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a b s t r a c t

Image segmentation is an important task in the analysis of dermoscopy images since the extraction of skin
lesion borders provides important cues for accurate diagnosis. In recent years, gradient vector flow based
algorithms have demonstrated their merits in image segmentation. However, due to the compromise of
eywords:
mage segmentation
radient vector flow
ean shift

internal and external energy forces within the partial differential equation these methods commonly lead
to under- or over-segmentation problems. In this paper, we introduce a new mean shift based gradient
vector flow (GVF) algorithm that drives the internal/external energies towards the correct direction.
The proposed segmentation method incorporates a mean shift operation within the standard GVF cost
function. Theoretical analysis proves that the proposed algorithm converges rapidly, while experimental

iverse
rders
onvergence
ccuracy

results on a large set of d
determines skin lesion bo

. Introduction

Malignant melanoma, the most deadly form of skin cancer, is
ne of the most rapidly increasing cancers in the world, with an
stimated incidence of 68,720 and an estimated total of 8650 deaths
n the United States in 2009 alone [1]. Early diagnosis is particularly
mportant since melanoma can be cured with a simple excision if
etected early.

Dermoscopy, one of the major tools for the diagnosis of
elanoma, is a non-invasive skin imaging technique that involves

ptical magnification which makes sub-surface structures more
eadily visible compared to conventional clinical images [2]. This in
urn reduces screening errors and provides greater differentiation
etween difficult lesions such as pigmented Spitz nevi and small,
linically equivocal lesions [3]. However, it has also been demon-
trated that dermoscopy might lower the diagnostic accuracy in
he hands of inexperienced dermatologists [4]. Therefore, in order
o minimise diagnostic errors resulting from the difficulty and sub-
ectivity of visual interpretation, the development of computerised
mage analysis techniques is of paramount importance [5].

Automatic border detection of lesions is often the first step in

he automated or semi-automated analysis of dermoscopy images
nd is crucial for accurate diagnosis [6]. Image segmentation can be
efined as the grouping of similar pixels (i.e. lesion and non-lesion
ixels) in a parametric space. Segmentation algorithms include bal-

∗ Corresponding author. Tel.: +44 28 90971869; fax: +44 28 90971702.
E-mail addresses: andy4 11@yahoo.co.uk, H.Zhou@ecit.qub.ac.uk (H. Zhou).

895-6111/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compmedimag.2010.08.002
dermoscopy images demonstrate that the presented method accurately
in dermoscopy images.

© 2010 Elsevier Ltd. All rights reserved.

loons [7], distance potential force [8], diffusion snakes [9], gradient
vector flow (GVF) [10] and its generalisation [11] and further devel-
opments [12,13]. GVF and its variants have been shown to work
well by attracting the active contour towards object boundaries
from a relatively large distance, while being capable of converg-
ing to object cavities. In recent years, numerous efforts have been
made to provide potential solutions towards capture range or/and
topological change problems. For example, a graph theory based
approach was introduced by Li et al. [14] within the external force
term in the snake model to perform automatic snake initialisation
or splitting. Chuang and Lie [15] presented a downstream algorithm
based on an extended GVF field model, where the downstream
process starts with a set of seeds scored and selected by consid-
ering local gradient direction information around each pixel. Yang
et al. [16] proposed a robust colour GVF snake model which com-
bined robust estimation and colour gradients using a L2E robust
estimation. Vasilevskiy and Siddiqi [17] demonstrated a gradient
flow model which can be used to maximise the rate of increase of
flux of a vector field in a two- or three-dimensional domain. The
main contribution of this work is the direction of the vector field
along with its magnitudes. Paragios et al. [13] proposed an edge
driven bi-direction geometric flow for boundary detection by com-
bining the geodesic active contour flow [18] and the gradient vector
flow model [10].
In this paper, we propose a new type of dynamic energy force
for snakes by combining local GVFs with a mean shift strategy.
The energy force starts with the calculation of force vectors in the
image domain. The deformation of the region surrounded by the
evolving boundary is constrained by the mean shift of the pixels

dx.doi.org/10.1016/j.compmedimag.2010.08.002
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:andy4_11@yahoo.co.uk
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ig. 1. Example of GVF segmentation: (a) initialisation (red), (b) image 10, (c) imag
= 0.01, � = 1, flow weight � = 0.6. (For interpretation of the references to color in th

n the region. In other words, the evolution of the contour is not
nly driven by the gradient vector flows but also by the cumula-
ive energy of the image region. This extended mean shift based
VF algorithm is versatile and flexible in that both local and global
nergy minimisation are achieved, leading to correct convergence
gainst a severely noisy background.

