbors as follows

where h is the neighborhood function, a scalar-valued function of the lattice coordinates 
ri and ri∗ of units i and i∗ , respectively. The function h is often taken as a Gaussian, that is,

where �(t) is the learning rate and �(t) is the standard deviation of the Gaussian, which 
corresponds to the neighborhood range. Both �(t) and �(t) are usually taken to be mono-
tonically decreasing functions of time. For example, �(t) may decay according to an expo-
nential schedule  (Ritter and Schulten 1988) given by �(t) = �i(�f∕�i)

t∕Tmax , where Tmax is 
the number of iterations (i.e., t ∈ {0,… , Tmax} ), and �i = �(0) and �f = �(Tmax) are respec-
tively the initial and final values of �(t) with 𝜂i ≥ 𝜂f > 0 . The initial learning rate �i is typi-
cally taken as one, in which case the exponential schedule reduces to �(t) = �

t∕Tmax

f
 . Other 

popular schedules in the som literature  (Kohonen 2013) include the linear schedule and 
harmonic schedule given by �(t) = �i(1 − t∕Tmax) and �(t) = �iC∕(C + t) with C > 0 , 
respectively. Similarly, �(t) may decay according to an exponential, linear, or harmonic 
schedule.

In Subsection 5.3, we discussed the role of the learning rate �(t) in an online learn-
ing algorithm. As for the neighborhood range �(t) , we start with a relatively large value 
to promote topology preservation in the early iterations, and then decrease it mono-
tonically with time. Observe that when �(t) vanishes, the adaptation equation for som, 
Eq. (29), reduces to that for simple cl, Eq. (19), meaning that som reduces to okm.

(29)ci(t) = ci(t − 1) + h(i, i∗, t)
(
x(t) − ci(t − 1)

)
,

(30)h(i, i∗, t) = �(t) exp

(
−
‖‖ri − ri∗

‖‖22
2�2(t)

)
,
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The Gaussian neighborhood function given above ensures that each neighbor of the 
winner is moved toward the input at a rate depending on its topological closeness to the 
winner. A computationally simpler neighborhood function is given by

where r(t) is the radius of the neighborhood, which is also a monotonically decreasing 
function of time. This simplified neighborhood function moves the winner and its neigh-
bors within a radius toward the input at the same rate.

There are two common ways to initialize a som. Random initialization involves 
using K data points selected uniformly at random from X  as initial centers. pc initializa-
tion (Kohonen 2013) involves selecting the K initial centers from the subspace spanned by 
the first D′ pcs of the data, where D′ is the dimensionality of the map ( D� ∈ {1, 2, 3} ). Not 
surprisingly, the effectiveness of an initialization method appears to be data dependent. In 
a recent experimental study on 1d soms (Akinduko et al. 2016), random initialization out-
performed pc initialization on nonlinear data sets, whereas the situation was reversed on 
quasilinear data sets.

(31)h(i, i∗, t) =

{
𝜂(t) ‖‖ri − r

i∗
‖‖2 < r(t),

0 otherwise,

Fig. 14   Peppers image quantized using Dekker’s som algorithm



14015Forty years of color quantization: a modern, algorithmic survey﻿	

1 3

Ta
bl

e 
4  

C
om

pa
ris

on
 o

f 
Pa

rti
tio

na
l c

q
 A

lg
or

ith
m

s 
(d

iff
: d

iffi
cu

lt,
 e

ffi
: e

ffi
ci

en
t, 

eff
ec

: e
ffe

ct
iv

e(
ne

ss
), 

fr
eq

: f
re

qu
en

cy
, h

ist
. r

es
.: 

hi
sto

gr
am

 r
es

ol
ut

io
n,

 im
pl

: i
m

pl
em

en
t, 

in
it:

 
in

iti
al

iz
at

io
n,

 m
od

: m
od

ifi
ed

, m
od

er
: m

od
er

at
el

y,
 p

ar
am

: p
ar

am
et

er
, p

re
s:

 p
re

se
nt

at
io

n,
 se

ns
: s

en
si

tiv
e,

 so
m

e:
 so

m
ew

ha
t, 

su
b:

 su
bs

ta
nt

ia
lly

, s
qr

t: 
sq

ua
re

 ro
ot

)

