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bstract

In this paper a methodological approach to the classification of pigmented skin lesions in dermoscopy images is presented. First, automatic
order detection is performed to separate the lesion from the background skin. Shape features are then extracted from this border. For the extraction
f color and texture related features, the image is divided into various clinically significant regions using the Euclidean distance transform. This
eature data is fed into an optimization framework, which ranks the features using various feature selection algorithms and determines the optimal

eature subset size according to the area under the ROC curve measure obtained from support vector machine classification. The issue of class
mbalance is addressed using various sampling strategies, and the classifier generalization error is estimated using Monte Carlo cross validation.
xperiments on a set of 564 images yielded a specificity of 92.34% and a sensitivity of 93.33%.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Malignant melanoma is one of the most rapidly increasing
ancers in the world, with an estimated incidence of 59,580
nd an estimated total of 7770 deaths in the United States in
005 alone [1]. Early diagnosis is particularly important since
elanoma can be cured with a simple excision if detected early.
Dermoscopy is a non-invasive skin imaging technique that

ses optical magnification and either liquid immersion and low
ngle-of-incidence lighting or cross-polarized lighting to make
he contact area translucent, making subsurface structures more
asily visible when compared to conventional clinical images
2]. This reduces screening errors, and provides greater differ-

ntiation between difficult lesions such as pigmented Spitz nevi
nd small, clinically equivocal lesions [3]. However, it has been
emonstrated that dermoscopy may actually lower the diagnos-
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ic accuracy in the hands of inexperienced dermatologists [4].
urthermore, for the diagnosis, dermatologists rely on their clin-

cal experience and visual perception. However, diagnosis made
y human vision is somewhat subjective, lacking accuracy and
eproducibility.

Computerized dermoscopy image analysis systems do not
ave the limitation of this subjectivity. These systems allow the
se of a computer as a second independent diagnostic method,
hich can potentially be used for the prescreening of patients
erformed by non-experienced operators and for aiding clin-
cians [5]. Although computerized analysis techniques cannot
rovide a definitive diagnosis, they can be used to improve
iopsy decision-making, which some observers feel is the most
mportant use for dermoscopy [6]. For example, clinicians can
void biopsy for such significant classes of lesions as vascu-
ar lesions and dysplastic nevi. Finally, automated analysis can
erve as an additional tool to improve follow-up, especially for
atients with multiple atypical nevi [5].
Studies related to the automated classification of pigmented
kin lesion images have appeared in the literature as early as 1987
7]. Different methods for border detection, feature extraction,
nd classification have been applied to various image sets mostly
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Table 1
Summary of recent studies using dermoscopy images

Source Year Segmentation method Classifier Total images Mel. (%) Dys. (%) Sens. Spec.

[8] 2001 Thresholding NR 246 26 45 100 84
[9] 2001 Thresholding + color clustering kNN 5363 2 19 73 89
[10] 2001 Thresholding ANN 58 38 19 77 75
[11] 2002 Edge detection ANN 147 39 29 93 92.75
[12] 2002 None CART 40 50 30 100 91
[13] 2003 NR Multiple classifiers 152 28 NR 81 74
[14] 2004 Thresholding + region growing ANN 319 24 59 86.6 90.2
[15] 2004 NR Logistic regression 837 10 11 80.0 82.4

88.1 82.7
[16] 2005 Semi-automatic + manual Logistic regression 2430 16 25 91 65

NR: not reported, kNN: k nearest-neighbor, ANN: artificial neural network, CART: classification and regression trees, Mel.: melanoma, Dys.: dysplastic, Sens.:
sensitivity, Spec.: specificity.
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Fig. 1. Schem

btained from single sources. Table 1 summarizes some key
esults from 2001 onwards.

In this paper, a methodological approach to the classification
f dermoscopy images is presented. Fig. 1 shows an overview
f the proposed approach.

The rest of the paper is organized as follows. Section 2
escribes the data set collection. Section 3 explains the border
etection. Section 4 discusses the feature extraction. Section 5
escribes the feature selection. Section 6 presents the support
ector machines. Section 7 describes the classification experi-
ents. Finally, Section 8 gives the conclusions and the future
ork.

. Data set description

The digital dermoscopy images were collected from two der-
oscopy atlases [2,17]. The images in [2] were acquired in three

niversity hospitals (University of Graz, Austria, University of
aples, Italy and University of Florence, Italy), while those in

17] were acquired in the Sydney Melanoma Unit, Sydney, Aus-
ralia. These were true-color images with a typical resolution of

68 × 512 pixels. Since we had no control over the image acqui-
ition and camera calibration, images that satisfied at least one of
he following criteria were omitted from the study: (i) the lesion
oes not fit entirely within the image frame, (ii) presence of too

i
1
t
o

ig. 2. Sample images omitted from the study: (a) incompletely imaged lesion (diame
nd the background skin.
f the system.

uch hair, and (iii) insufficient contrast between the lesion and
he background skin. This selectivity was necessary in order to
nsure accurate border detection and reliable feature extraction.
ig. 2 shows sample images that were eliminated using these
riteria. A total of 596 images free from the above mentioned
roblems were included in the initial image set.

