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a b s t r a c t

Accurate color information in dermoscopy images is very important for melanoma diagnosis since inap-
propriate white balance or brightness in the images adversely affects the diagnostic performance. In this
eywords:
ermoscopy
omputer-aided diagnosis (CAD)
elanoma

paper, we present an automated color calibration method for dermoscopy images of skin lesions. On a
set of 319 dermoscopy images, we develop color calibration filters based on the HSV color system. We
determined that the color characteristics of the peripheral part of the tumors have significant influence
on the color calibration filters and confirmed that the presented filters achieved satisfactory calibration
performance as evaluated by cross-validation. We also confirmed that our method successfully modifies
the color distribution of a given image to make it closer to the color distribution of the training image
olor calibration
set.

. Introduction

Advanced malignant melanoma is often incurable, however
arly-stage melanoma can be cured in many cases, particularly
efore the metastasis stage. Therefore, early detection is essential
or the reduction of melanoma-related deaths [1]. Dermoscopy, a
on-invasive skin imaging technique, was introduced to improve
ccuracy in the diagnosis of melanoma. However, dermoscopic
iagnosis is often subjective and is therefore associated with poor
eproducibility. Despite the use of dermoscopy, the accuracy of
xpert dermatologists in diagnosing melanoma is estimated to be
bout 75–84% [2] or 78–88% [3].

Several groups have developed automated analysis procedures
o overcome these problems and reported high levels of diagnos-
ic accuracy [3–9]. However, several problems have persisted with
hese software-based approaches. For example, results of these
tudies are not comparable because of the different image sets used
n each one. In addition, these studies were designed to develop a
creening system for new patients using standalone systems and

herefore they have not been opened to the public.

To address these issues, we developed a prototype for a
ully automated Internet-based melanoma screening system at
ur university [7]. The URL of the site has changed and it is

∗ Corresponding author at: 3-7-2 Kajino-cho Koganei, 184-8584, Tokyo, Japan.
el.: +81 42 387 6217; fax: +81 42 387 6381.

E-mail address: iyatomi@hosei.ac.jp (H. Iyatomi).

895-6111/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compmedimag.2010.08.003
© 2010 Elsevier Ltd. All rights reserved.

now http://dermoscopy.k.hosei.ac.jp.1 Using an Internet connec-
tion anyone who has a dermoscopy image can use our screening
system from anywhere in the world. Our latest system achieved
classification performance of 0.928 in area under the ROC (receiver
operating characteristics) curve (AUC), 85.9% in sensitivity (SE) and
86.0% in specificity (SP) on a set of 1258 non-acral dermoscopy
images (1060 melanocytic nevi and 198 melanomas) [10] and 0.933
in AUC, 93.3% in SE, 91.1% in SP on a set of acral volar 199 der-
moscopy images (169 melanocytic nevi and 30 melanomas) [11].
Our present system provides the final diagnosis results in the form
of a malignancy score between 0 and 100 within 3–10 s.

It is well known for dermatologists and researchers in this field
that color information in dermoscopy images is very important for
the visual [1] as well as the computer-aided diagnosis of melanoma.
Dermoscopes should therefore produce accurate color images, but
unfortunately this is not always true in practice. An expert der-
matologist would perform the same diagnosis on a particular case
even if the image is acquired in different imaging conditions. Device
calibration to compensate for various imaging conditions such as
magnification factors, lighting conditions, etc. is crucial for the
development of a reliable system. This deficiency of our web-based

system was also pointed out by Rubegni et al. [12].

To the best of our knowledge, color calibration in dermoscopy is
still an open issue and has been little investigated [13–16]. Haeghen
et al. [13] reported a color calibration method for images use in

1 This site is temporarily redirected to http://b0112-web.k.hosei.ac.jp/
DermoPerl/.
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ermatology. The main objective of this method is inter-camera
alibration by estimating internal camera parameters. This method
s reported to require 5 min of manual operation. Maglogiannis et
l. [14] and Grana et al. [15] reported color calibration methods
or digital skin image and dermoscopy images, respectively. These

ethods perform color calibration using color charts that contain
predefined set of printed color squares. Since hardware-based

olor calibration is not feasible in a web-based system, we need to
ddress this issue using a software-based approach.

