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In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a
variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces
within the resulting partial differential equations, these methods may lead to biased segmentation
results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can suc-
cessfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium,
the various forces resulting from the different energy terms are balanced. In addition, the smoothness
constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental
results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the pro-
posed method effectively detects the borders of the objects of interest.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Snakes or active contour models were first proposed by Kass
et al. in 1987 [1]. Snakes or active contours refer to curves or sur-
faces that are defined within the image domain with external con-
straint forces, and driven by image forces towards the image
features such as edges. Since their publication, these deformable
models have received tremendous attention in the research com-
munity [2–5].

According to the representation and implementation, there are
mainly two groups of deformable models: parametric deformable
models (PDMs) and geometric deformable models (GDMs) [6].
GDMs describe curves or surfaces as level sets of higher-dimen-
sional scalar functions that evolve in an Eulerian style, while
PDMs explicitly parameterise curves or surfaces in a Lagrangian
fashion [6]. With remarkable success, these established models
continuously target the following two major technical problems:
initialisation (or capture range) [7,8] and topological changes
[9,10]. On the other hand, there are also some interesting work
related to nonparametric active contours, which may render the
boundary settlement independent of the initialisation process,
e.g. [11,12].

GDMs are often used to address topological flexibility. For
example, Caselles et al. applied curve evolution theory [13] and
developed a geometric active contour model [14], while Malladi
et al. introduced a geometric active contour model [15] based on
the level set principle [16]. Han et al. [6] reported a topology-pre-
serving level set method that achieved topology preservation using
the simple point concept. However, GDMs still face a number of
challenges in different aspects. For example, in a level set scheme
(one example of GDMs), topological constraints on the evolving
boundary need to be released in order for the scheme to deal with
a higher dimensional space [17]. Furthermore, GDMs can be fur-
ther improved in the detection of boundary gaps [18].

PDMs have been widely used in boundary detection, motion
detection and tracking, and object recognition. A number of algo-
rithms have been established for various applications by formulat-
ing new forms of the external energy in the Snake model. These
algorithms include balloons [19], distance potential force [20], dif-
fusion Snakes [21], gradient vector flow (GVF) [22] and its general-
isation [23], and further developments [24,25]. GVF and its
variants have achieved tremendous success by attracting the active
contour towards object boundaries from a relatively large distance.
These approaches are also capable of converging to object cavities
in some applications. In spite of this progress, evidence shows that
the performance of PDMs needs to be improved in automatic ini-
tialisation and splitting [10].

In recent years, numerous efforts have been made to provide
potential solutions towards the capture range or/and topological
change problems. A comprehensive survey has been reported in
[26]. For example, a graph theory based approach was introduced
by Li et al. [10] within the external force term in the Snake model
to perform automatic Snake initialisation or splitting. Chuang and
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(a) (b) (c) (d)
Fig. 1. Example of GVF segmentation: (a) Original image with the initial contour, (b) edge enhancement, (c) GVF field map and (d) final contour settlement (red colour). The
parameters used in this example are a = 0.1, b = 0.01, c = 1,j = 0.6. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Examples of ambiguous boundary detection that can result in under-or over-segmentation (see the peaks in the graphs): (a) Original image, (b) image blurring by
Gaussian filtering and (c) volumetric representation of (b). Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

H. Zhou et al. / Computer Vision and Image Understanding 117 (2013) 1004–1016 1005
Lie [27] presented a downstream algorithm based on an extended
GVF field model, where the downstream process starts with a set of
selected seeds by considering local gradient direction information
around each pixel. Yang et al. [28] proposed a robust colour GVF
Snake model which combines robust estimation and colour gradi-
ents using an L2E robust estimation. Vasilevskiy and Siddiqi [29]
demonstrated that their gradient flow model can be used to max-
imise the rate of the flux of a vector field in a two-or three-dimen-
sional domain. This model can drive the vector field to go along
with outstanding magnitudes.

Paragios et al. [25] proposed an edge driven bi-direction geo-
metric flow for boundary detection by combining the geodesic ac-
tive contour flow [30] and the gradient vector flow model [22].
Tang and Acton [31] proposed a multiscale gradient vector flow
to elude clutter and to reliably localise the vessel boundaries.
Afterwards, Tang [32] presented a cancer image segmentation
algorithm, where the first part uses an anisotropic diffusion filter
for removing the noise and hairs, and the second part uses a mul-
ti-directional GVF Snake to segment the suspicious areas. A motion
gradient vector flow model for tracking rolling leukocytes was
introduced by Ray and Acton [33] and utilises the direction of leu-
kocyte movement. Michailovich et al. [34] developed an energy
functional based on the Bhattacharyya distance to drive curves to-
wards the shape that embeds a maximal discrepancy between the
empirical distributions of the photometric variable inside and out-
side the contours.