. Border detection

The first step in the computerized analysis of skin lesion
mages is the detection of the lesion borders. The importance of
he border detection for the analysis is two-fold. First, the bor-
er structure provides vital information for accurate diagnosis.
any clinical features such as asymmetry and border irregu-

arity are calculated from the border. Second, the extraction of
ther important color or texture related clinical features critically
epends on the accuracy of the border detection.

For border detection, an automated method that we devel-
ped earlier [18] was used. The method is based on the JSEG
lgorithm [19] and included three main phases: preprocess-
ng, segmentation, and postprocessing. The preprocessing phase

ncluded image smoothing using a color median filter with an
1 × 11 kernel, color reduction using the variance-based quan-
ization method [20], and approximate lesion localization based
n the Otsu thresholding method [21]. The segmentation phase

ter = 35 mm), (b) too much hair, and (c) insufficient contrast between the lesion
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Fig. 3. Examples of successful (a, b) an

ncluded calculation of the J-images (measurements of local
omogeneities which indicate potential boundary locations),
egion-growing based on the J-images, and region merging
ased on color similarity in the CIE L∗u∗v∗ color space. Finally,
he postprocessing phase included elimination of the regions that
elong to the background skin, removal of the isolated regions,
nd merging of the remaining regions to obtain the final border
etection result.

The border detection method was applied to the initial set of
96 images. Fig. 3 shows examples of successful and unsuccess-
ul border detection results. In 32 of the images the results were
eemed to be unsatisfactory. Failure mostly occurred in one of
wo cases: (i) lesions in which there is a very smooth transition
etween the border and the background skin (see Fig. 3c) and
ii) lesions with regression (scar-like depigmentation) structures
see Fig. 3d). After the exclusion of these images, 564 images
emained in the image set.

Among the 564 cases, 88 were melanoma and 476 were
enign. Among the melanoma cases, 18 were melanomas in situ,
7 were thin invasive melanomas, 13 had a thickness between
.76 and 1.5 mm, 7 had a thickness of more than 1.5 mm,
nd 3 were metastasized. The distribution of the benign cases
as as follows: 309 Clark nevi, 45 Reed/Spitz nevi, 31 sebor-

heic keratoses, 19 compound nevi, 17 blue nevi, 9 combined
evi, 9 dermal nevi, 9 melanoses, 9 vascular lesions, 7 lentig-
nes, 4 congenital nevi, 3 junctional nevi, 3 dermatofibromas,

nd 2 hemangiomas. The lesions were biopsied and diagnosed
istopathologically in cases where significant risk for melanoma
as present; otherwise they were diagnosed by follow-up exam-

nation.

(

ccessful (c, d) border detection results.

. Feature extraction

In this section the features that were used to characterize the
kin lesion images are described. A particular problem in the
elated literature is that a significant number of studies do not
eport the details of their feature extraction procedure [22]. This
s further compounded by the inconsistency in the definitions
f some of the features (especially those pertaining to shape) in
he computer vision literature. Therefore, in order to enhance
he reproducibility of this study, we explain the rationale for
ach feature and present the algorithmic aspects involved in its
omputation in as much detail as possible.

.1. Description of the shape features

Shape is an important clinical feature in the diagnosis of pig-
ented skin lesions. In the following discussion, “object” refers

o the binary lesion object obtained as a result of the border
etection.

(a) Area (A): The lesion area can be calculated by counting the
number of pixels inside the border. However, this method is
not very accurate for objects with rough borders [23]. For
this reason, the lesion area was calculated using the method
of bit quads [21] which has been shown to be one of the
most accurate area estimators in the literature [23].
b) Aspect ratio (AR): Aspect ratio can be defined as the ratio of
the length of the major axis (L1) to the length of the minor
axis (L2). These are given in the first column of Table 2.
Here, (r0,c0) denotes the object centroid, and mpq and μpq
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Table 2
Formulae for some of the shape features

Aspect ratio Eccentricity Asymmetry

mpq =
rows∑
i=0

cols∑
j=0

ipjq

(r0, c0) = (m10/m00, m01/m00)

μpq =
rows∑
i=0

cols∑
j=0

(i − r0)p · (j − c0)q

L1,2 = (8(μ02 + μ20 ± ((μ02 − μ20)2 + 4μ11)
1/2

))
1/2

ε = (μ02−μ20)2+4μ11
(μ02+μ02)2

θ = 1

2
tan−1

(
2μ11

μ20 − μ02

)

A1 = min(Ax, Ay)

A
× 100%

A2 = Ax + Ay

A
× 100%
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I1/2/3 (Ohta space), l1/2/3 and CIE L∗u∗v∗. All of these except
for the l1/2/3 space are well-known in the literature [21]. The
l1/2/3 space is a relatively recent color space model described in
[25]. The nonlinear transformation from RGB to l1/2/3 is given
AR = L1/L2

denote the (p + q)th order geometric and central moments
of the object, respectively.

