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bstract

Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are
ot discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images
s the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article,
e present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves
ontextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape
escriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for
etection of blue veil in those cases where it is a primary feature for melanoma recognition.

2008 Elsevier Ltd. All rights reserved.
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. Introduction

Malignant melanoma, the most deadly form of skin cancer,
s one of the most rapidly increasing cancers in the world, with
n estimated incidence of 59,940 and an estimated total of 8110
eaths in the United States in 2007 alone [1]. Dermoscopy is
non-invasive skin imaging technique which permits visual-

zation of features of pigmented melanocytic neoplasms that

re not discernable by examination with the naked eye. Prac-
iced by experienced observers, this imaging modality offers
igher diagnostic accuracy than observation without magnifica-
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ion [2–5]. Dermoscopy allows the identification of dozens of
orphological features one of which is the blue-white veil (irreg-

lar, structureless areas of confluent blue pigmentation with an
verlying white “ground-glass” film) [6]. This feature is one of
he most significant dermoscopic indicator of invasive malignant

elanoma, with a sensitivity of 51% and a specificity of 97%
7]. Fig. 1 shows a melanoma with blue-white veil.

Numerous methods for extracting features from clinical skin
esion images have been proposed in literature [8–10]. How-
ver, feature extraction in dermoscopy images is relatively
nexplored. The dermoscopic feature extraction studies to date
nclude two pilot studies on pigment networks [11,12] and glob-
les [11], and three systematic studies on dots [13] and blotches

14,15]. To the best of our knowledge, there is no published
ystematic study on the detection of blue-white veil.

In this article, we present a machine learning approach to
he detection of blue-white veil in dermoscopy images. Fig. 2
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ig. 1. Melanoma with blue-white veil (a) clinical image and (b) dermoscopy i
mage (b).

hows an overview of the approach. The rest of the paper is
rganized as follows. Section 2 describes the image set and the
reprocessing phase. Section 3 discusses the feature extraction.
ection 4 presents the pixel classification. Section 5 describes

he classification of lesions based on the blue-white veil feature.
inally, Section 6 gives the conclusions.

. Image set description and preprocessing

.1. Image set description

The image set used in this study consists of 545 digital der-
oscopy images obtained from two atlases. The first is the
D-ROM Interactive Atlas of Dermoscopy [6], which is a collec-

ion of images acquired in three institutions: University Federico
I of Naples, Italy, University of Graz, Austria, and University of
lorence, Italy. The second atlas is a pre-publication version of

he American Academy of Dermatology DVD on Dermoscopy,
dited by Harold Rabinovitz et al. These were true-color images
ith a typical resolution of 768 × 512 pixels. The diagnosis dis-

ribution of the cases was as follows: 299 dysplastic nevi, 186
elanomas, 28 blue nevi, 14 Reed/Spitz nevi, 8 combined nevi,
basal cell carcinoma, and 2 intradermal nevi. The lesions were
iopsied and diagnosed histopathologically in cases where sig-
ificant risk for melanoma was present; otherwise they were
iagnosed by follow-up examination.
.2. Preprocessing

Prior to the feature extraction two preprocessing steps,
amely the determination of the background skin color and

d
l

1

Fig. 2. Overview of
. The steps of the blue-white veil detection procedure will be demonstrated on

election of the training and test pixels, were performed on the
mages. Fig. 3 shows an overview of this procedure.

The lesion borders were obtained manually under the super-
ision of an experienced dermatologist (WVS). The motivation
or using manual borders rather than computer-detected borders
16,17] was to separate the problem of feature extraction from
he problem of automated border detection. The procedure for

anual border determination was as follows. First, a number of
oints were selected along the lesion border. These points were
hen connected using a second-order B-spline function. Finally,
he resulting closed curve was filled using a flood-fill algorithm
o obtain the binary border mask. Fig. 4(a–b) illustrates this
rocedure.