In this paper, we propose a new type of dynamic energy force
for Snakes combining local GVFs with mean shift. Our approach
is largely different from [35] that pursued a smooth vector field,
where the contour evolution relied on the summation of the cur-
rent gradient vector and the mean difference of all the gradients.
The proposed MSGVF scheme in our work seeks an optimal solu-
tion to a newly designed Euler–Lagrangian function that simulates
the energy minimisation of the evolving contour. Our algorithm is
developed in the way that both local (GVF) and global (mean shift)
energy minimisation are balanced, whilst the smoothness con-
straint of the image pixels is kept. The proposed approach also sig-
nificantly differs from those published in [24,36–39]: our method
uses a Lagrange multiplier to integrate the classical GVF and the
mass density function of the boundary into a combinatorial form.
The boundary is considered as a solution of the introduced Partial
Differential Equation (PDE), and we use mean shift as an optimisa-
tion approach to simplify the PDE computation. Comparably, the
classical approaches investigated the distance between the two
centroids of the previous and the present closed boundaries, where
truncated Taylor series gives a good approximation to the param-
eters used in the classical Gradient Vector Flow. Mean shift was
used as a stopping criterion for the segmentation, and theoretical
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Fig. 3. Interaction of neighbouring pixels in image segmentation: (a) Original images superimposed by the segmentation contour, (b) intensity histogram of the regions
outlined by the contour (indicated by green colour), and (c) intensity histogram of the regions outside the contour. Better viewed in colour. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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analysis for the asymptotic properties was also given in the
publications.

The remainder of the paper is organised as follows. In the next
section, the proposed Mean Shift based Gradient Vector Flow
(MSGVF) algorithm is presented. Section 3 provides experimental
results and performance analysis. Finally, conclusions and future
work are given in Section 4.

2. Mean shift based GVF algorithm (MSGVF)

2.1. Traditional Snakes and GVF

Snake (or active contour) models are used to detect object
boundaries or edges, given an initial guess of the evolving contours
by the user. The major challenge is to search for a global minimum
over a non-convex functional under predefined constraints, which
leads to the desired solution [1]. Both initial and boundary condi-
tions appear very important as they significantly affect the search
for a contour of both global and local minimums. This has been jus-
tified by the evidence that the evolving boundary can vanish into a
single point at a global minimum of the potential [9].

Classical Snake models consider a combination of internal and
external energy, in which the boundary will stop evolving when
an energy balance is obtained. The external energy force in the
Snake model is restricted to a small area which is close to the real
boundary. If it is far from the real boundary, the Snake may have
difficulty in converging to the correct position due to image noise
or distractions that violate the objective function. To address this,
Xu et al. [22] proposed a GVF field map to represent the external
energy force in the Snake model. This GVF term is sensitive to
the object boundaries or edges appearing in the image and hence
effectively pushes the Snakes towards the real edges.

Let a Snake be a curve x(s) = [x(s),y(s)],s 2 [0,1], which evolves
in an image domain to reach a minimisation of the following
energy function:
EðxÞ ¼
Z 1
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where a and b are the weights that determine the tension and rigid-
ity of the Snake respectively. The first order derivative @x

@s causes
stretching while the second order derivative @2x

@s

2
leads to bending.

The first two terms on the right-hand side of Eq. (1) are referred
to as the internal energy of the Snake, and the third term is the
external energy that attains small values at the feature points. In
the presence of high gradients at image boundaries (e.g. step edges)
the external energy is represented by �5(Gr(x,y) � I(x,y))2. In the
case of line drawings, ±Gr(x,y) � I(x,y) is used instead, where Gr is
a two-dimensional Gaussian function with standard deviation r.

To obtain a minimisation, the contour should satisfy the follow-
ing time-dependent function:

c
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¼ @

@s
a
@x
@s

� �
� @2

@s2 b
@2x
@s2

 !
�5EextðxÞ ¼ 0; ð2Þ

where c is the coefficient. In GVF Snakes, the external energy of Eq.
(2), �5Eext(x), is replaced by a GVF field, which is defined as the
solution of the following Euler equations using the calculus of vari-
ations [40]:

vt ¼ l52v � ðv �5f Þj 5 f j2;
v0 ¼ 5f ;

(
ð3Þ

where vt is the partial derivative of v with respect to t;52 ¼ @2

@x2 þ @2

@y2,
and f indicates an edge map of the image and attains large values at
feature points. Fig. 1 illustrates an example of GVF segmentation,
where the edges are enhanced via Gaussian filtering, and the GVF
field map is calculated according to the solution of Eq. (3).