A
lg

or
ith

m
Re

fe
re

nc
es

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

Po
pu

la
rit

y
H

ec
kb

er
t (

19
82

)
effi

.; 
ea

sy
 to

 im
pl

.
D

is
re

ga
rd

s d
iv

er
si

ty
 o

f c
ol

or
s;

 h
ist

. r
es

. p
ar

am
. d

iff
. t

o 
se

t
M

od
. p

op
ul

ar
ity

B
ra

ud
aw

ay
 (1

98
7)

effi
.; 

ea
sy

 to
 im

pl
.

C
 p

ar
am

. d
iff

. t
o 

se
t

M
ax

im
in

H
ou

le
 a

nd
 D

ub
oi

s (
19

86
)

eff
ec

. o
n 

w
el

l-s
ep

ar
at

ed
 d

at
a;

 e
ffi

.; 
ea

sy
 to

 im
pl

.
D

is
re

ga
rd

s f
re

q.
 o

f c
ol

or
s;

 se
ns

. t
o 

ou
tli

er
s;

 sp
re

ad
s d

ist
or

tio
n 

un
i-

fo
rm

ly
M

od
. m

ax
im

in
H

si
eh

 a
nd

 F
an

 (2
00

0)
effi

.; 
ea

sy
 to

 im
pl

.
T 

pa
ra

m
. d

iff
. t

o 
se

t
M

od
. m

ax
im

in
H

ua
ng

 (2
02

1)
effi

.; 
ea

sy
 to

 im
pl

.
�
2 2
 d

ist
an

ce
 a

nd
 sq

rt.
 o

f f
re

q.
 a

re
 in

co
m

m
en

su
ra

bl
e

fs
k

m
H

ua
ng

 a
nd

 C
ha

ng
 (2

00
4)

m
od

er
. f

as
te

r t
ha

n 
b

k
m

; s
om

e.
 e

as
y 

to
 im

pl
.

K
f p

ar
am

. d
iff

. t
o 

se
t; 

se
ns

. t
o 

in
it.

; n
o 

co
nv

er
ge

nc
e 

gu
ar

an
te

e
sb

k
m

H
u 

an
d 

Le
e 

(2
00

7)
m

od
er

. f
as

te
r t

ha
n 

b
k

m
; s

om
e.

 e
as

y 
to

 im
pl

.
se

ns
. t

o 
in

it.
; n

o 
co

nv
er

ge
nc

e 
gu

ar
an

te
e

–
K

as
ug

a 
et

 a
l. 

(2
00

0)
Sl

ig
ht

ly
 fa

ste
r t

ha
n 

b
k

m
di

ff.
 to

 im
pl

.
ti

e 
+

 m
o

s
H

u 
an

d 
Su

 (2
00

8a
)

m
od

er
. f

as
te

r t
ha

n 
b

k
m

di
ff.

 to
 im

pl
.; 

se
ns

. t
o 

in
it.

w
ei

gh
te

d 
ti

e
C

el
eb

i (
20

11
)

su
b.

 fa
ste

r t
ha

n 
b

k
m

so
m

e.
 d

iff
. t

o 
im

pl
.; 

se
ns

. t
o 

in
it.

m
o

s
H

ua
ng

 (2
02

1)
m

od
er

. f
as

te
r t

ha
n 

b
k

m
so

m
e.

 d
iff

. t
o 

im
pl

.; 
se

ns
. t

o 
in

it.
o

k
m

Th
om

ps
on

 e
t a

l. 
(2

02
0)

su
b.

 fa
ste

r t
ha

n 
b

k
m

; e
as

y 
to

 im
pl

.
se

ns
. t

o 
in

it.
io

k
m

A
be

rn
at

hy
 a

nd
 C

el
eb

i (
20

22
)

su
b.

 fa
ste

r t
ha

n 
b

k
m

; e
as

y 
to

 im
pl

.; 
in

it.
-f

re
e

eff
ec

. c
an

no
t b

e 
im

pr
ov

ed
 u

si
ng

 a
 b

et
te

r i
ni

t.
a

d
u

C
el

eb
i e

t a
l. 