(c) Asymmetry 1 and 2 (A1 and A2): In order to evaluate the
lesion asymmetry, first, the major axis orientation of the
object (θ) was calculated (Table 2). Second, the object was
rotated θ degrees clockwise to align the principal (major
and minor) axes with the image (x and y) axes. The object
was then hypothetically folded about the x-axis and the area
difference (Ax) between the overlapping folds was taken
as the amount of asymmetry about the x-axis. The same
procedure was performed for the y-axis. Two asymmetry
measures were calculated from Ax and Ay as shown in
Table 2.

d) Compactness (C): Compactness is usually defined as the
ratio of the area of the object to the area of a circle with
the same perimeter. This measure compares the object with
a circle, which is the most compact shape. However, this
requires accurate estimation of the object perimeter. There-
fore, an alternative version that avoids using the perimeter
was calculated as the ratio between the equivalent and max-
imum diameters.

Other shape features include maximum (lesion) diameter (the
aximum distance between two points on the border), eccen-

ricity (a measure of elongation, Table 2), solidity (a measure of
order irregularity defined as the ratio between the areas of the
bject and its convex hull), equivalent diameter (the diameter
f a circle that has the same area as the object), and two mea-
ures related with the object-oriented bounding box (the smallest
ectangle that contains the object and is aligned with the prin-
ipal axes): rectangularity (the ratio between the areas of the
bject and object-oriented bounding box) and elongation (ratio
etween the height and width of the object oriented-bounding
ox).

Note that features related with the length of the lesion bor-
er such as perimeter, circularity, thinness, roundness, form
actor, etc. were not considered in this study. This is because

hese features depend on an accurate estimation of the lesion
erimeter. However, the digital perimeter is often considerably
ifferent from the actual perimeter for complex shapes such as
kin lesions. Furthermore, perimeter estimation depends greatly
n the image resolution.
.2. Calculation of the inner and outer peripheral regions

For the calculation of color and texture features, three sig-
ificant regions in the image were considered: lesion, inner
eriphery, and outer periphery. The lesion was obtained as a
esult of the automatic border detection procedure. The inner and
uter peripheral regions were determined from the binary bor-
er image using a fast Euclidean distance transform algorithm
24]. In order to reduce the effects of peripheral inflammation
nd errors in automatic border detection, the region inside (out-
ide) the border with an area equal to 10% of the lesion area was
mitted and the inner (outer) peripheral region was taken as the
djacent region with an area equal to 20% of the lesion area.
his is illustrated in Fig. 4.

.3. Description of the color features

In order to quantify the colors present in a lesion, two statis-
ics (mean and standard deviation) over the channels of six
ifferent color spaces and several color asymmetry, histogram
istance, and centroidal distance features were calculated. The
olor spaces considered were RGB, rgb (normalized RGB), HSV,
Fig. 4. Inner and outer peripheral regions of a sample lesion image.
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Table 3
Comparison of several color spaces used in the study

Criterion RGB rgb HSV I1/2/3 l1/2/3 L∗u∗v∗
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ecoupling of chrominance and luminance No N
nvariance to illumination intensity No Ye
erceptual uniformity No N

y:

l1 = (R − G)2/((R − G)2 + (R − B)2 + (G − B)2)

l2 = (R − B)2/((R − G)2 + (R − B)2 + (G − B)2)

l3 = (G − B)2/((R − G)2 + (R − B)2 + (G − B)2)

Table 3 shows the comparison of these color spaces accord-
ng to the following criteria: decoupling of chrominance and
uminance, invariance to illumination intensity, and perceptual
niformity. The first two criteria are essential for dealing with
mages that are acquired in uncontrolled imaging conditions
uch as the ones that are used in this study. The last criterion
s necessary for the extraction of one of the color features (his-
ogram distance). As it can be seen from Table 3, none of the six
olor spaces satisfies all of the criteria. This is the reason why
e have considered several color spaces that complement each
ther.

Now, we describe each color feature in detail.