The rest of the paper is organised as follows: In Section 2, the
riginal GVF algorithm and its variants are introduced and dis-
ussed. Our proposed mean shift based GVF approach is described
n Section 3. Section 4 presents extensive comparative results of
he proposed scheme and conventional approaches. Finally, con-
lusions and future directions are given in Section 5.

. GVF image segmentation

Snake (active contour) algorithms are used to detect object
oundaries or edges given an initial guess of the evolving contours.
he classical snake model considers a combination of internal and
xternal energy, in which the boundary will stop evolving on the
ompromise of the two energy interactions. The internal energy
erm maintains smoothness and compactness of the curve shape,
hile the external energy term tunes the curve in order to be con-

istent with the inherent image gradients. Normally, the negative
f the image gradient magnitude is used as the external energy; this
ndicates that larger gradient magnitudes will drive the evolution
f the contour towards the real object boundaries [19].

The external energy force in the snake model is restricted to a
mall area surrounding the real boundary. If it is far from the real
oundary, the snake will have difficulty in converging to the correct
oundary. Xu and Prince [10] proposed a GVF map to represent the
xternal energy force in the snake model. This GVF term is sensitive
o the object boundaries or edges and hence effectively pulls the
nake towards the real edges. Let a snake be a curve x(s) = [x(s), y(s)],
∈ [0, 1], which evolves in an image domain to reach a minimisation
f the following energy function:

(x) =
∫ 1

0

[
1
2

(
˛

∣∣∣∣∂x
∂s

∣∣∣∣
2

+ ˇ
∣∣∣∣∂2x
∂s2

∣∣∣∣
2
)

+ Eext(x)

]
ds, (1)

here ˛ and ˇ are the weights that dominate the tension and
igidity of the snake, respectively. The first order derivative ∂x/∂s
ncourages stretching while the second order derivative ∂2x/∂s2

eads to bending. The first two terms on the right-hand side of Eq.
1) are referred to as the internal energy of the snake, while the
hird term is the external energy that attains small values at fea-

ure points. In the presence of high gradients at image boundaries
e.g. step edges) the external energy is represented by −∇(G�(x,
) * I(x, y))2 (where * indicates the convolution operation). In the
ase of line drawings, ±G�(x, y) * I(x, y) is used instead, where G� is
two-dimensional Gaussian function with standard deviation �.
(d) image 30 and (e) image 40. The parameters used in this evaluation are ˛= 0.05,
re legend, the reader is referred to the web version of the article.)

To minimise E(x), the contour has to be evolved by satisfying the
following time-dependent function:

�
∂x
∂t

= ∂

∂s

(
˛
∂x
∂s

)
− ∂2

∂s2

(
ˇ
∂2x
∂s2

)
− ∇Eext(x) = 0, (2)

where � is the coefficient component.
Classical snakes have two main problems: initialisation, and

difficulty in handling topological changes. As a result, GVF is intro-
duced for solving these problems. The external energy of Eq. (2)
is replaced with a GVF field, −∇Eext(x), which is defined as the
solution of the following partial differential equations:{

vt = �∇2v − (v − ∇f )|∇f |2,
v0 = ∇f, (3)

where vt is the partial derivative of v against t, ∇ 2 = ∂ 2/∂ x2 +∂2/∂ y2,
and f indicates an edge map of the image that attains a large value
at the feature points.

The values of � and |�f| dominate the final settlement of the
snake. For example, in the presence of intensive noise the regula-
tor � is usually set to be a large value so that the gradients of the
boundary candidates can be enhanced. On the other hand, if |�f|
is large, where the energy produced by the image edges becomes
dominant, it will lead to forcing v to be similar to�f. Fig. 1 illustrates
an example of GVF segmentation, where the snake is near the real
boundary but the segmentation accuracy needs to be improved.

3. Proposed mean shift based GVF algorithm

3.1. Problem formulation

When the GVF snake is finally settled, where the internal and
external forces are balanced, one can have the Euler equation,
expressed as

˛C ′′(s) − ˇC ′′ ′′(s) + �V = 0, (4)

where ˛ and ˇ are the weighting parameters that are used to con-
trol the strength of the snake’s tension and rigidity respectively, �
is a proportional coefficient and V is the external force. Practically,
these three parameters are set to be constants within the equa-
tion. C(s) is the contour that delineates the desired boundaries, and
s ∈ [0,1].