For the extraction of the color features, the background skin
olor needs to be determined. First, the region outside the bor-
er with an area equal to 10% of the lesion area was omitted
o reduce the effects of peripheral inflammation and errors in
order determination. The background skin color was then cal-
ulated as the average color over the next region outside the
order with an area equal to 20% of the lesion area. The non-
kin pixels (black image frames, rulers, hairs, and bubbles) were
ot included in the calculation. The omitted pixels were those
hat are determined not to satisfy the following empirical rule
18]: (R > 90 ∩ R > B ∩ R > G), where R, G, and B denote the
ed, green, and blue values, respectively, of the pixel under con-
ideration. The 10% and 20% areas outside the lesion were
etermined from the binary border mask using the Euclidean

istance transform. Fig. 4(c) shows these areas for a sample
esion.

In order to select training and test pixels for classification,
00 images were chosen from the entire image set. Forty-three of

the approach.
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redundant texture characterization that is robust to linear shifts
Fig. 3. Preprocessing.

hese images had sizeable pure veil regions and 62 had sizeable
ure non-veil regions. In each image, a number of small circular
egions that contain either veil or non-veil pixels were manu-
lly determined. Training and test pixels were then randomly
elected from these manually determined regions. The selection
ethod was designed to ensure a balanced distribution of the

wo classes (veil and non-veil) in the training set [19]. Fig. 4(d)
hows two manually selected regions on a sample image.

For each lesion, two additional features, primary blue-white
eil and veil-related structures, were determined by a dermatolo-
ist (WVS). A feature such as a veil is said to be a primary feature
f the veil is the feature most characteristic of melanoma, i.e. the
eature present in the lesion which is most recognizable and
pecific for melanoma. Some structures related to blue-white

eils were also considered in this study. These included gray
r blue-gray veils or any veils which lacked the whitish film
een in the classic veil. These were identified as veil-related
tructures.

i
i
t
f

aging and Graphics 32 (2008) 670–677

. Feature extraction

After the selection of training and test pixels, features that
ill be used in the classification of these pixels need to be

xtracted. There are two main approaches to pixel classifica-
ion: non-contextual and contextual [20]. In non-contextual pixel
lassification, during feature extraction, a pixel is treated in iso-
ation from its spatial neighborhood. This often leads to noisy
esults. On the other hand, in contextual pixel classification, the
patial neighborhood of the pixel is also taken into account. In
his study, the latter approach is followed. Several features were
xtracted in the 5 × 5 neighborhood of each pixel. For each fea-
ure, the median value in the neighborhood was then taken as the
alue for that feature of the center pixel. To speed up the median
earch in a 5 × 5 neighborhood, instead of fully sorting the 25
alues, a minimum exchange network algorithm that performs a
artial sort was employed [21]. Fifteen color features and three
exture features were used to characterize the image pixels.

.1. Absolute color features

The absolute color of a pixel was quantified by its chromatic-
ty coordinates F1, F2, and F3 (see Table 1). An advantage of
1, F2, and F3 over the raw R, G, and B values is that while the

ormer are invariant to illumination direction and intensity [22],
he latter are not. This invariance is essential for dealing with
mages that are acquired in uncontrolled imaging conditions.

.2. Relative color features

Relative color refers to the color of a lesion pixel when com-
ared to the average color of the background skin. A total of
2 relative color features were extracted from each pixel (see
able 1). In the table, the lesion pixel and the average back-
round skin color in the RGB color space are denoted as (RL, GL,
L) and (RS, GS, BS), respectively. The relative color features
ffer several advantages. First, they compensate for variations in
he images caused by illumination and/or digitization. Second,
hey equalize variations in normal skin color among individuals.
hird, relative color is more natural from a perceptual point of
iew. Recent studies [15,23,24] have confirmed the usefulness
f relative color features in skin lesion image analysis.