The classical GVF Snake appears to be less effective in the pres-
ence of distractions or noise in the vicinity of a real boundary (see
the experimental section). As one of the possible solutions to this
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Fig. 4. Intensity histograms (row 2) and GVF field maps (row 3) of the regions outlined by the contour (row 1: green colour) in different iterations: (a) 5th, (b) 25th, and (d)
40th. The parameters used in this example are a = 0.1, b = 0.01, c = 1, j = 0.6. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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problem, in the previous work, we proposed a mean shift based
GVF strategy [24,38]: when the internal and external forces of
the GVF Snake are balanced, we have the Euler equation as follows:
g1ðdÞC
00ðsÞ � g2ðd

�1ÞC
0000
ðsÞ þ g3ðdÞV ¼ 0; ð4Þ
where g1(d), g2(d�1) and g3(d) are the weighting functionals of the
internal and external energy terms, respectively, C(s) is the contour
that delineates the desired boundaries and d is the Euclidean dis-
tance between the presumed centroid of the real boundary and
the estimated one of the snake.

According to [39], after appropriate variations, Eq. (4) has a
deformable form as ~adC 00ðsÞ � ~b

d C
0000
ðsÞ þ cV ¼ 0, where ~a ¼ ~g1ðd1Þ;

~b ¼ ~g2ðd2Þ; d1 and d2 are two constants, and ~g1 and ~g2 are the vari-
ations of the functionals g1 and g2. The Euclidean distance between
the two centroids, d, is proportional to the average mean shift of
the entire contour [38]. This is motivated by the fact that upon
the settlement of the Snake, these two centroids must be able to
match.
2.2. Contour deformation

As discussed above, the settlement of Snakes relies on the inter-
action between the internal and external energy forces. If one of
them has a larger force than the other, the Snake will penalise
the other term and hence the Snake’s settlement may be biased,
leading to over-or under-segmentation. In the situation where
there exists strong image noise or distractions next to the target
contour, a denoising process must be properly designed in order
to handle the bias issue. Fig. 2 illustrates dermoscopic images (a)
with their blurred outcomes (b) using a Gaussian filter in order
to reduce noise during the GVF segmentation procedure. However,
a new challenge is that we have no prior information about the le-
vel of image noise and the locations of distractions and hence
appropriate noise reduction may be very difficult to achieve.

Another possible solution is to re-design the energy functional
considering the combinatorial effects of the internal and external
energy forces within the objective function, i.e. Eq. (1). As a result,
the newly designed functional must be adaptive to different image
circumstances. In particular, if the internal energy term dominates



Fig. 5. Segmentation results of dermoscopic images with smooth and clear lesion edges. Row 1: original images; Row 2: ground truth; Row 3: level set; Row 4: classical GVF;
Row 5: MGVF; Row 6: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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the evolution of the contour, the external energy term will be used
to constrain the diffusion of the evolutionary contour in order to
prevent over-evolution of the contour. Here, we take a close look
at the evolution of the contour with numerical modelling, based
on a mass density function that describes the evolution of a curve.
This is a different view from the classical GVF strategies, using one
of the fundamental theories in physics.

The deformation of a region of interest can be considered as a
map T+: X!R2 with a continuously differentiable inverse T�.
Let the mass density function of the region, surrounded by a con-
tinuous contour, be q. The mass of the region is given as follows:

mx ¼
Z

x
dTþqðTþ; tÞ; ð5Þ

where m is the mass in the range x at time t.
Using the dynamical version T+0, q0 and x0 of the parameters T+

respectively, q and x, the right-hand side of Eq. (5) can be decom-
posed as follows [41]:Z

x0

dTþ0q0ðTþ0Þ ¼
Z

x0

dTþ0detð5TþðTþ0; tÞÞ

qðTþðTþ0; tÞ; tÞ;
ð6Þ
where the mass density function has an alternative form:

qðTþ; tÞ ¼ detð5q0ðqðTþ; tÞÞÞ: ð7Þ

Here, q is the inverse transform depending on the deformation map
T+. For simplicity, we use a time-series function to describe the
mass:

QðtÞ ¼
Z

x0

dTþ0detð5TþðTþ0; tÞÞqðTþðTþ0; tÞ; tÞ: ð8Þ

We understand that the surrounding contour cannot stop evolv-
ing until an energy cost function has been satisfied. Therefore, we
expect to find out in what circumstance the contour can be settled.
In a noise-free image (almost impossible though), we are able to stop
the evolution of the contour if the following condition is met [41]:

@QðtÞ
@t

¼ 0: ð9Þ

Using Eq. (8), we have the following form, omitting the intermedi-
ate derivation:
@QðtÞ
@t
¼
Z

x0

dTþ0detð5TþðTþ0;tÞÞ
@

@t
qðTþðTþ0;tÞ;tÞþð5� JÞqðTþðTþ0;tÞ;tÞ

� �
:

ð10Þ



Fig. 6. Segmentation results of dermoscopic images with irregular lesion edges. Row 1: original images; Row 2: ground truth; Row 3: level set; Row 4: classical GVF; Row 5:
MGVF; Row 6: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In spite of its complexity, Eq. (10) delineates the progressive char-
acteristics of the contour during its evolution. In other words, the
right hand side of Eq. (10) must be of a global minimum absolute
value when the contour actually stops moving. For simplicity, we
here discuss about the case where (5 � J)q is positive definite, which
is a common case in practice. As a result, the following inequality
holds:

@q
@t
þ ð5 � JÞq P

@q
@t
; ð11Þ

where J is a spatial velocity field that denotes the motion vector of
the image points on the contour at time t with the following form:

JðTþ; tÞ ¼
@Tþ
@t
ðqðTþ; tÞ; tÞ: ð12Þ

Let T+0 be a vector with non-negative components. Combining Eqs.
(11) and (12) leads to:

@QðtÞ
@t

P
Z

x0

dTþ0detð5TþðTþ0; tÞÞ
@q
@t
ðTþðTþ0; tÞ; tÞ: ð13Þ

If the Snake settles on the correct boundary, both constraints
Eqs. (2) and (9) must be satisfied at the same time. To jointly satisfy
these two constraints in a single objective function, we consider
applying the Lagrange multiplier rule [42]. This approach has the
advantage of using one of the constraints as a regularisation term
when the other is pursued. In other words, we seek an optimal va-
lue for the parameter k 2 R such that:

@

@s
a
@x
@s

� �
� @2

@s2 b
@2x
@s2

 !
�5EextðxÞ

" #

� k
Z

x0

dTþ0detð5TþðTþ0; tÞÞ
�

@

@t
qðTþðTþ0; tÞ; tÞ þ ð5 � JÞqðTþðTþ0; tÞ; tÞ

� ��
¼ 0:

ð14Þ

Let the first term of the left-hand side of Eq. (14) be FT1 and the sec-
ond term FT2 . In our case, the curve x in FT1 is closely related to the
map function T+ in FT1 . In fact, the latter determines the location of x
in the image, and any change of T+ subsequently causes variations of
x. In the meantime, the Lagrange multiplier k can be updated as

k ¼ inf
s2½0;1�;Tþ02x0

FT1

FT2

; ð15Þ



Fig. 7. Segmentation results of example dermoscopic images with ambiguous lesion edges. Row 1: original images; Row 2: ground truth; Row 3: level set; Row 4: classical
GVF; Row 5: MGVF; Row 6: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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where the conditions of s and T+0 must be jointly satisfied. Substi-
tuting Eqs. (11)–(14), we have the following form:

@

@s
a
@x
@s

� �
� @2

@s2 b
@2x
@s2

 !
�5EextðxÞ

" #
�

k
Z

x0

dTþ0detð5TþðTþ0; tÞÞ
@

@t
qðTþðTþ0; tÞ; tÞ

� �� �
P 0:

ð16Þ

Let the left-hand side of Eq. (16) be LðtÞ. Thus, we can re-write Eq.
(16) according to [43]: UðtÞ ¼ LTL ¼ kLk2. Eventually, the numeri-
cal solution of Eq. (16) satisfies the following condition:

min UðtÞ ¼minðkLk2Þ: ð17Þ

Using such a combinatorial way (i.e. Eq. (16)) helps handling the
segmentation problem in noisy images. This will be justified in
the experimental section. However, seeking such a minimisation
as Eq. (17) is non-trivial. First of all, compromising both the partial
differential equation (PDE) and the mass function of a region during
the contour evolution is not easy to achieve due to the different
objectives. Secondly, an analytical solution to the PDE problem is
extremely difficult to obtain as there are no prior information or
boundary conditions to use. A fast and optimal solution to Eq.
(17) is therefore pursued in the next subsection.

2.3. Simplified solution to the segmentation problem

To obtain an optimal solution to Eq. (16), we first investigate the
two terms of the left hand side of Eq. (16), and seek corresponding
solutions for individual local energy minimisations. These two
different operations are intersectionally applied to the two
energy terms before a global minimum is found. According to
[22], the gradient vector flow field is defined as the vector field
v(x,y) that minimises the following energy functional:
E ¼

R R
l u2

x þ u2
y þ v2

x þ v2
y

� �
þ j 5 f j2j � fv �5f j2dxdy, where

v(x,y) = [u(x,y),v(x,y)]. The solution to this minimisation is

l52u� ðu� fxÞ f 2
x þ f 2

y

� �
¼ 0

l52v � ðv � fyÞ f 2
x þ f 2

y

� �
¼ 0

8><
>: ð18Þ

where 52 is the Laplacian operator. Taking a closer look at the sec-
ond term of the left-hand side of Eq. (16), we have:

detð5TþðTþ0; tÞÞ ¼ Preigð5TþðTþ0; tÞÞ; ð19Þ



Fig. 8. Segmentation results of example dermoscopic images with different starting contours. Row 1: original images superimposed by starting contours; Row 2: ground
truth; Row 3: GVF; Row 4: level set; Row 5: MGVF; Row 6: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Segmentation performance with reference to Figs. 5–7. For each algorithm the median
sensitivity/specificity are given.