Before exploring any improvement based on the original GVF
platform, we rewrite Eq. (4) as

g1(d)C ′′(s) − g2(d−1)C ′′ ′′(s) + g3(d)V = 0, (5)

where g1(d), g1(d−1) and g3(d) are the weighting functionals of
the internal and external energy terms, respectively, and d is the
Euclidean distance between the presumed centroid of the real

boundary and the estimated one of the snake. In fact, if the snake
is ideally placed on the real boundary, then they both most likely
share a common centroid in addition to the merging of the contours.
As a result, it is common practice to regard the Euclidean distance
between the centroids as an index of proximity. However, we do not
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ake into account the case where each weighting functional has two
r more combinatorial variables, i.e. g1(d,˛). This particular case is
more complicated mechanism which is beyond the scope of this
aper. Note that there exists a significant difference between the
unctional g1(d) and g2(d−1) in terms of the variables. This is due
o the opposite behaviour of d in the elasticity and rigidity terms,
here the former is dominant in the energy function when d is

arge or the latter plays a key role when d is small [20,21].
Alternatively, we can use the simplified version of Eq. (5) as

˜1(d)C ′′(s) − g̃2(d−1)C ′′ ′′(s) + �V = 0, (6)

hich is dependent on the assumption that, as the snake evolves,
he GVF field remains stationary (this assumption may reduce the
omputational requirements of the optimisation). Evidence shows
hat this assumption holds strictly in static images but might fail
n dynamically variable images, e.g. motion artefacts, occluded
mages, etc.

Suppose that g̃1(d) and g̃2(d−1) have continuous derivatives.
hen, one has a Taylor series, which can be defined as

g̃1(d) = g̃1(d1) + g̃′
1(d1)(d− d1) + g̃′′

1(d1)(d− d1)2

2
+ · · ·,

g̃2

(
1
d

)
= g̃2(d2) + g̃′

2(d2)
(

1
d

− d2

)
+ g̃

′′
2(d2)((1/d) − d2)2

2
+ · · ·,

(7)

here d1 and d2 are two constants. The snake normally approaches
he real boundary consistently and dynamically, indicating that the
volution of the snake can be linearised. Thus, the higher order
erms (≥2) in the Taylor series can be ignored.

Assuming the snake starts from an initial guess, then the terms
ith no relation to the variable d (shown in Eq. (7)) will be ini-

ially set to zero. It should be noted that during the iteration these
erms may, or may not, be zero. However, setting these terms to
ero will avoid the side-effects of these constant terms during the
volution (e.g. slow convergence), and hence improve the speed of
onvergence towards the ideal contour. Consequently, Eq. (6) has
deformable style, as defined by

˜dC ′′(s) −
˜̌

d
C ′′ ′′(s) + �V = 0, (8)

here ˜̨ = g̃1(d1), ˜̌ = g̃2(d2), and both are constants in practice.

.2. Mean shift constrained segmentation

As mentioned above, when matched, the snake and the real
ontour must share a common centroid. Alternatively, having a
ommon centroid is a necessary condition for registration of the
wo contours. In this section, we investigate how to drive the cen-
roids of the two contours towards the same settlement while
erforming contour segmentation. To do so, we exploit the mean
hift algorithm [22]. In particular, the CAMSHIFT algorithm [23] is
sed due to its ability of accounting for dynamically changing distri-
utions during the evolution. First, we briefly review the principle
f mean shift.

Given an image point sequence si (i = 1, 2, . . ., n) in the m-
imensional space Rm, the multivariate kernel density estimate

ith kernel K(s) and window radius r is given as

(s) = 1
nrm

n∑
i=1

K
(

s − si
r

)
. (9)
Fig. 2. Summary of the proposed image segmentation algorithm.