(a) Mean and standard deviation: The mean and standard
deviation values calculated over a particular channel quan-
tify the average color and the color variegation in that
channel, respectively. One hundred eight color features
were calculated as follows: (6 color spaces) × (3 chan-
nels in each color space) × (2 statistics: mean and standard
deviation) × (3 regions {lesion, inner periphery, outer
periphery}). The ratios and differences of the 2 statis-
tics over the 3 regions were also calculated: (outer/inner),
(outer/lesion), (inner/lesion), (outer–inner), (outer–lesion),
and (inner–lesion). The motivation for calculating the ratio
and differences is two-fold. First, the color characteristics
of the three regions signify valuable diagnostic information.
For example, a sharp transition from the inner periphery to
the outer periphery (or vice versa) indicates malignancy. So,
in addition to features calculated over the three regions, the
differences and ratios might provide additional information
about the transition between these regions. The total number
of color features in this category was 324.

b) Color asymmetry: This is a measure of the asymmetry in
pigment distribution in a particular color channel. It was
calculated similarly to the shape asymmetry (which is a
measure of the geometric asymmetry) with the exception
that pixel values were incorporated in the calculations of the
first order geometric moments and the second order central
moments as weighting factors. Also, after the hypotheti-

cal folding, the absolute brightness difference between the
corresponding pixels in the two folds was accumulated as
opposed to counting the pixels in one fold that do not have a
counterpart in the other fold. The color asymmetry in the R,

s
g
r
t

Yes Yes No Yes
H,S No Yes No
No No No Yes

G, and B channels were calculated using the two asymme-
try measures shown in Table 2. The total number of color
features in this category was 6.

(c) Centroidal distances: The centroidal distance for a channel
is defined as the distance between the geometric centroid
(of the binary object) and the brightness centroid of that
channel. The brightness centroid was calculated similarly
to the geometric centroid except that the moment calcula-
tions were weighted by the pixel values. If the pigmentation
in a particular channel is homogeneous, the brightness cen-
troid will be close to the geometric centroid and thus the
centroidal distance for that channel will be small. In order
to achieve invariance to scaling, the distance values were
divided by the lesion diameter. The centroidal distance val-
ues were calculated for all 3 channels of the 6 color spaces.
The total number of color features in this category was 18.

d) LUV histogram distances: In order to determine the color
similarity of two regions, the histogram distance in the
CIE L∗u∗v∗ color space was used. For histogram computa-
tion, the color space was coarsely quantized into 4 × 8 × 8
bins. The color similarity between the two regions was quan-
tified by the L1- and L2-norm histogram distances [21].
The use of these norms is justified because the color space
is coarsely quantized and there is negligible correlation
between adjacent histogram bins.

The histogram distances between pairs of the three regions,
i.e. lesion, inner periphery, and outer periphery, using the
two distance measures were calculated. The total number
of color features in this category was 6.

.4. Description of the texture features

In order to quantify the texture present in a lesion, a set of sta-
istical texture descriptors based on the gray level co-occurrence

atrix (GLCM) were employed. GLCM-based texture descrip-
ion is one of the most well-known and widely used methods
n the literature [26]. Although many statistics can be derived
rom the GLCM, eight gray level shift invariant statistics were
sed in this study in order to obtain a texture characterization
hat is robust to linear shifts in the illumination intensity. These
tatistics were maximum probability, energy, entropy, dissimi-
arity, contrast, inverse difference, inverse difference moment,
nd correlation.

To obtain statistical confidence in the estimation of the joint
robability distribution, the normalized GLCM should be rea-

onably dense. For example, at full dynamic range (G = 256
ray levels for 8-bit images), since very few gray level pairs are
epeated, the entropy statistic attains similar values for different
exture patterns. In a methodological study, Clausi [26] showed
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hat above a certain threshold, for the same eight statistics, with
n increasing G, the discrimination power of the statistics remain
he same for two of them (dissimilarity and contrast) while
ecreasing for the rest. Another problem with high G values
s the high computational cost in both the calculation of the
LCM (O(G)) and the statistics (O(G)). Therefore, in order to

void having a sparse matrix, the images were uniformly quan-
ized to 64 gray levels. Here, the choice of 64 gray levels was
rbitrary, though a recent study [26] has demonstrated that this
alue should not be too low (for example below 24). Another
dvantage of using a low G value is the reduction of the effects
f noise in the image.

In order to obtain rotation invariant features, the normalized
LCM was computed for each of the four orientations ({0◦, 45◦,
0◦, 135◦}) and the statistics calculated from these matrices were
veraged. These eight statistics were calculated over the three
egions, i.e., lesion, inner periphery, and outer periphery, and as
n the case of color features, the ratios and differences of the
ight statistics over these regions were also calculated. The total
umber of texture features extracted from each image was 72.

Overall, the number of features extracted from each image
as 437 (11 shape, 354 color, and 72 texture features).