(2
01

4)
effi

.; 
ea

sy
 to

 im
pl

.; 
in

it.
-f

re
e

sc
al

es
 p

oo
rly

 w
ith

 K
; s

om
e.

 se
ns

. t
o 

pr
es

. o
rd

er
pi

m
Ö

zd
em

ir 
an

d 
A

ka
ru

n 
(2

00
2)

le
ss

 se
ns

. t
o 

no
is

e,
 c

lu
ste

r o
ve

rla
p,

 a
nd

 in
it.

 th
an

 b
k

m
Sl

ow
er

 th
an

 fc
m

; M
 a

nd
 C

 p
ar

am
. d

iff
. t

o 
se

t
fc

m
W

en
 a

nd
 C

el
eb

i (
20

11
)

le
ss

 se
ns

. t
o 

no
is

e,
 c

lu
ste

r o
ve

rla
p,

 a
nd

 in
it.

 th
an

 b
k

m
su

b.
 sl

ow
er

 th
an

 b
k

m
; M

 p
ar

am
. d

iff
. t

o 
se

t
so

m
D

ek
ke

r (
19

94
)

effi
.; 

le
ss

 se
ns

. t
o 

in
it.

 th
an

 b
k

m
; g

en
er

at
es

 a
 so

m
e.

 
co

nt
ig

uo
us

 p
al

et
te

di
ff.

 to
 im

pl
.; 

m
an

y 
pa

ra
m

.; 
so

m
e.

 se
ns

. t
o 

pr
es

. o
rd

er



14016	 M. E. Celebi 

1 3

In Subsection 5.3, we discussed the difficulty of accelerating okm. As okm is a special 
case of som, where the winner has no neighbors, the acceleration of som appears to be at 
least as difficult as that of okm. For this reason, most accelerated som variants are either 
approximations  (Koikkalainen and Oja 1990; Lampinen and Oja 1990; Su and Chang 
2000; Bernard et al. 2020) or parallel algorithms (Ienne et al. 1997; Lawrence et al. 1999; 
Xiao et al. 2015; Wittek et al. 2017; Liu et al. 2018), which are not based on the online som 
formulation given above, but rather a batch som formulation (Kohonen 1993).

The first rigorous application of the som algorithm to the cq problem was pro-
posed by Dekker (1994). The author employs a 1d som64, initialized with centers 
spread evenly along the main diagonal of the rgb cube, that is, ci = (ri, gi, bi) , where 
ri = gi = bi = 255⌊(i − 1)∕(K − 1)⌋ for i ∈ {1,… ,K} . The algorithm is essentially a one-
pass algorithm, but, for implementation reasons, the scan is divided into 100 cycles. Thus, 
N/100 pixels are presented in each cycle. The learning rate schedule during cycle t is taken 
as �(t) = exp(−0.03t) . Hence, the learning rate starts at 1 (at cycle 0), and decreases expo-
nentially until reaching its final value of about 0.0513 (at cycle 99). The neighborhood 
function is taken as h(i, i∗, t) = �(t)

�
1 − (�i − i∗�∕⌊r(t)⌋)2� , where the radius is given by 

r(t) = 32 exp(−0.0325t) . Thus, the radius starts at 32 (at cycle 0), and decreases exponen-
tially until reaching about 2.02 at cycle 85, after which point it drops below 2. This means 
that in the last 14 cycles, only the winner is updated.