Algorithms Fig. 5 Fig. 6 Fig. 7

Classical GVF 0.75/0.95 0.71/0.99 0.66/0.99
Level sets 0.79/0.96 0.74/0.99 0.73/0.91
MGVF 0.80/0.98 0.78/0.99 0.75/0.94
MSGVF 0.84/0.97 0.80/1.00 0.77/0.93

Table 2
Segmentation performance with reference to the complete dermoscopic dataset. For
each algorithms the median sensitivity and specificity are given. Values in brackets
indicate standard deviations of the measures.

Algorithms Sensitivity Specificity

Classical GVF 0.74(0.13) 0.99(0.10)
Level sets 0.76(0.09) 0.99(0.07)
MGVF 0.81(0.09) 0.99(0.08)
MSGVF 0.86(0.07) 0.99(0.05)
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where r is the dimension and eig denotes the eigenvalues of 5T+

(T+0, t). The derivative 5T+(T+0, t) can be approximated to be the
difference of two neighbouring deformable shapes against the time
interval:

5TþðTþ0; tÞ �
TþðTþ0; tÞ � TþðTþ0; t �4TÞ

4T
; ð20Þ

where the initial state of5T+(T+0, t) is null and4T is the image sam-
pling interval (a constant in this case).

Now, we look at the parameterisation of q. The Euclidean dis-
tance between the centre of the mass and each point j on the image
is represented as d((xj,yj), t). Similarly, the Euclidean distance be-
tween the centre of the region and each point i on the contour is
D(xi,yi). Therefore, the mass density q is computed as follows:

qðTþðTþ0; tÞ; tÞ ¼
R

j dððxj; yjÞ; tÞ
Dðxi; yiÞ

: ð21Þ

Thus, we have:

@q
@t
ðTþðTþ0; tÞ; tÞ ¼

@
R

j dððxj; yjÞ; tÞ
� �

Dðxi; yiÞ@t
� a�dðtÞ

Dðxi; yiÞ
; ð22Þ

where a is a constant based on empirical results, and �dðtÞ is the
average moving distance of the centre of the mass over a short



Fig. 9. Segmentation results of optic disc images. Row 1: original images superimposed by starting contours; Row 2: ground truth; Row 3: classical GVF; Row 4: level set;
Row 5: MGVF; Row 6: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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period. Eq. (22) shows that the variation of mass density q is pro-
portional to the motion distance of the mass centre.

We now attempt to work out an efficient technique in order to
obtain an optimal numerical solution to Eq. (22). Techniques such
as image moments [44,45], level sets [15], wavelets [46] or sto-
chastic analysis [47] can be used to handle this problem in differ-
ent circumstances. Most of these approaches require the objective
functions to be parameterised. Moreover, these methods require
significant computation efforts before convergence is reached. In
our approach, which is significantly different from the classical ap-
proaches, we use a mean shift based algorithm that can achieve
fast similarity search by examining the intensity distributions over
two neighbouring iterations [48].

It is worth pointing out that the proposed algorithm signifi-
cantly differs from the classical approaches such as [24,35,38,39]
in the sense that the convergence of the proposed algorithm relies
upon the intensity histogram of the region outlined by the contour,
the distance between each point within the region outlined by the
contour and its mass centre and the distance between each point of
the contour and its centre. However, the approaches presented in
[24,35,38,39] only depend on the distance between each point of
the contour and its centre. Evidence shows that the proposed
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algorithm leads to better performance than the others due to the
joint action of the regional contents and the distances as
mentioned.

2.4. Mean shift for contour evolution

Fig. 3 shows two exemplar images with corresponding intensity
histograms and final segmentation results (the boundaries are
shown in green colour). The mean shift analysis used in the energy
minimisation is to enhance the discrimination capability of image
pixels. Let K(/) be a kernel and f(/) be a multivariate kernel density
estimation of the intensity values within the region outlined by the
evolving contour (/ refers to the image points). Then,

f ð/Þ ¼ 1
n

Xn

i¼1

KHð/� /iÞ; ð23Þ

where /i indicate the neighbouring points, and KHð/Þ ¼
jHj�

1
2K H�

1
2/

� �
, where H is a symmetric positive definite (l � l) band-

width matrix and n is the number of image points. In a real applica-

tion, the bandwidth matrix H can be diagonal H ¼ diag h2
1; . . . ;h2

l

h i
,

or proportional to the identity matrix H = h2I. Thus, we have
f ð/Þ ¼ 1

nhl

PK
i¼1

/�/i
h

	 

. We can use a radially symmetrical kernel that

satisfies K(/) = Ck,lk(k/k2), where Ck,l is a normalised constant that
enables K(/) to be integrated to 1. As a result,

fh;kð/Þ ¼
Ck;l

nhl

X
k

/� /i

h

����
����

2
 !