. Feature selection

Feature selection is an important preprocessing step in many
achine-learning tasks. The purpose is to reduce the dimension-

lity of the feature space by eliminating redundant, irrelevant
r noisy features. From the classification perspective, there are
umerous potential benefits associated with feature selection: (i)
educed feature extraction time and storage requirements, (ii)
educed classifier complexity, (iii) increased prediction accu-
acy, (iv) reduced training and testing times, and (v) enhanced
ata understanding and visualization.

Feature selection algorithms can be classified into two main
ategories according to their evaluation criteria: filters and wrap-
ers [27]. Filter methods rely on general characteristics of the
ata to select a subset of features without involving any learning
lgorithm. They ‘filter’ out irrelevant and redundant features
efore classifier induction begins. On the other hand, wrap-
er methods use the prediction performance of a predetermined
earning algorithm to evaluate the goodness of feature subsets.
lthough, wrappers are often computationally more expensive,

hey are better suited to classification tasks in which the classifier
s predetermined.

In this study, the filter methodology is adopted for several
easons. First of all, filter methods are usually very fast which
llows one to compare several alternative methods within an
ptimization framework. Secondly, if a wrapper method is to be
sed on a particular data set, the target-learning algorithm should
ave at least satisfactory performance on the original data set so
hat it can provide valuable feedback to the search procedure.
owever, as demonstrated in the following section, our target
earning algorithm, i.e. the SVM algorithm, does not perform
ell on the original data due to the presence of many irrele-
ant or redundant features and the unbalanced distribution of
he classes. Finally, the only wrapper implementation available
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v
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m
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o us was the well-known recursive feature elimination (RFE)
28] algorithm which uses a linear SVM classifier to rank the
eatures. However, in order to use the original RFE algorithm
s a wrapper, one needs to use a linear SVM classifier for clas-
ification. Otherwise, if one uses another learning algorithm or
ven an SVM kernel other than the linear one, the RFE algo-
ithm turns into a computationally expensive filter method! As
ill be explained in the next section, we decided to use a radial
asis function (RBF) kernel rather than a linear one. In fact, the
FE algorithm can be modified to use an RBF kernel [28]. How-
ver, in that case model selection (see Section 7) would become
omputationally very expensive.

Among the various filter methods proposed in the literature
27] the following three were chosen for their good performance
n various data sets:

ReliefF [29]: In the original Relief algorithm [30], a num-
ber of samples are selected at random from the data set and
their nearest neighbors are determined. For each selected sam-
ple, the values of its features are compared to those of the
nearest neighbors and the relevance scores for each feature
are updated accordingly. The idea is to estimate the quality
of attributes according to how well their values distinguish
between samples that are near to each other. The ReliefF algo-
rithm is an extension of the original algorithm that can handle
noise and multi-class data sets.
Mutual information based feature selection (MIFS) [31]:
Mutual information measures arbitrary dependencies
between random variables, and thus is suitable for assessing
the information content of the features. The MIFS algorithm
evaluates the mutual information between individual features
and the class labels, and selects those features that have the
maximum mutual information.
Correlation based feature selection (CFS) [32]: This algo-
rithm tries to find a set of features that individually correlate
well with the class but have little intercorrelation. The cor-
relation between two features is measured by symmetric
uncertainty [33] which is an improved form of the well-known
information gain measure [34].

For the ReliefF and CFS algorithms the Weka implementa-
ions [35] were used. For the MIFS algorithm, the Tanagra [36]
mplementation was used. Before feature selection, the features
ere discretized using the technique of Fayyad and Irani [37].

. Support vector machines

Support vector machines (SVMs) have recently drawn con-
iderable attention in the machine learning community due to
heir solid theoretical foundation and excellent practical perfor-

ance. They are kernel-based learning algorithms derived from
he statistical learning theory [38].

SVMs have several advantages over the more classical clas-

ifiers such as decision trees and neural networks. The support
ector training mainly involves optimization of a convex cost
unction. Therefore, there is no risk of getting stuck at local
inima as in the case of backpropagation neural networks. Most
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earning algorithms implement the empirical risk minimization
ERM) principle which minimizes the error on the training data.
n the other hand, SVMs are based on the structural risk min-

mization (SRM) principle which minimizes the upper bound
n the generalization error. Therefore, SVMs are less prone to
verfitting when compared to the algorithms that implement
he ERM principle such as backpropagation neural networks.
nother advantage of SVMs is that they provide a unified frame-
ork in which different learning machine architectures (e.g.,
BF networks, feedforward neural networks) can be generated

hrough an appropriate choice of kernel.