Dekker uses the conscience mechanism of DeSieno (1988) to prevent certain units 
from monopolizing the competition. Let x be the current input and ci be one of the units. 
The conscience mechanism computes the distance65 between the two as ‖‖x − ci

‖‖1 − bi , 
where bi is a bias factor that increases as unit i loses, thereby favoring the selection of less 
frequently winning units. The bias is defined as bi = �(1∕K − fi) , where � is a constant, and 
fi estimates the frequency at which unit i is nearest to the input. Initially, we have fi = 1∕K , 
and hence bi = 0 . Let i∗ be the nearest unit to x with respect to the �1 metric, that is, 
i∗ = argmin

i∈{1,…,K}

‖‖x − ci
‖‖1 . The frequency of unit i∗ is updated as fi∗ ← fi∗ − �fi∗ + � , whereas 

that of unit i ≠ i∗ is updated as fi ← fi − �fi . Note that the bias of unit i∗ can then be updated 
directly as bi∗ ← bi∗ + ��fi∗ − �� , whereas that of unit i ≠ i∗ can updated as bi ← bi + ��fi . 
Dekker recommends � = 1024 and � = 1∕1024 so that �� = 1 , which simplifies the above 
update equations. It is important to note that the conscience mechanism aims to achieve 
clusters of approximately equal size, which is rarely optimal from a distortion minimiza-
tion perspective.

Figure 14 shows the Peppers image quantized to 8 colors using Dekker’s som algorithm. 
It can be seen that while the algorithm performs better than early hierarchical algorithms 
(e.g., median-cut and octree), it is not competitive with modern hierarchical algorithms or 
km-based partitional algorithms.

From a cq perspective, the advantages of som are (i) its biologically-inspired formula-
tion is appealing to researchers; (ii) thanks to its soft-competitive design, the algorithm 
is less sensitive to initialization and the dead unit problem; and (iii) the final palette is 
somewhat contiguous (i.e., adjacent colors are similar), which can be exploited for post-
quantization image processing operations such as edge detection (Mojsilović and Soljanin 
2001) and compression  (Dekker 1994; Pei and Lo 1998; Mojsilović and Soljanin 2001; 
Chang et al. 2005; Pei et al. 2006).

65  For computational efficiency, Dekker adopts the �1 metric rather than the �2

2
 distance.

64  According to Pei and Lo (1998), in the context of cq, a 2d som performs slightly worse than a 1d one.
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Dekker’s algorithm is the best-known application of som to cq. However, his seminal 
paper illustrates a major challenge researchers face when designing som-based cq algo-
rithms: the large number of user-defined parameters required for controlling their behavior. 
In fact, Dekker’s algorithm, as well as its successors (Pei and Lo 1998; Chang et al. 2005; 
Wang et al. 2007; Chung et al. 2012), each have a half-dozen to dozen parameters. Further-
more, the performance of these algorithms is known to be sensitive to the values of at least 
some of their parameters (Ienne et al. 1997; Su and Chang 2000; Chang et al. 2005; Wang 
et al. 2007). Other disadvantages of som include (i) convergence is formally proved only for 
the simplest case (both the input space and lattice are 1d) (Cottrell et al. 2016; ii) it is not 
only slow, but also difficult to accelerate (Chung et al. 2012; iii) it is somewhat sensitive 
to the order in which the data points are processed; and (iv) it is more difficult to imple-
ment (Kohonen 2013) than its km-based alternatives.

Table 4 compares the partitional cq algorithms described in this section.