In our experience, most of these inappropriate color conditioned
mages can be calibrated effectively by adjustment of the hue and
ntensity of the images in the HSV color system. In this paper, we
evelop a fully automated color calibration method for dermoscopy

mages using the HSV color system. The proposed method accom-
lishes the calibration process based on the image content alone.

. Materials

Digital dermoscopy images of pigmented skin lesions (PSLs)
ere collected from three European university hospitals. We used

wo different data sets as described below:

Dataset-A: 319 digital dermoscopy images (244 benign and 75
melanomas) were collected from the university hospitals of
Naples and Graz as presented in the EDRA Interactive Atlas of
Dermoscopy [17].
Dataset-B: 537 digital dermoscopy images (457 benign and 80
melanomas) were collected from the University of Vienna.

All diagnoses were histopathologically or clinically confirmed.
ataset-A is used for the development of the color calibration filters
nd their quantitative evaluation, whereas Dataset-B is used for
lternative evaluation of the developed filters.

. Development of color calibration filters

.1. Basic idea of the study

The requirement of this study is that all color calibration proce-
ures are performed on the server side and accordingly we have to
alibrate the image using the transmitted (obtained) image alone.
his problem is referred to as “blind estimation” in control engi-
eering. In this section, we briefly summarize the rationale behind
ur fully automated color calibration method.

Now we consider a dermoscopy image and modify it with cer-
ain pre-defined procedure (e.g. hue +10◦, saturation −10%). Since
he modification procedure is known, its restoring (inverse) pro-
edure to obtain the original image from the modified image (e.g.
ue −10 ◦, saturation +10%) is also known. The main idea of this
tudy is estimating this restoring procedure using quantitatively
alculable image features extracted from the modified image. Based
n a certain number of images (as training images) and their vari-
us modifications, we build linear regression models that describe
he relationship between the restoring procedure (known) and fea-
ures calculable from the image. Once we obtain a clear relationship
etween these two, these regression models can be used for the
alibration of unseen images.

.2. Method overview

Fig. 1 shows the schematic of the proposed method. In this study,

olor calibration was performed based on the hue, saturation, and
ntensity (value) channels, independently. First, we design a total
f M color modification filters

m(H, S, V) = {gm(H), gm(S), gm(V)} (1 ≤ m ≤M). (1)
Fig. 1. Overview of building a color calibration filter.

These filters modify the hue (H), saturation (S), and intensity (V)
values of the pixels in the training image.

In this figure, fi(x, y) denotes the ith (1≤ i≤N) dermoscopy image
in the training set and we obtain M different images f i

m(x, y) by
applying the abovementioned filters to each input image.

f i
m(x, y) = f i(x, y)� gm(H, S, V). (2)

Note that x and y denote the Cartesian coordinates of the pixels in
an image and operator � performs the color modification.

On a data set of N×M images (N training images and their M
variations each), we extract a total of P image features f j

m(p) (1 ≤
j ≤ N ×M) (1 ≤ p ≤ P) from each image f j

m(x, y). Now let us con-
sider the relationship between the extracted “image features” f j

m(p)
and the appropriate restoring procedure hj

m(H, S, V). For the train-
ing dataset (and their variations), the appropriate restoring factor
hj

m(H, S, V) is already known as the inverse form of the color mod-
ification filter as follows:

hj
m(H, S, V) = gj

m(−H, 1/S, 1/V). (3)

Note that hue (H) is in degrees, while saturation (S) and inten-
sity (V) are expressed as multiplication factor and therefore the
inverse form can be written as above. Thus, we can build multiple
regression models CA(p) = {CH(p), CS(p), CV(p)} from the N×M com-
binations of “image features” f j

m(p) and the appropriate “calibration
factor” hj

m(H, S, V).
The task of color calibration for an image can be considered as a

problem of estimating appropriate h(H, S, V). Assuming an image f(x,
y) and extracted image features from this image p, the regression
models CA(p) can be considered as the estimated restoring factor
ĥ(H, S, V) for f(x, y). If we build a robust regression model based on
a sufficiently large training set, ĥ(H, S, V) will be closer to the ideal
h(H, S, V),

CA(p) =
[

CH(p)
CS(p)
CV (p)

]
=

⎡
⎣ ĥ(H)

ĥ(S)
ĥ(V)

⎤
⎦ = ĥ(H, S, V)→ h(H, S, V). (4)

For this reason, we can call this regression model a “color calibration
filter”. The color calibration filters CA(p) are the final products of this
study.