: ð24Þ

When the Snake settles, the intensity histograms over two neigh-
bouring iterations will be similar. If this occurs, the Snake possibly
stops moving, resulting in unchanged density estimations in this

circumstance: 5f(/) = 0. Therefore, 5f ð/Þ ¼ 2Ck;l

nhlþ2

P
ð/� /iÞ

k0 /�/i
h

�� ��2
� �

¼ 0. Introducing G(/) = �k0(/), we have:
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The mean shift is the last term of the right-hand side of Eq. (25),
which can be further simplified as follows:

mh;Gð/Þ ¼
1
2

h2C
5fh;kð/Þ
fh;Gð/Þ

; ð26Þ

where fh,G(/) has a similar form to that of Eq. (24) but uses G instead
of h. Referring to Eq. (22), we have

mh;Gð/Þ � ck
�dðtÞ; ð27Þ

which indicates that the minimisation of mean shift is also equiva-
lent to the minimisation of the mass density function of Eq. (22)
(ck is a scalar). This mean shift procedure determines the grouping
of the image points in the whole image domain, whilst having the
benefit of efficiently reaching the convergence. Mean shift is param-
eter-free and its kernel can be modified so as to adapt to different
applications. Consequently, when implementing Eq. (16), we in-
clude the computation of mean shift during each iteration for the
region surrounded by the evolving boundary.

Fig. 4 illustrates that, as the iteration proceeds, the GVF, a non-
conservative force based on the Helmholtz theorem, successfully
approximates boundary concavities and is capable of topological
transformation in a certain way. We also observe that the intensity
histograms of the region outlined by the evolving contour become
stabilised after a number of iterations. The mean shift will reach a
minimisation that is evolutionarily stable, which affects the settle-
ment of the Snake through the varied k (see Eq. 15). Without this
mean shift term for the regularisation purpose, the GVF would
drive the Snake to continuously shrink and cause over-segmenta-
tion in this particular example.

Algorithm 1. Proposed mean shift based GVF image segmentation
(MSGVF) algorithm.
1: Initialise the contour and the corresponding parameters
2: for Iterations i = 1:m (m is normally larger than 500) do
3: Employ the classical Snake (i.e. Eq. (2)).
4: Compute the mean of the intensity histogram of each

region surrounded by the evolving contour.
5: Obtain the difference of the two means in two

neighbouring iterations.
6: Introduce the above difference into Eq. (22).
7: Substitute Eqs. 19,20,21,22 and 26 into Eq. (16).
8: Calculate k using Eq. (15).
9: Evaluate the left hand side of Eq. (16) for the differences

over two consecutive iterations.
10: Iterate steps 3–9 until Eq. (17) is satisfied or the

difference between two consecutive iterations <0.001.
11: end for
2.5. Convergence analysis

The proposed Mean Shift based GVF algorithm is shown in Algo-
rithm 1. Looking at the energy function shown in Eq. (16), even
though one of the two functionals converges, Eq. (16) can still be
further optimised for a better settlement. The convergence proper-
ties of the energy function therefore can be divided into two parts.

First, we examine the case of mean shift. Assume that
S #Rd;5fh;k : S!R and have continuous derivatives of 2nd order.
"gt 2 S and 52Fh,k(gt) (t = 1, 2, . . .) is a negative definite matrix.
Fh,k(gt) can be expanded using the Taylor series theorem given
g = gt + ntdt 2 S:

Fh;kðgt þ ntdtÞ ¼ Fh;kðgtÞ þ nt 5 Fh;kðgt þ hntdtÞT ; ð28Þ

where 0 < h < 1. Let u(h) = kt5Fh, k(gt + hntdt)Tdt. We then have [49]:
limh?0u(h) = nt5Fh,k(gt+1)T5Fh,k(gt) > 0. The derivative of u(h) is
u0(h) = (gt+1 � gt)T52Fh,k(gt + hntdt)T(gt+1 � gt) < 0. Therefore, u(h) is
monotonically decreasing, "h(0,1). This leads to Fh,k(gt+1) > Fh,k(gt).
Hence, Fh,k(gt) is strictly monotonically increasing and convergent,
resulting in limFh;k!Fh;kð�gÞ ¼ 0, where �g 2 S [49].

Second, we investigate the convergence of the left hand side of
Eq. (16), assuming that mean shift has reached its minimisation
after a certain number of iterations. Referring to [50], one has

Lðuþ vÞ � LðvÞ ¼ ½lj 5 uj2 þ 2l5 v � 5uþ j 5 f j2

juj2 þ 2j 5 f j2ðv �5f Þ � u� þ t;
ð29Þ

where v + u 2 S and t ? 0 due to the slight variation in the mean
shift iteration. Given the Gâteaux variation of the functional as
�Lðv; uÞ ¼ limq!0

LðvþduÞ�LðvÞ
q , we then have: Lðv þ uÞ � LðvÞ�



Fig. 10. Segmentation results with different initial contours of optic disc. Column 1: original images superimposed by starting contours; Column 2: classical GVF; Column 3:
level set; Column 4: MSGVF. Better viewed in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Segmentation performance with reference to the complete optic disc dataset.