6 � Metaheuristic algorithms

Many recent cq algorithms are based on metaheuristics  (Blum and Roli 2003). These 
algorithms formulate cq as a global66 optimization problem, and then attempt to solve it 
using various nature-inspired metaheuristics. Metaheuristics applied to cq to date include 
single-solution-based metaheuristics such as simulated annealing  (Fiume and Ouellette 
1989; Nolle and Schaefer 2007; Schaefer and Nolle 2015) and variable neighborhood 
search  (Hansen et  al. 2007) as well as population-based metaheuristics such as evolu-
tionary algorithms (genetic algorithms (Freisleben and Schrader 1997; Scheunders 1997; 
Taşdizen et  al. 1998), evolution strategies  (González et  al. 2000), etc.) and swarm intel-
ligence algorithms (particle swarm optimization  (Omran et al. 2005), ant colony optimi-
zation (Ghanbarian et al. 2007; Pérez-Delgado 2015, 2021), etc.) There are also cq algo-
rithms that combine a conventional (hierarchical or partitional) clustering algorithm with a 
metaheuristic (Pérez-Delgado and Gallego 2019, 2020) or multiple metaheuristics (Pérez-
Delgado 2018, 2019, 2020).

Compared to conventional clustering algorithms, metaheuristic algorithms can optimize 
more complex, e.g., perceptually-based  (Schaefer and Nolle 2015), objective functions 
or even multiple objective functions simultaneously. For example, it is generally easier 
to formulate an objective function with a variable number of clusters in a metaheuristic 
framework. Unfortunately, these black-box algorithms have several major disadvantages 
over conventional ones. First they often involve a large number of user-defined parameters 
(initial/final temperature, cooling schedule, population size, crossover/mutation probabil-
ity, etc.) some of which are difficult to tune or control (Eiben et al. 1999). Second, they are 
generally randomized to escape from local minima. Third, due to the vast search space in 
clustering problems, they usually require many iterations, which renders them computa-
tionally expensive (they can be orders of magnitude slower than conventional clustering 
algorithms). Fourth, they are typically more difficult to implement. We should, however, 
mention that some of the recent metaheuristic-based cq algorithms  (Pérez-Delgado and 
Gallego 2020, 2019) have only a few user-defined parameters, and are reasonably efficient.

66  By contrast, conventional partitional algorithms discussed in Sect.  5 are all local optimization algo-
rithms.
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7 � Pixel mapping

Recall that cq consists of two main phases: color palette design and pixel mapping67 (pm). 
In general, the former is a computationally hard problem, whereas the latter can be solved 
exactly using a trivial linear-time algorithm, as explained below. Therefore, most of the cq 
literature deals with the former phase, which is also the main focus of this paper. In this 
section, we briefly discuss the latter phase for completeness.

Given an input image, the palette design phase produces a small palette that represents 
the input colors. To minimize distortion, each pixel in the input image (or query pixel in 
the nearest neighbor search terminology) should be mapped to its nearest representative in 
the palette. The result of the pm phase is thus a reduced-color image, wherein only colors 
from the palette can appear.

A key aspect of pm is the distance function d(⋅, ⋅) used to quantify the dissimilarity 
between a query pixel and a representative. Let I and Ĩ be the H ×W input and output 
images, respectively, and C = {c1,… , cK} be the palette. The mapping operation is then 
given by

for r ∈ {1,… ,H} and c ∈ {1,… ,W}.
Since mse is the most popular fidelity metric in cq applications, it is customary to adopt 

the d = �
2
2
 distance in the pm phase as well. Nevertheless, some studies use alternative dis-

tance functions. For example, Dekker (1994) uses the �1 metric to accelerate pm. Unfortu-
nately, the �1 norm is a poor approximation for the �2 norm. More specifically, the former 
can overestimate the latter by as much as 100(

√
D − 1) % in D dimensions ( ≈ 73.2 % for 

D = 3) (Celebi et al. 2011). In addition, �1 is unlikely to provide an appreciable computa-
tional advantage over �2

2
 on a modern cpu. Verevka and Buchanan (1995) use an �2 approx-

imation due to Chaudhuri et al. (1992) as a substitute for �2
2
 . In fact, there are several such 

�2 norm approximations in the literature (Celebi et al. 2011, 2012a). These approximations 
are computationally cheaper than �2 , as they eliminate the expensive square root operation 
(in some cases, also reduce the number of multiplications) at the cost of increasing the 
numbers of comparison and absolute value operations. Hence, using an �2 approximation 
is unlikely to yield a significant speed-up over the computationally simpler �2

2
 , which does 

not involve any square roots.
Another issue is whether or not the pm phase is coupled with the palette design phase. 