Finally, color calibration process of an image f(x, y) can be
described as
f ′(x, y) = f (x, y)� CA(p)
= f (x, y)� ĥ(H, S, V)

(5)

where f′(x, y) is the calibrated image.
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Table 1
172 base image features for color calibration.

(i) Primitive color features (5×6×4 = 120)
Value (5 kinds) Color channel (6 kinds) Region (4 kinds)

Minimum (min ), average (�),
maximum (max ), standard deviation
(�), skewness (�)

Red (R), green (G), blue (B), hue (H),
saturation (S), value (V)

Tumor (T), peripheral (P),
tumor–peripheral (T–P),
peripheral–normal (P–N)

(ii) Number of colors (2×2×2 = 8)
Quantize level (2 kinds) Color channel (2 kinds) Region (2 kinds)

8, 16 RGB, HSV Tumor (T), peripheral (P)

(iii) Other color features (1×6×2 = 12)
Value Color channel (6 kinds) Region (2 kinds)

Average (�) Red (R), green (G), blue (B), hue (H),
saturation (S), value (V)

Normal skin (N), peripheral–tumor
(P–T)

(iv) Color features of border (8×2×2 = 32)
Value (2 kinds) Color channel (2 kinds) Size of windows SB (8 kinds)
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Ratio (inside:outside) (˛), gradient (∇) Blue (B), value (V

a L: length of the major axis of the tumor object.

.3. Experimental setting

We used Dataset-A as the training dataset (N = 319) and pre-
ared a total of 75 modified images per image (M = 75) where the
odification involves five different hue values H = {−10, −5, 0, 5,

0}, three different saturation values S = {0.9, 1.0, 1.1}, and five dif-
erent intensity values V = {0.8, 0.9, 1.0, 1.1, 1.2}. Note that if the

odified value exceeds the limit of each channel, we use the max-
mum possible value instead. We extracted a total of 172 image
eatures from each image (P = 172). Accordingly, a total 319×75
airs of 172-dimensional feature vectors f j

m(p) and the correspond-
ng calibration factors hj

m(H, S, V) were used to build the color
alibration filter CA(p) (= ĥ(H, S, V) = ĝ(−H, 1/S, 1/V); regression
odel) in each color channel.

.4. Building the color calibration filters

In order to build robust and accurate color calibration filters,
xtraction of effective image features is important. The proposed
ethod first determines the tumor area and then extracts image

eatures from the inside, outside, and periphery of the tumor and
rom the entire image. Based on these extracted features, we build

ultiple regression models with statistical feature selection to
void problems of multi-collinearity or over-fitting.

.4.1. Tumor area extraction
Accurate determination of the tumor area is one of the most

mportant steps in the computer-aided diagnosis of melanoma [18].
n this study, we used our “dermatologist-like” tumor area extrac-
ion algorithm [19]. This algorithm was shown to be highly accurate
20,21] and has been used successfully in our previous studies
10,11].

.4.2. Image feature extraction
After extracting the tumor area, we rotated the tumor object to

lign its major axis with the Cartesian x-axis. We then extracted a
otal of 172 color related objective features from the image. These

ere (i) 120 primitive color features (30×4 areas), (ii) 8 poly-

hrome features, (iii) 12 other color related features, and (iv) 32
olor gradient features in the peripheral areas. Table 1 summarizes
he image features used in this study. Their detailed explanations
re follows:
L/5, L/10, L/15, L/20, L/25, L/30, L/35,
L/40 a

(i) Primitive color features: minimum (min ), average (�), maxi-
mum (max ), standard deviation (�) and skewness (�) values
in the RGB and HSV color spaces, respectively (subtotal
30) for the whole tumor area (T: tumor), periphery of the
tumor area (P: peripheral), difference between the tumor area
and the surrounding normal skin (T–N: tumor–normal skin)
and difference between peripheral and normal skin (P–N:
peripheral–normal skin). Note that the peripheral part of the
tumor is defined as the region inside the border that has an area
equal to 30% of the tumor area and determined by a recursive
dilation process applied to the outer border, working inward
from the border of the extracted tumor. The ratio of 30% was
determined in our preliminary experiments based on the visual
assessment provided by several dermatologists.