.1. General theoretical background

This subsection gives an overview of the SVM theory and
s based on [39]. Consider a set of n training data points
xi,yi}∈ Rd × {−1, +1} i = 1, . . ., n , where xi represents a
oint in d-dimensional space and yi is a two-class label. Sup-
ose we have a hyperplane that separates the positive samples
rom the negative ones. Then the points x on the hyperplane
atisfy w · x + b = 0, where w is the normal to the hyperplane,
nd |b|/||w|| is the perpendicular distance from the hyperplane
o the origin. If we take two such hyperplane between the positive
nd negative samples, the support vector algorithm’s task is to
aximize the distance (margin) between them. In order to max-

mize the margin, ||w||2 is minimized subject to the following
onstraints:

i(xi · w + b) − 1 ≥ 0 ∀i (1)

he training samples for which (1) hold are the only ones rele-
ant for the classification. These are called the support vectors.

The Lagrangian function for the minimization of ||w||2 is
iven by:

Ll =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

yiyjαiαjxixj subject to αi ≥ 0 ∀i

and
n∑

i=1

αiyi = 0 (2)

Equation (2) applies only to linearly separable data. In order
o handle non-linearly separable data, positive slack variables
i, i = 1, . . ., n are introduced into the constraints:

i(xi · w + b) ≥ 1 − ξi, ξi ≥ 0 ∀i (3)

In order to control the trade-off between the model complex-
ty and the empirical risk, a penalty parameter C is introduced
nto (2):

Lnl =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

yiyjαiαjxixj subject to
0 ≤ αi ≤ C ∀i and
∑

i

αiyi = 0 (4)

To generalize these equations for non-linear decision func-
ions, the concept of a kernel is introduced. The data seen in the

w
μ

r
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quations so far appears in the form of dot products xi·xj. If we
ere to map the data to some other (possibly infinite dimen-

ional) Euclidean space H, using a mapping �, the training
lgorithm would depend on the data through dot products in
, i.e. �(xi)·�(xj). Now, if there were a “kernel function” K

uch that K(xi,xj) = �(xi)·�(xj), we would only need to use K in
he training algorithm, and would never need to explicitly know
hat � is. Substituting the kernel K into the dual SVM gives:

Lk =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj) subject to

0 ≤ αi ≤ C and
∑

i

αiyi = 0 (5)

his formulation allows us to deal with extremely high (theoret-
cally infinite) dimensional mappings without having to do the
ssociated computation.

Some commonly used kernels are:

Linear: K(xi, xj) = xT
i · xj

Polynomial: K(xi, xj) = (γxT
i · xj + r)

d
, γ > 0

Radial basis function (RBF): K(xi, xj) = e−γ||xi−xj ||2/2σ2
,

γ > 0
Sigmoid: K(xi, xj) = tan h (γxT

i · xj + r), γ > 0

In this study, the radial basis function (RBF) kernel was
dopted for various reasons. Firstly, the linear kernel cannot han-
le nonlinearly separable classification tasks, and in any case, is
special case of the RBF kernel [40]. Secondly, the computation
f the RBF kernel is more stable than that of the polynomial ker-
el, which introduces values of zero or infinity in certain cases.
hirdly, the sigmoid kernel is only valid (i.e. satisfies Mercer’s
onditions [39]) for certain parameters. Finally, the RBF ker-
el has fewer hyperparameters (γ) which need to be determined
hen compared to the polynomial (γ ,r,d) and sigmoid kernels

γ ,r).

.2. Feature normalization

In classification tasks the features that characterize the sam-
les quite often have different ranges. Many classifiers such as
-nearest neighbors and neural networks require that the fea-
ures be normalized so that their values fall within a specified
ange. In the case of SVMs, feature normalization is an impor-
ant preprocessing step that is necessary to prevent features with
arge ranges from dominating the calculations and also to avoid
umerical instabilities in the kernel computations.

One of the most common normalization methods is the z-
core transformation [41] given by:

ij = ((xij − μj)/(3σj) + 1)
2

here xij represents the value of the jth feature of the ith sample;
j and σj are the mean and standard deviation of the jth feature,

espectively.
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Assuming that each feature is normally distributed, this
ransformation guarantees 99% of zij be in the [0,1] range.
he out-of-range values are truncated to either 0 or 1. The
ormality of each feature distribution was verified using the
oments of skewness and kurtosis (5% significance level). For
ore information about these tests, the reader is referred to

42].

. Classification experiments

In this section the classification experiments are described.
irst, the initial experiments with the SVM classifier are pre-
ented. Second, the class imbalance problem and the strategies to
eal with it are introduced. Third, the model selection procedure
nd the experimental results are presented.