.3. Texture features

In order to quantify the texture in the 5 × 5 neighborhood
f a pixel, a set of statistical texture descriptors based on the
ray Level Co-occurrence Matrix (GLCM) were employed [25].
lthough many statistics can be derived from the GLCM, three
ray-level shift-invariant statistics (entropy F16, contrast F17,
nd correlation F18) were used in this study to obtain a non-
n the illumination intensity [26]. In order to achieve rotation
nvariance, the normalized GLCM was computed for each of
he 4 directions {0◦, 45◦, 90◦, 135◦} and the statistics calculated
rom these matrices were averaged.
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ig. 4. Preprocessing steps (a) B-spline approximation of the border, (b) bina
anually selected veil (left circle) and non-veil (right circle) regions.

. Pixel classification

Popular classifiers used in pixel classification tasks include k-
earest neighbor [27], Bayesian [28], artificial neural networks
29], and support vector machines [28]. In this study, a decision
ree classifier was used to classify the image pixels into 2 classes:
eil and non-veil. The motivation for this choice was 2-fold.
irst, decision tree classifiers generate easy-to-understand rules,
hich is important for the clinical acceptance of a computer-

ided diagnosis system. Second, they are fast to train and apply.
he well-known C4.5 algorithm [30] was used for decision tree

nduction.
Given a large training set, decision tree classifiers, in general,

enerate complex decision rules that perform well on the training
ata, but do not generalize well to unseen data [31]. In such
ases, the classifier model is said to have overfit the training
ata. The C4.5 algorithm prevents overfitting by pruning the
nitial tree that is, by identifying subtrees that contribute little

o predictive accuracy and replacing each by a leaf [30]. The
onfidence factor (C) parameter controls the level of pruning and
as a default value of 0.25. Another parameter that influences

t
F
a

able 1
escription of the color features

eature group

1 = RL
RL+GL+BL

; F2 = GL
RL+GL+BL

; F3 = BL
RL+GL+BL

4 = RL
RS

; F5 = GL
GS

; F6 = BL
BS

7 = F4
F4+F5+F6

; F8 = F5
F4+F5+F6

; F9 = F6
F4+F5+F6

10 = RL − RS; F11 = GL − GS; F12 = BL − BS

13 = F10
F10+F11+F12

; F14 = F11
F10+F11+F12

; F15 = F12
F10+F11+F12
rder mask, (c) 10% (gray) and 20% (white) areas outside the lesion, and (d)

he complexity of the induced tree is the minimum number of
amples per leaf (M). The default value for M is 2. In order to
nduce a simple tree that generalizes better, C and M were set
o 0.1 and 100, respectively. Using these parameter values, the
4.5 algorithm was trained with the manually selected training
ixels (Section 2.2). Fig. 5 shows the induced decision tree. It
an be seen that only 2 of the 18 features were included in the
lassification model. One of these is an absolute color feature
F3), whereas the other one is a relative color feature (F10). The
lassification performance of the tree on the manually selected
est pixels was a sensitivity (percentage of correctly detected
eil pixels) of 84.33% and a specificity (percentage of correctly
etected non-veil pixels) of 96.19%.

In order to evaluate the effectiveness of the classification
odel, the induced decision rules were applied to the entire

mage set. In the classifier training phase, 18 features were
xtracted from the training pixels. In contrast, in the rule appli-
ation phase, only the two features that appear in the decision

ree, namely F3 and F10, need to be extracted from the pixels.
or each image, an initial binary veil mask was generated as
result of the rule application. To smooth the borders, a 5 × 5

Description

Chromaticity coordinates

Relative R, G, B ratio

Normalized relative R, G, B ratio

Relative R, G, B difference

Normalized relative R, G, B difference
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melanomas) of 69.35% and a specificity (percentage of cor-
Fig. 5. Pixel classification tree.

ajority filter [32] was applied to the initial masks. This filter
eplaces each pixel’s value with the majority class label in its
× 5 neighborhood. Fig. 6 shows the initial and final veil masks

or a sample image.
Fig. 7 shows a sample of the detection results. In this figure,

arts (a) through (f) are melanomas, (g) is a Reed/Spitz nevus,
nd (h) is a blue nevus. It can be seen that the presented method
etects most of the blue-white areas accurately.