(ii) Polychromatic features: The number of colors in the tumor area
and peripheral tumor area in the RGB and HSV color spaces
quantized to 83 (# CRGB8, # CHSV8) and 163 (# CRGB16, # CHSV16)
colors, respectively (2 regions×2 color spaces×2 quantization
levels: subtotal 8).

iii) Other color features: The average color of surrounding normal
skin (�N: R, G, B, H, S, V: subtotal 6), and average color dif-
ferences between the peripheral tumor area and inside of the
tumor area (�P–T: R, G, B, H, S, V: subtotal 6).

(iv) Color gradient of border: The tumor area was divided into eight
equi-angle regions. In each region, we defined a window of size
SB× SB pixels that is centered on the border of the tumor. In
each window, the ratio of the color intensity inside and outside
of the tumor and the gradient of color intensity were calculated
in the blue and luminance channels (ratio: ˛B and ˛V, gradient:
∇B and∇V), respectively. These were averaged over the 8 equi-
angle regions. We calculated four features for eight different
window sizes SB; 1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/35 and
1/40 of the length of the major axis of the tumor object (L).

3.4.3. Feature selection
We used many color related image features and some of which

may be correlated. It is well known that building a regression
model with highly correlated parameters is adversely affected by

the so-called multicollinearity, and, in such a case, the model loses
accuracy and generality.

In this study, incremental stepwise feature selection was per-
formed to select only the most significant image features for
each regression model (e.g. H, S, and V). This feature selection
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Table 2
Developed calibration filter functions (first 10 features.)

ĝ(H)( =−CH(p)) ĝ(S)( = 1/CS(p)) ĝ(V)(= 1/CV(p))

Coefficient Feature Coefficient Feature Coefficient Feature

0.140 minP
H 1.51×10−4 �S

T 4.07×10−3 �N
R

0.111 �P
H

1.59×10−3 �P
S

1.63×10−4 �S
T–N

−0.375 #CP
HSV8 5.55×10−5 �H

P 1.15×10−3 maxP
V

−0.252 �P–N
R

1.00×10−3 #CP
RGB16 −4.58×10−3 �P

S

−1.209 �P–N
G

−2.28×10−3 �T
G

6.74×10−2 ∇1/20
V

1.461 �P–N
V

2.09×10−3 �P–N
B

1.73×10−4 �V
P

0.016 �G
P −4.92×10−4 maxT

G
−1.36×10−3 maxP

H

−0.011 �B
P 5.21×10−4 minT

R −1.00×10−3 �P–N
B

0.058 #CP
HSV16 4.39×10−4 �P–N

R
−7.89×10−4 �P–N

S

0.012 minT
H −1.62×10−3 #CP

RGB8 −4.90×10−4 �P–T
R

−31.80 Const. 0.869 Const. 0.119 Const.
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Table 3
Modeling performance of regression model (Dataset-A).

Criterion # p a R2 E b

Hue 48 0.623 4.15 (1.2%)
10 0.434 5.32 (1.5%)

Saturation 40 0.296 0.062 (6.2%)
10 0.204 0.073 (7.3%)

Intensity 47 0.890 0.042 (4.2%)
10 0.857 0.053 (5.3%)

easier to calibrate the brightness of the image rather than using the
RGB color system. In a similar way, the H (hue) and S (saturation)
of the HSV color system are also useful for calibrating the white-
balance of the camera. For the reasons mentioned above, we used
the HSV color system in our study.

Table 4
Calibration performance by cross-validation test.