Algorithms Sensitivity Specificity XOR

Classical GVF 0.70(0.06) 0.99(0.04) 0.45(0.13)
Level sets 0.72(0.07) 0.99(0.01) 0.39(0.11)
MGVF 0.74(0.09) 0.99(0.03) 0.37(0.09)
MSGVF 0.78(0.04) 1.00(0.0) 0.33(0.09)

Table 4
Comparisons of time consumption of each algorithm for a single image. Units: s.

Classical GVF Level sets MGVF MSGVF

Time 16 14 17 22
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�Lðv; uÞ ¼ lj 5 uj2 þ j 5 f j2juj2 þ t P 0, which indicates that the
left hand side of Eq. (16) is convex.
3. Experimental work

To fully evaluate our proposed MSGVF algorithm in terms of the
initialisation invariance and convergence accuracy we use a set of
100 dermoscopic images (30 invasive malignant melanoma and 70
benign) obtained from the EDRA Interactive Atlas of Dermoscopy
[51] and the dermatology practices of Dr. Ashfaq Marghoob (New
York, NY), Dr. Harold Rabinovitz (Plantation, FL) and Dr. Scott Men-
zies (Sydney, Australia). The benign lesions include nevocellular
nevi and dysplastic nevi. Manual borders were obtained by select-
ing a number of points on the lesion border, connecting these with
a 2nd-order B-spline and finally filling the resulting closed curve.
Three sets of manual borders were determined by expert dermatol-
ogists and serve as a ground truth for the experiments.

In addition, the algorithm was evaluated on a set of 40 retinal
images obtained from the DRIVE database [52]. These images have
been randomly selected from a screening database of 400 diabetic
subjects aged 25–90. 33 of the images do not show any sign of dia-
betic retinopathy while in seven signs of mild diabetic retinopathy
are apparent. Each image is a true colour image of 768 by 584 pix-
els. The field of view of each image is circular with a diameter of
approximately 540 pixels.

In our current implementation, the colour dermoscopic images
are converted to grayscale using the CCIR 601 standard (Lumi-
nance = 0.2989 � Red + 0.5870 � Green + 0.1140 � Blue). Colour
information may be used in the future to improve the results. In
the experimental evaluation, we used a PC with Intel (R) Core
(TM)2 CPU (2.66 GHz) and 2 GB RAM. The algorithms we compare
are the classical GVF algorithm [22], level set segmentation [10]
(LS), mean shift constrained GVF (MGVF) [24,38,39] and the pro-
posed MSGVF algorithm. For the two GVF based methods, the
parameters have been set to: a (tension of the Snake) = 0.05, b (rigid-
ity of the Snake) = 0.0, c (step size in one iteration) = 1.0, and j
(external force weight) = 0.6. These parameters have been chosen
due to their best resulting outcomes from these specific datasets.
3.1. Dermoscopic images

In this sub-task, the evaluation consists of four parts. First, the
four algorithms are evaluated using the dermoscopic images where
the lesion areas possess smooth and clear edges. This is the easiest
case in the evaluation. Second, the performance of the overall algo-
rithms is investigated in the presence of irregular edges in the lesion
regions. This examination will bring certain challenges in terms of
the algorithms’ capability in these ‘‘noisy’’ environments. Third, we
examine how these schemes perform if the edges of the lesion areas
look ambiguous. This test is more rigorous than the above tests in the
way that a segmentation algorithm needs to effectively locate a va-
gue boundary before the segmentation procedure starts. Finally, we
evaluate the performance of the different algorithms (i.e. GVF,
MSGVF and level set) using changed initial contours.

In the first test, the various algorithms are evaluated in the
presence of smooth and clear edges. Image examples of the exper-
imental results are illustrated in Fig. 5. In general, the algorithms
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obtain similar outcomes. However, taking a closer look, we can ob-
serve that the proposed MSGVF algorithm has a better fit to the
ground truth than the classical GVF method. For example, the
2nd and 3rd columns of Fig. 5 illustrate that the classical GVF algo-
rithm leads to worse settlements, compared to the proposed
MSGVF algorithm. Also, it can be noticed that the level set algo-
rithm causes a significantly misplaced boundary on the first image
of Fig. 5.