. Lesion classification based on the blue-white veil
eature

In the second part of the study, we developed a second classi-
er to discriminate between melanoma and benign lesions based
n the presence/absence of the blue-white veil feature. In order to
haracterize the detected blue-white areas, we used a numerical
eature defined as follows:

1 = Area of Detected Blue White Veil

Area of Lesion
(1)

he problem with using S1 alone is that a blue nevus (such as
he one in Fig. 7h) might be misclassified as melanoma due to

ts high percentage of blue-white areas. We can solve this prob-
em by using additional features that characterize the circularity
nd/or ellipticity of the lesion. The circularity of a lesion can be

r
a
v

Fig. 6. Postprocessing (a) initial veil
aging and Graphics 32 (2008) 670–677

haracterized by [33]:

2 = mR

σR

= 1/P
∑P

k=1||(rk, ck) − (r̄, c̄)||
(1/P

∑P
k=1(||(rk, ck) − (r̄, c̄)|| − mR)2)

1/2 (2)

here P is the number of points on the lesion boundary, (rk, ck)
s the spatial coordinate of the kth boundary point, and (r̄, c̄) is
he centroid of the lesion object (see Fig. 4b). The ellipticity of
lesion can be measured by [34]:

S3 =

⎧⎪⎨
⎪⎩

16π2A1 if A1 ≤ 1

16π2

1

16π2A1
otherwise

μpq =
Nr∑
i=0

Nc∑
j=0

I(i, j) · (i − r̄)p · (j − c̄)q

A1 = μ20μ02 − μ2
11

μ4
00

(3)

here I is the binary lesion image (see Fig. 4b), Nr and Nc are
he number of rows and number of columns in I, respectively.

The rationale behind the inclusion of S2 and S3 is that
enign lesions with blue-white areas might be distinguished
rom melanomas by their highly circular (S2) and/or elliptical
S3) shapes. As in the pixel classification procedure, we used
he C4.5 algorithm with 10-fold cross-validation to generate a
lassification model based on the features S1, S2, and S3. Fig. 8
hows the induced decision tree.

As expected, a lesion is classified as benign if it contains none
o very small, i.e. less than 0.9%, blue-white areas. On the other
and, if the lesion contains significantly large blue-white areas,
he ellipticity value is checked. If the lesion is highly elliptical,
.e. the S3 value is greater than 0.979, then it is classified as
enign; otherwise, it is classified as melanoma. Note that the
ircularity feature (S2) was discarded by the induction algorithm
ossibly because its characteristics are captured by the more
eneral ellipticity feature (S3).

The performance of this decision tree on the entire image set
545 images) was a sensitivity (percentage of correctly classified
ectly classified benigns) of 89.97%. The overall classification
ccuracy for all areas, including structures related to blue-white
eil, was 82.94%. This included some areas closely related to

mask and (b) final veil mask.
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Fig. 7. Sample blue-white veil detection results. The veil and non-veil re

Fig. 8. Image classification tree.

b
o
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t

gion borders are delineated with thick and thin lines, respectively.

lue-white veil such as blue-gray or gray veil. On the subset
f images that are known to have blue-white veil areas (44
enigns, 134 melanomas), the sensitivity and specificity were
6.87% and 75.00%, respectively. On the other hand, on the
ubset of melanomas (133 cases) for which the blue-white veil
s the primary feature the sensitivity was 78.20%.
. Conclusions

In this article, a machine learning approach to the detec-
ion of blue-white veil in dermoscopy images was described.
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he method is comprised of several steps including preprocess-
ng, feature extraction, decision tree induction, rule application,
nd postprocessing. The detected blue-white areas were charac-
erized using a numerical feature, which in conjunction with
n ellipticity measure yielded a sensitivity of 69.35% and a
pecificity of 89.97% on a set of 545 dermoscopy images. The
resented blue-white veil detector takes a fraction of a second for
768 × 512 image on an Intel Pentium D 2.66 GHz computer.
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