Criterion MAE± SD a
pper right suffix means features in T: tumor area, P: peripheral area, N: normal
kin area, P–N, P–T, T–N:difference between peripheral-normal, peripheral-tumor
rea, tumor area-normal skin area, respectively. Lower right suffix indicates color
hannel.

ethod rejected statistically negligible features during incremen-
al selection and therefore, these highly correlated features were
utomatically excluded from the model. The details of the feature
election procedure are given below:

step 0) Set base parameter BP to NULL and number of base param-
eter # BP = 0.

step 1) Search one input parameter x∗ from all image features x
where regression model with x∗ yields best performance
(lowest residual) among all. Set BP as x∗ and # BP = 1.

step 2) Select one input candidate x∧ which has the highest par-
tial correlation coefficient from all image features without
redundancy and build a linear regression model whose
input elements are (BP + x∧). (number of input is # BP + 1)

step 3) Perform the statistical F-test to check all the selected
parameters (BP + x∧) are significant (p<0.05) for the regres-
sion model.

step 4) If yes in (step 3), x∧ is added to BP, # BP←# BP + 1 and
return to (step 2). Else if the developed model has a statis-
tically negligible parameter x∧ (p>0.10), reject x∧ from BP,
# BP←# BP−1 and return to (step 2). Otherwise Terminate
input selection process.

Based on these selected features, we build a linear multiple
egression model for each of the H, S, and V channels.

. Results

.1. Modeling performance

The incremental stepwise feature selection method selected
egression models with 48, 40 and 47 parameters for CH(p), CS(p),
nd CV(p), respectively.

The color calibration filters CA(p) built using the 10 first selected
eatures are summarized in Table 2. In the column entitled ‘feature’,
or instance, minP

H denotes the minimum hue value in the periph-
ral part of the tumor. Note that in this study, we used gj

m(H, S, V)
s a target value of the linear regression models instead of using
j
m(H, S, V) as explained in Section 3.2 and accordingly, the devel-
ped calibration models are in negative or division form. Note that
ll selected parameters for regression models are shown in Table 7

n Appendix.

Table 3 summarizes the modeling performance of the linear
egression models. From left to right, the columns in the table corre-
pond to the number of constituent image features of the regression
odel (# p), determination coefficients adjusted by degree of free-
a Number of constitutive image features
b Hue is in degrees (0–360◦), while saturation and intensity are expressed as

multiplying factor.

dom (R2), standard error of the regression model (E). Note again
that hue (H) is in degrees (0–360◦), while saturation (S) and inten-
sity (V) are expressed as multiplication factor and accordingly the
standard error E in hue appears to be larger than that in the other
two channels.

4.2. Calibration performance

We evaluated the color calibration performance with 75-fold
cross-validation test using Dataset-A. Note that this evaluation
involves separate training and test data sets. The results are sum-
marized in Table 4.

Fig. 2 shows examples of color calibration results. Note that
here the modified image (b) is obtained from the original image
(a) using the pre-defined modification filters g(H, S, V). In (c), we
show estimated modified value ĝ(H, S, V) as a reference. In these
examples, the test image is excluded from the training set during
the development of the corresponding calibration filter. The result
of cross-validation is almost equivalent to the training error and
this error range is acceptable from a visual perspective.

Now we would like to test the performance of the proposed color
calibration method for the case where the test images are different
(Dataset-B) from those in the training data set (Dataset-A). Figs. 3
and 4 show examples of color calibration results. Based on visual
assessment, all images seem to be appropriately calibrated as well
as those in Dataset-A.

5. Discussion

5.1. HSV color system

We used the HSV color system for the color calibration task.
The HSV color system is capable of handling brightness (luminance,
lightness and intensity) and chromaticity information, separately.
The V (value) of the HSV is also called intensity and it provides
brightness information independent from the chromatic one. The
brightness of a captured image is highly dependent on both shutter
speed and aperture of the camera. Using the V channel, it is much
Hue 4.34±5.21 (1.2±1.5%)
Saturation 0.069±0.073 (6.9±7.3%)
Intensity 0.047±0.053 (4.7±5.3%)

a MAE: mean absolute error, SD: standard deviation, Hue is in degrees (0–360◦),
while saturation and intensity are expressed as multiplying factor.
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Fig. 2. Sample results of color calibration (Dataset-A: known data).
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Fig. 3. Sample results of color calibration (Dataset-B: unknown data (benign)).
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Fig. 4. Sample results of color calibration (Dataset-B: unknown data (malignant)).
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Fig. 5. Transition of feature distribution after color calibration.

Table 5
Comparison of distribution of color related image features.