.1. Initial experiments with the SVM classifier

In order to use the RBF kernel, appropriate values for the
ernel parameters C (cost/penalty) and γ (kernel width) need to
e determined. The purpose of model selection is to identify the
ptimal values for these parameters that give the maximum pre-
iction accuracy on future as-yet-unseen data. Since there are
nly two parameters, a grid-search is feasible. Following [43],
xponentially growing sequences of values, i.e., C ∈ {2−5, 2−3,
. ., 215} and γ ∈ {2−15, 2−13, . . ., 23}, for these parameters
ere tried. During the grid-search procedure, ten-fold strati-
ed cross-validation was performed to evaluate the goodness
f a particular combination of parameter values, i.e., (C0, γ0).
fter the grid-search, the SVM classifier was trained with the
ptimal parameters (C*, γ*). Ten times 10-fold stratified Monte
arlo cross-validation was used to estimate the classification
rror.

Initially, the procedure described above was performed on the
ull data set (564 samples, 437 features). The optimal parame-
er values (C*, γ*) = (2.0, 0.125) yielded 24.7% sensitivity and
7.5% specificity. This unsatisfactory result was expected con-
idering the high number of features (many of which are possibly
edundant or irrelevant) and particularly the unbalanced distri-
ution of classes (15.6% melanoma, 84.4% benign). In the next
ubsection, the class imbalance problem and the strategies to
eal with it are described.

.2. Dealing with class imbalance

There has been recent interest in the problem of class imbal-
nce in the machine learning community. This problem typically
ccurs when one or more classes outnumber the others. In such
ases, most classifiers focus on learning the large classes which
eads to poor classification accuracy for the small classes. In
ractice, this may not be catastrophic in domains in which
he classes have similar misclassification costs. However, in
any domains such as medical diagnosis and fraud detection
he misclassification costs are often unequal and classifying
he minority (melanoma) samples as majority (benign) implies
erious consequences. a
aging and Graphics 31 (2007) 362–373 369

The most common classifier performance measure is the
ccuracy defined as the percentage of correctly classified sam-
les. However, accuracy is not an appropriate measure of the
lassification performance when the data is unbalanced. Con-
ider a data set with a class distribution of 99:1. A classifier that
lways predicts samples as the majority class will have an accu-
acy of 99%. This is because the accuracy measure is strongly
iased to favor the majority class.

A better performance measure in unbalanced domains is the
eceiver operating characteristic (ROC) curve. The ROC curve
s a plot of the true positive (TP)-rate (percentage of correctly
lassified positive samples) versus false positive (FP)-rate (per-
entage of incorrectly classified negative samples). The points
or a ROC curve are obtained by varying a threshold on a
lassifier’s continuous output between its extremes and plot-
ing the (TP-rate, FP-rate) for each threshold value. The curve
llustrates the behavior of a classifier without regard to class
istributions or error costs, and thus decouples the classifica-
ion performance from these factors. The area under the ROC
urve (AUC) represents the expected predictive performance
s a single scalar value [44]. AUC exhibits several desirable
roperties compared to accuracy. For example, it is indepen-
ent of the decision threshold and is invariant to apriori class
robability distributions. In a recent study Huang and Ling
44] have demonstrated that AUC is a statistically consistent
nd more discriminatory measure than accuracy. In this study
UC was used to evaluate the goodness of a particular classifier
odel.
One of the most common and effective techniques for dealing

ith imbalance is sampling [45]. The motivation for sampling
omes from the observation that the natural distribution of the
lasses might not be optimal from the classification perspec-
ive [46]. Several studies have demonstrated that the accuracy
egradation on unbalanced data sets is more severe when the
lasses overlap significantly [47,48]; this is the case in skin
esion classification. For example, early melanomas (melanoma
n situ) are often confused with Clark nevi by dermoscopy
ractitioners.

There are two basic sampling methods: under-sampling
removing majority class samples) and over-sampling (adding
inority class samples). In this study, two common sampling
ethods were compared:

(a) Random under-sampling, which eliminates randomly cho-
sen majority class samples.

b) Synthetic minority oversampling technique (SMOTE) [49],
which over-samples the minority class by taking each minor-
ity class sample and introducing synthetic samples along the
line segments joining n of the k minority class nearest neigh-
bors. In this study k = 10 was used. The value of n depends on
the amount of over-sampling. For example, if the amount of
over-sampling needed is 200%, only two neighbors from the
10 nearest neighbors are chosen and one synthetic sample

is generated in the direction of each.

We decided to add (remove) minority (majority) samples until
n approximately balanced class distribution was reached. This
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Fig. 5. Overview of the optimization framework.

as motivated by the results presented in [46], in which the
uthors demonstrate that when AUC is used as the performance
easure, the optimal class distribution for learning tends to

e near the balanced distribution. For random under-sampling,
his amounted to randomly removing 476 × 80% = 380 major-
ty samples resulting in a 96:88 benign to melanoma class ratio.
or SMOTE, four synthetic melanoma samples were created
rom each melanoma sample, resulting in a 476:440 benign to
elanoma ratio.