The multivariate Epanechnikov kernel can be estimated by

KE(s) =

⎧⎨
⎩

(m+ 2)(1 − ‖s‖2)
2cm

, ‖s‖< 1

0, otherwise

(10)

where cm is the volume of the unit m-dimensional sphere.
Assuming a kernel� (s) = c0  ‖ s ‖ 2, where c0 is a normalisation

constant, the mean shift vector is expressed as

MS(s) ≡
∑n

i=1si (‖(s − si)/r‖2∑n
i=1 (‖(s − si)/r‖2

− s, (11)

where ( · ) is an intermediate function [24]. The mean shift proce-
dure is a recursive evolution that involves the computation of the
mean shift vector MS(s) and adjustment of the centroid of kernel�
by MS(s). In theory, the Euclidean distance between the centroids
d is proportional to the mean of the mean shift:

d ∝MS(s)m. (12)

The application of the mean shift in our algorithm is straight-
forward. The mean shift algorithm is employed to find the contour
candidate that is the most similar to the real boundary, with the
similarity being expressed by the Euclidean distance between the
initial centroid of the snake and that of the real boundary, which
satisfies the object energy function as well. The following steps are
performed: The centroid (xc, yc) of a contour is calculated by

⎧⎪⎨
⎪⎩
xc = M10

M00
,

yc = M01

M00
,

(13)

where we have the initial (zeroth) moment M00, the moment M10
for x-coordinates, and the moment M01 for y-coordinates of image
points on the contour.

The initial centroid (normally it is the centre of the image or
an estimate provided by the user) for the real boundary, and the
estimated one for the snake, are obtained, respectively. Once the
centroids are obtained, the Euclidean distance d between these two
centroids then becomes defined, which is used in Eq. (8) for per-
forming the revised GVF strategy. This is followed by executing the
standard CAMSHIFT algorithm [23,25], where Eq. (11) is deployed.
After CAMSHIFT, we again compute the Euclidean distance between
the centroids. Then, the extended GVF and CAMSHIFT are subse-

quently applied. The above procedure is iterated until the Euclidean
distance of the centroids becomes smaller than 0.1. The entire algo-
rithm is summarised in Fig. 2.
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Fig. 3. Examples of test skin cancer images. These images are labe

.3. Convergence properties

t
∫

Let K be a function in L1(R ) with K = 1, and Eq. (9) can be
egarded as

˜ i f̃i(z) = (nhtn)
−1

n∑
j=1

K

(
z − Zj
hn

)
I, (14)

ig. 4. Performance comparison of different segmentation algorithms in group 1: column
no. 5, 10, 15, 20, . . ., 80 (left to right along with raster direction).

where n iterations will be performed in order to describe the evolv-
ing behaviour of the overall image points. q̃f̃ (z) = maxlq̃i f̃i(z), and

I is the indicator function that returns 1 for the pixels belonging
to the target, and 0 for all other pixels. Eq. (14) fully determines
the probability density of the registration between the contour
candidate and the real contour: given a number of iterations, it
finds a solution (the settlement of the contour), which is very close

(1) original, (2) ground truth, (3) level set, (4) classical GVF and (5) proposed.
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ig. 5. Performance comparison of different segmentation algorithms in group 2: c

o the real contour. This can be proved by using the following
heorem:

heorem 1. If Z has a density, hv → 0 and vhtv → ∞ (v is the number
f iterations), then Eq. (14) satisfies: for all ε∈ (0, 1) there exists v0 > 0
uch thatP(Lv − L	 > ε) ≤ exp(−c̃vε2), where v ≥ v0 and c̃ is a positive
onstant only depending on K.

The proof for this theorem has been given in [26] (pages
57–258). In theory, this theorem explicitly reveals that there
lways exists an optimal solution whose probability P approaches
hat of the real solution.

heorem 2. Suppose the mean shift based GVF snake has continuous

erivatives. Then, the evolution of the snake is bound in each iteration.

To prove this theorem, one can take derivatives for both sides of
q. (14) with respect to z. Taking into account Eq. (10), it is clear that
he derivative of the right side of Eq. (14) has a definite boundary
(1) original, (2) ground truth, (3) level set, (4) classical GVF and (5) proposed.


, which is

−Zj(2cmnht+1
n )

−1
(m+ 2)I ≤ 
 ≤ 0. (15)

This theorem verifies that the proposed snake will not be divergent
in iteration, and the diffuse forces exist to drive the snake towards
the real contour.

The above two theorems are related to the characteristics of the
mean shift procedure. The following theorem is concerned with the
feature of the extended GVF model (Eq. (8)).

Theorem 3. Let the GVF snake have continuous derivatives. The
evolution of the snake has efficient convergence.