Dataset 1st PC a 2nd PC

Dataset-A (training) 1891±687 −1205±430

T
C

6 H. Iyatomi et al. / Computerized Medi

.2. Evaluation of color calibration – Dataset-A

Our regression model achieved good modeling and calibra-
ion performance for hue (modeling error = 1.2%, error under
ross-validation = 1.2%) and intensity (modeling error = 4.2%, error
nder cross-validation = 4.7%). Calibration performance for satura-
ion was inferior to others, however and error of about 6.2 % (6.9%
n cross-validation) in saturation does not have a large impact com-
ared with that in hue under visual assessment (see Fig.2 case 4:
2%, case 5: 5%). The calibration performance is comparable with
reviously published hardware-based calibration results (mean
rror in RGB channel = 3.1% [16]).

In this study, we highlighted 10 features each for calibration
odel in hue, saturation and intensity obtained by input selec-

ion (Table 3). Note that parameters chosen early in the stepwise
eature selection are considered to be more important for the clas-
ification because the most statistically significant parameters are
elected in each step. From Table 3, it can be seen that the cali-
ration model developed using only 10 features shows reasonable
alibration performance, especially for intensity. We can see that
imilar calibration performance is obtained using only these fea-
ures.

Next, we discuss important image features for calibrating the
mage using Table 2. Interestingly, the peripheral part of the tumor
s crucial for the estimation of the color calibration filter. Especially
n the hue channel, 9 out of 10 features are related with ones from
he peripheral part of the tumor. This selectivity is much higher
han that observed in classification models. On the other hand, the
radient of these areas was hardly ever selected.

.3. Evaluation of color calibration – Dataset-B

As for Dataset-B, since we have no ground truth information
efining the appropriate calibration, we cannot perform a quan-
itative evaluation directly. Alternatively, we can compare the
istribution of image features among the training dataset (Dataset-
), the test dataset (Dataset-B), and the test dataset after color
alibration. This evaluation is based on the assumption that if color
alibration works properly, the color distribution of the test images
ould be closer to that of the training set.

We conducted principal component analysis (PCA) and orthogo-
alized a total of 172 color related image features described above.
ig. 5 compares the parameter distribution with two principal com-
onents for the sake of simplicity (accumulated contribution ratio
f the first two components was 72.2%). Note that we randomly
educed the number of points in the plot to 100 in each dataset
or visualization purposes. We can see the color calibration pro-
ess makes the color distribution of the test set closer to that of
he training set. The centroid and standard deviation of the data
istribution are summarized in Table 5.
From Figs. 3 and 4, we can see that the darker images are appro-
riately calibrated and images that require no calibration are left
nchanged. Based on these observations, we can conclude that our
ethod also has the ability to perform color calibration for unseen

ata.

able 6
alibration of intensity using only one factor �N

R
.

Skin color in red channel �N
R

250 240 230 220 210
Estimated skin intensity �N

V
a 232.4 223.1 213.8 204.5 195.2

Calibration ratio CV(p) 0.880 0.920 0.963 1.010 1.062
Calibrated intensity b 204.6 205.2 205.8 206.5 207.3

a �N
R
× (211.95/228.01) (from Eq. (7)).

b �N
V
× CV (p).
Dataset-B 999±390 −774±307
Dataset-B with calibration 1206±456 −945±298

a Principal component.

5.4. Calibration of intensity

As for calibration of intensity, a linear regression model with
only one factor �N

R (average red value of surrounding skin) shows
especially high modeling performance (R2=0.781, E=0.066) com-
pared to the other two and it is described as

CV (p) = 1

0.0486�N
R − 0.0795

. (6)

This means that the intensity of a dermoscopy image can be cali-
brated using the red value of the surrounding normal skin which
meets our intuition.

Now let us discuss calibration performance of intensity
using this equation. Average and standard deviation of �N

R and
�N

V (mean intensity of surrounding normal skin) in Dataset-A
are 228.01±12.98 and 211.95±16.81, respectively. Correlation
between �N

R and �N
V is 0.810. Since these two are strongly corre-

lated, we assume here �N
V can be estimated by
�N
V =

211.95
228.01

�N
R (7)

for simplicity. Table 6 shows the relationship among �N
R , esti-

mated �N
V using Eq. (7), calibration factor CV(p) by Eq. (6), and

200 190 180 170 160 150 140 130
185.9 176.6 167.3 158.0 148.7 139.4 130.1 120.8
1.120 1.184 1.257 1.339 1.432 1.539 1.663 1.810
208.2 209.2 210.3 211.5 213.0 214.6 216.5 218.7
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Table 7
All selected features for color calibration filter CA(p).