A prime example of an uncoupled pm algorithm is the trivial algorithm that computes the 
�
2
2
 distance between a given query pixel and each of the K representatives in O(K) time, 

leading to an O(NpK) exact pm algorithm. Coupled pm algorithms, on the other hand, are 
typically found in divisive cq algorithms. Many of these cq algorithms build a binary tree 
approximating the 3d Voronoi diagram of the input color space, which can then be used for 
approximate pm in O(Np logK) time (Brun and Secroun 1998). These algorithms achieve 
faster pm at the cost of greater distortion by mapping each query pixel to the representative 
of its cluster rather than its nearest representative (Wu 1992b, a). Note that an optimal pm 
algorithm has a time complexity of O(Np).

(32)Ĩ(r, c) = argmin
ci∈C

d(I(r, c), ci),

67  Sometimes referred to as inverse color map computation (Heckbert 1982)
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For each query pixel, the trivial algorithm performs an exhaustive search in the palette. 
This is inefficient because, for any query pixel, many of the representatives will likely be 
too far to be its nearest representative. We now briefly describe the accelerated pm algo-
rithms proposed in the cq literature. The first such algorithm, named locally sorted search, 
was proposed by Heckbert (1982). The algorithm starts by performing bit-cutting, that is, 
by dividing the rgb cube into L × L × L equal-sized subcubes, where L is a user-defined 
integer (the author uses L = 8 for K = 256 ). For each subcube, it maintains a sorted list of 
representatives that are nearest to some color in that subcube. Given a query pixel, it first 
determines the subcube that contains the color of that pixel, and then performs an exhaus-
tive search only in the list associated with that subcube. This algorithm reduces the number 
of �2

2
 distance computations required for an exact pm. However, it uniformly divides the rgb 

space without considering the distribution of the input colors (Necaise 1998). In addition, 
the optimal L value is difficult to estimate (Brun and Secroun 1998). Necaise (1998) pro-
poses a modified locally sorted search algorithm that divides the rgb space adaptively into 
rectangular boxes of varying dimensions using a k-d tree.

Thomas (1991) proposes an algorithm that explicitly computes the 3d Voronoi diagram 
generated by the representatives. The algorithm requires O(23B) memory, where B is the 
number of bits per color component. To reduce the memory requirements of the algorithm, 
the author employs bit-cutting, that is, truncating the least significant C bits of each com-
ponent (the author uses C = 3 ). Due to this modification, however, the algorithm provides 
only an approximate pm. Brun and Secroun (1998) describe a three-step algorithm that 
improves upon Thomas’s Voronoi-diagram-based approach. The algorithm first projects 
the representatives onto the plane spanned by the first two pcs of the input image. It then 
computes an approximate 2d Voronoi diagram generated by the projected representatives. 
Finally, a correction step is performed to reduce the approximation errors committed in the 
first two steps. For a sufficiently large palette, the resulting algorithm provides a near-exact 
pm in roughly O(Np) time (independent of K).

Cheng and Yang (2001) propose an exact accelerated pm algorithm based on 1d pro-
jections onto a rough approximation for the pc1 of the palette given by the line � passing 
through the mean representative and the representative farthest from it. The algorithm first 
projects the representatives onto � , and then sorts them to obtain an ordered set S of pro-
jection values. Given a query pixel, it determines the nearest representative by performing 
repeated binary searches over S with the search key taken as the projection of the query 
pixel on � . Hung and Chang (2002) modify Cheng and Yang’s algorithm by taking the 
pc1 of the palette as the projection axis, and performing a single binary search per query 
pixel to find an approximate nearest representative, which is then refined by means of lin-
ear searches among the immediate left and right neighbors of that representative. Hwang 
and Chang (2002) extend Hung and Chang’s approach by employing 2d projections onto 
the plane spanned by the first two pcs of the palette. More recently, Hu and Su (2008b) 
combine tie with mos68. It should noted that there is a fine balance between the effective-
ness of elimination and the efficiency of search. Therefore, overly complicated elimination 
strategies do not necessarily pay off in practice.