There are two coherent stages for the proof of this theorem.

Firstly, we need to prove that Eq. (8) is convergent in terms of its
settlement. Secondly, the convergence must be proved to be fast.
The proposed GVF algorithm mainly involves the calculation of the
Euclidean distance between the two consecutive centroids. There-
fore, the discussion of the convergence is based on this distance.
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Table 1
Segmentation performance on the complete dermoscopy image set. For each algo-
rithm the median sensitivity and specificity are given. Values in parentheses indicate
standard deviations of the measures.

Algorithm Specificity Sensitivity
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[

[

[

[

[

[

[

Classical GVF 0.99 (0.10) 0.74 (0.13)
Level sets 0.99 (0.07) 0.76 (0.09)
Proposed 0.99 (0.08) 0.81 (0.09)

We can generate a derivative for the left hand side of Eq. (8)
.r.t. d, and then set the derivation to zero. This results in

˜C ′′(s) +
˜̌

d2
C ′′ ′′(s) = 0. (16)

hus, the distance d is determined by

d| =
√

−
˜̌C ′′ ′′(s)
˜̨C ′′(s)

. (17)

The continuity of the derivatives have inferred that C′′(s) is non-
ero. Therefore, the proposed GVF has a certain convergence. In
he meantime, it is observed that the distance d depends on the
nd and 4th order derivatives of the contour. Clearly, the 4th order
erivative will dominate the speed of the distance value and hence
he convergence is fast.

. Experimental work

The proposed segmentation algorithm was evaluated on a set of
00 dermoscopy images (30 invasive malignant melanoma and 70
enign) obtained from the EDRA Interactive Atlas of Dermoscopy
2] and the dermatology practices of Dr. A. Marghoob (New York,
Y), Dr. H. Rabinovitz (Plantation, FL) and Dr. S. Meznies (Syd-
ey, Australia). The benign lesions included nevocellular nevi and
ysplastic nevi. A subset of the images is shown in Fig. 3. Manual
orders were obtained by selecting a number of points on the lesion
order, connecting these with a 2nd-order B-spline and finally fill-

ng the resulting closed curve. Manual borders were determined
y dermatologists Dr. W. Stoecker, Dr. J. Malters, and Dr. J. Grichnik
sing this method and serve as a ground truth for the experiments.
he algorithms that we compared are the classical GVF [10], level
et segmentation [14] and the proposed GVF algorithm.

The first group of the segmentations obtained by the various
lgorithms is given in Fig. 4, which shows one of the ground truth
egmentations together with the results by all three methods. In
eneral, the proposed segmentation scheme has the best perfor-
ance in terms of accuracy. For example, in the first row the

lassical GVF algorithm leads to too much noise in the contour.
he result of the level set framework is very similar to that of the
roposed algorithm, where both closely outline the real boundaries
f the lesions. The results shown in the third row illustrate that for
his image both GVF based schemes provide similar results except
or Images 2 and 3, while the level set leads to over-segmentation.

In the second test group the images are more complicated. For
xample, in the examples shown in rows 3 and 8 of Fig. 5 the edges
f the test images do not differ significantly from their surround-
ngs. Fig. 5 also demonstrates that the proposed algorithm is clearly
etter than the other two algorithms, e.g. rows 3, 4, 6 and 7. In a
ew cases, the classical GVF (rows 1 and 2) and level set schemes
row 5) give better results. However, in these cases, the differ-
nces between our proposed algorithm and the level set scheme

re practically negligible.

Finally, in Table 1 we give the results over the complete dataset
f 100 dermoscopy images in terms of median sensitivity and
pecificity. The figure denotes the average of the median sensitiv-
ty/specificity against the three manual borders (i.e. the average of

[

[

ing and Graphics 35 (2011) 121–127

the three median values where each of the median values comes
from 1 set of 100 manual borders). Table 1 confirms that the pro-
posed algorithm performs better than the other two.

5. Conclusions

GVF based algorithms have been frequently used to segment
medical images, but also need further development to improve
segmentation accuracy. In this paper we have introduced a new
mean shift based GVF segmentation algorithm for segmenting skin
lesions in dermoscopy images. The proposed method incorporates a
mean field term within the standard GVF objective function. Exper-
imental results on a large dataset of 100 dermoscopy images have
shown that the proposed segmentation technique is capable of pro-
viding more accurate segmentation results than classical GVF and
level set schemes.
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