ĝ(H)(=−CH(p)) ĝ(S)(= 1/CS(p)) ĝ(V)(= 1/CV(p))

1 �P
H

�P
S

�T–N
S

2 #CP
HSV8 �P

H
maxP

V
3 �P–N

R
#CP

RGB16 �P
S

4 �P–N
G

minT
R ˛1/20

V
5 �P–N

V
�P–N

R
maxT

H
6 �P

G
#CP

RGB8 �P–N
S

7 �P
B

�N
H

�T–N
V

8 #CP
HSV16 �T

R
�T–N

V

9 minT
H �T–N

R
�P–T

H

10 ∇1/20
B

�T
S

maxP–N
V

11 maxT
G

minT
H �P–N

S
12 maxT

V
�T–N

S
�P–N

S
13 maxP

G
�P–N

S
�P

G

14 �P
G

�P
S

˛1/15
V

15 �N
R

�T–N
S

minP
S

16 �P
H

�T
B

#CT
RGB8

17 �N
S

∇1/10
V

maxT
V

18 �T
S

maxT
B

maxT
G

19 �P–N
S

maxP
B

maxP
B

20 �P
S

�N
V

#CP
HSV16

21 �N
B

�P–N
S

#CT
RGB16

22 ∇1/5
V

�T
B

�T
V

23 minT
S maxT

V
maxT

B

24 minT–N
V maxP–N

G
˛1/40

V

25 �P–N
B

minP–N
S ˛1/30

V

26 �T–N
S

∇1/20
B

�T
R

27 minT
G ∇1/30

B
�T–N

R

28 minT–N
R �T

S
�P

R

29 ∇1/15
B

�T
V

�P–N
V

30 ˛1/40
B

�P–N
S

�P
R

31 ˛1/5
B

�T–N
S

�N
S

32 �P–T
R

∇1/10
B

�N
B

33 �P–N
R

∇1/5
B

�N
H

34 �P–N
V

�T
R

�P–N
H

35 �T
R

�P
V

�T–N
H

36 �T–N
S

�P
G

maxT
R

37 �T–N
B

�P
H

�T
S

38 �P–T
G

�P
B

∇1/40
V

39 �T–N
G

˛1/5
V

�P
V

40 �T–N
V

˛1/10
V

�P
V

41 �T
V

˛1/25
V

42 �P
S

�P
H

43 �P–N
R

minP
H

44 ˛1/40
V

�T
B

45 �P–N
S

�T
B

46 �P–N
B

�T–N
B

47 �P–T �P

c
t
i
�

i
w
p
a

5

w
i
s
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[16] Maglogiannis I, Pavolopoulos S. An integrated computer supported acquisition,
handling, and characterization system for pigmented skin lesions in dermato-
S G
48 �T–N

R

alibrated intensity value (�N
V × CV ). We can confirm from this

able that the pixel with intensity value out of normal range
s appropriately calibrated to the certain value. (i.e. Average of

N
V
∼= 212)
Intensity of images in Dataset-B is generally lower than those

n Dataset-A. Note that the EDRA data set (source of Dataset-A) is
idely used in this field. In Figs. 3 and 4, we can see several exam-
les in which the color distribution of darker images are corrected
ppropriately.

.5. Calibration for vascular coloration

The vascular coloration (peripheral erythema, vascular blush)

hich characterizes malignancies of all types appears to be dimin-

shed in some cases by this method, and we are conducting ongoing
tudies to preserve this feature in color-calibrated images.

[

aging and Graphics 35 (2011) 89–98 97

6. Conclusions

In this paper we developed a new color calibration method
for dermoscopy images. The key feature of our method is that
color calibration can be performed based on image content alone.
Color calibration for dermoscopy images is especially important for
computer-aided diagnosis systems. We are currently investigating
the influence of color calibration on the final diagnosis.
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Appendix A.

Table 7 shows all the image features of developed color cali-
bration filter CA(p) selected by incremental stepwise method. Note
that some of the features are different from those shown in Table 2.
This is because some features are eliminated during the increment
steps.
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