68  Dekker (1994) also employs a mos-like accelerated pm algorithm.
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8 � Conclusions and future research directions

In this paper, we presented a comprehensive survey of cq algorithms proposed since 1980. 
We first provided background information on cq, color science, and color image process-
ing. We then presented a detailed survey of color palette design, followed by a brief discus-
sion of accelerated pixel mapping.

Despite the over four decades of research on cq, many unsolved problems remain:

•	 The selection of the color space in which to perform cq and the selection of color 
image fidelity metrics with which to evaluate the quality of cq are nontrivial decisions 
that deserve further exploration.

•	 In addition to objective methods, subjective methods should be used to assess cq algo-
rithms.

•	 A vast majority of cq algorithms developed to date are context-free. Due to the impor-
tance of contextual information, algorithms that incorporate such information in 
accordance with the characteristics of the hvs should be developed. Metaheuristic algo-
rithms are particularly attractive for optimizing complex hvs-based objective functions.

•	 Most cq algorithms are static, requiring the user to specify the palette size in advance. 
However, in some applications, we are interested in determining the number of domi-
nant colors in a given image (Celebi and Zornberg 2014; Barata et al. 2016). Therefore, 
the development of dynamic cq algorithms should be prioritized for such applications.

•	 Due to the advances in camera technology, true-color images have been steadily get-
ting larger over the years. It may be too slow to quantize such large images even with 
a linear-time cq algorithm, especially if the algorithm is a partitional one that requires 
multiple passes over the input image. Therefore, effective and efficient methods should 
be developed to sample large images.

•	 Researchers have developed many real-time cq algorithms since the 1980s. However, 
to the best of our knowledge, there have been no attempts to develop an interactive cq 
algorithm. It is not difficult to envision that such an algorithm can be used in various 
computer graphics applications such as non-photorealistic rendering.

•	 Most cq algorithms are designed for software implementation. Among the few existing 
hardware solutions, most concern the som algorithm implemented on field-program-
mable gate arrays (fpgas) (Sudha et al. 2003; Atsalakis et al. 2004; Chang et al. 2006; 
Kurdthongmee 2008, 2011, 2016; Khalifa et al. 2020). While these hardware-based som 
quantizers can achieve real-time processing speeds, they involve certain approxima-
tions (e.g., fixed-point or integer representation as opposed to floating-point representa-
tion, the �1 metric instead of the �2

2
 distance, and winner-take-all learning rather than 

winner-take-most learning) that compromise their effectiveness. More effort should be 
directed toward designing hardware-friendly and effective cq algorithms. In addition, 
implementation of cq algorithms on graphics processing units (gpus) should be investi-
gated further (Leung et al. 2010; Bottisti et al. 2012; Trapp et al. 2019).

•	 There are currently very few supervised cq algorithms  (Hou et  al. 2020; Yoo et  al. 
2020; Park et al. 2022). Convolutional neural networks (cnns) are a promising avenue 
of research in this respect.

•	 Most open-source cq software implement conventional hierarchical algorithms (e.g., 
median-cut, marginal variance minimization, octree, oblique-cut, and variance mini-
mization). cq researchers should release implementations of newer algorithms as open-
source software.
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•	 Many cq studies employ images taken from the usc-sipi Image Database or the Kodak 
Lossless True Color Image Suite. Recently, Celebi and Pérez-Delgado published a large 
and diverse benchmark database named cq10069 on which cq algorithms can be devel-
oped, tested, and compared. This database should be used in cq studies so that its defi-
ciencies can be identified and subsequently addressed.
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No. oia-1946391. Any opinions, findings, and conclusions or recommendations expressed in this material 
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