.3. Model selection and experimental results

As demonstrated earlier, the number of features retained by
he feature selection algorithm (k) is an important parameter that
eeds to be considered in order to obtain a good classification
erformance. Considering the complexity of the problem in our
ase, a small number of features is not likely to discriminate
etween the classes well. On the other hand, a large number of

eatures might lead to overfitting as explained in Section 5. With
hese considerations, the range of k was restricted to [5, 30].

The optimization procedure after the integration of sampling
nd feature selection was as follows (Fig. 5):

T
t
9
i

Fig. 6. (a) Optimization results for the two sampling met
aging and Graphics 31 (2007) 362–373

a) Perform feature selection using {CFS, MIFS, ReliefF}
b) Reduce the data dimensionality by keeping only the top k

(k ∈ [5,30]) features in the ranking returned by the feature
selection algorithm.

c) Perform sampling using {random under-sampling,
SMOTE}

d) Perform grid-search.
e) Perform SVM classification (10 times 10-fold Monte Carlo

stratified cross validation) using the optimal parameter val-
ues returned by the grid-search. Calculate the sensitivity,
specificity, and AUC values.

he procedure presented was run on three different processors
one 1.8 GHz Intel Xeon and two 1.5 GHz IBM P5-570) in par-
llel. The total time taken by the experiments was approximately
2 h.

The optimization results for the two sampling algorithms are
hown in Fig. 6a. Each curve is a plot of AUC versus feature
ubset size (k). Given a k value, only the highest AUC value
chieved by any one of the three feature selection algorithms is
hown in the plot. It can be seen that SMOTE performed bet-
er than random under-sampling for most k values. This was
xpected since random under-sampling discards potentially use-
ul data by removing 80% of the majority (benign) class to
ake the class distributions approximately balanced. For exam-

le, during this removal some of the benign subclasses that
ave few examples such as congenital nevi and dermatofibroma
ight be completely eliminated. Also, undersampling severely

educes the data set size which makes learning much more
ifficult.

Examining Fig. 6a closely, it can be seen that the AUC peaks
t k = 18 and the inclusion of features beyond this value does
ot add much to the classifier performance. This shows that
ost of the features are in fact either redundant or irrelevant.

herefore, we decided to use the top k = 18 features given by

he CFS feature selection algorithm. This gave a specificity of
2.34% and a sensitivity of 93.33%. The ROC curve is shown
n Fig. 6b.

hods, (b) ROC curve for the optimal parameter set.
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. Discussion and conclusions

In this study, a methodological approach to the classification
f dermoscopy images is presented. The approach involved bor-
er detection, feature extraction, and SVM classification with
odel selection. The system was tested on a large set of images.
romising results were obtained despite the fact that the images
ame from different sources and there was no control over their
cquisition. The total processing time for the classification of a
ew image ranges from 5 to 10 s. This can be further reduced by
sing a faster border detection method such as the one presented
n [50].

This study differs from earlier studies in several aspects. First,
he images used in this study came from different sources. For
his reason, care was taken to extract features that are invariant
o changes in the imaging conditions. Second, starting from the
order detection until the classification, the whole procedure
as fully automated. Third, for border detection a published
ethod was used. Fourth, certain diagnostic classes that occur

requently in the clinical setting such as Clark nevi and seb-
rrheic keratoses were not excluded from the image set. In
ddition, difficult lesions such as melanomas in situ and Spitz
evi were not excluded. Finally, the issue of feature selection was
ddressed in an optimization framework without using arbitrary
utoffs.

Despite the high accuracy that can be achieved by computer-
ided diagnostic systems employing statistics obtained from
ow-level features such as the one presented, at least two issues
eed to be addressed before these systems can gain greater clin-
cal acceptance. First, higher level features based on a particular
iagnostic scheme such as pattern analysis [2] should be inte-
rated with the existing low level features. Second, the image
et should be expanded to provide better training and testing for
he developed algorithms.

The elimination of some of the images because of the prob-
ems noted in Section 2 might be considered a limitation of
he present study. However, this is in line with the limitations
mposed in previous studies. Studies vary in the detail given
bout which lesions are included in the training and test sets. In
ome studies, incompletely imaged lesions were omitted as we
ave done [14,9]. In some others, some of the lesions that were
liminated here were made acceptable by other means, such as
having hairs prior to image acquisition [11] or by obtaining
anual borders for the lesions [16]. An alternative approach

o overcome the hair problem could be using a software razor
uch as Dullrazor [51] that can, with some modifications, elimi-
ate hairs without altering the pigment network. It is likely that
urther research, by extraction of critical features such as atypi-
al pigment networks, globules, and blue-white areas [52], can
ncrease the diagnostic accuracy of computerized dermoscopy
mage analysis systems.
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