In the second test, the lesion edges have irregular shapes that
make accurate segmentation more difficult as the energy functions
used in the iterations of these algorithms have to make more effort
to handle various saddle points in the optimisation. Exemplar re-
sults for this group of images are presented in Fig. 6. We observe
that MSGVF has the most consistent outcomes compared to the
other methods. The classical GVF technique leads to some spikes
on the final settlements as the evolution of the contour struggles
to capture the curvatures. For columns 2 and 3, it is clear that
the level set and MGVF methods exhibit difficulties in handling
concave shapes. In contrast, the proposed MSGVF algorithm is suc-
cessful in driving the contour to follow these shapes.

In the third test group, the skin images have ambiguous edges
where a segmentation algorithm needs to ‘‘define’’ a more clear
boundary in the first instance. Examples of this group are illus-
trated in Fig. 7, together with the obtained segmentations. The
classical GVF algorithm leads to local convergence and numerous
spikes along the final contours. Columns 1 and 4 of the level set
method show that this approach is not successful in capturing
the geometric deformation in the images, compared to the pro-
posed MSGVF algorithm.

Finally, we investigate the case where the starting contours are
changed before segmentation is performed. Two sample images
are given in Fig. 8. It is observed that the proposed MSGVF algo-
rithm has the most consistent and accurate segmentation results,
whereas the other two methods lack this consistency, leading to
failed converge onto the correct boundaries.

As ground truth information is available for the complete
dermoscopic image set, we can also evaluate the various algo-
rithms in a quantitative form. For each image segmentation we re-
cord the number of True Positives TP (the number of pixels that
were classified both by the algorithm and the expert as lesion pix-
els), True Negatives TN (the number of pixels that were classified
both by the algorithm and the experts as non-lesion pixels), False
Positives FP (the number of instances where a non-lesion pixel
was falsely classified as part of a lesion by an algorithm) and False
Negatives FN (the number of instances where lesion pixels were
falsely classified as non-lesion by an algorithm). From this we
can then calculate the sensitivity SE (or true positive rate):
SE ¼ TP

TPþFN and the specificity SP (or true negative rate): SP ¼ TN
TNþFP.

Table 1 gives the sensitivity and specificity obtained by all algo-
rithms over the image examples shown on Figs. 5–7 and compared
to all three ground truth segmentations (median SE and SP based
on all three manual segmentations are reported). It is observed
that the proposed MSGVF has the highest sensitivity and specificity
values, indicating the best segmentation capability. In Table 2 we
show the sensitivity and specificity obtained by all algorithms over
the entire dermoscopic database and compared to all three ground
truth segmentations (median SE and SP based on all three manual
segmentations are reported). It can be seen that the proposed
MSGVF performs significantly better with an median sensitivity
of 86% while the other algorithms achieve a sensitivity of less than
81%. In addition, MSGVF sustains more consistent results as indi-
cated by the lowest standard deviations of both sensitivity and
specificity. As specificity is fairly similar for all algorithms, we
can conclude that MSGVF provides the best segmentation on the
given dataset.
3.2. Optic disc images

We perform the evaluation on this dataset in two parts. First,
the classical GVF, level set segmentation and our proposed MSGVF
algorithms are evaluated using the retinal images where the optic
disc (OD) is clearly visible from the observer’s point of view which
represents the simplest case in our evaluation. In addition, the per-
formance of the algorithms is investigated in the presence of vague
optic discs in the retinal images. These examinations allow the
algorithms to be fully evaluated in different noisy environments.
Second, we examine how the algorithms perform if the initial con-
tours are varied. This is a rigorous test that fails a segmentation
algorithm if it does not work in a consistent and stable manner.

Examples of the first test are illustrated in Fig. 9. As can be seen,
for all these images, the proposed MSGVF algorithm provides con-
sistently accurate results compared to the other two algorithms.
This can be attributed to the computation of mean fields in the do-
main of the proposed approach, which dynamically balances inter-
nal and external energy forces during the contour evolution. The
poor performance of the classical GVF, MGVF and level set algo-
rithms is due to the distraction of the blood vessels nearby the op-
tic disc.

One of the main challenges in image segmentation is whether
or not the performance of a segmentation algorithm can be kept
consistent for different initialisation circumstances. To validate
this, we randomly specify the starting contours for the involved
images. This is followed by the regular routine of the algorithms.
Fig. 10 demonstrates that despite varied initial contour position,
the resultant segmentation borders are visually indistinguishable.
When the initial contour is relatively far from the actual one, three
approaches obtain similar segmentation results but it is clear that
the proposed MSGVF algorithm has more consistent outcomes
than the other algorithms.

Table 3 illustrates that the proposed MSGVF algorithm has the
best specificity and sensitivity, compared to the other algorithms.
It is worthy to point out that MGVF and level sets approaches lead
to similar sensitivity results, both of which are better than that of
the classical GVF. It is also observed that all of the tested algo-
rithms share approximately the same specificity results (0.99–
1.00). This indicates that all of them correctly exclude the areas
that do not belong to the real regions of interest. To better measure
the similarity between a segmented region and the ground truth,
especially in the presence of a small segmentation area, we here
apply an XOR operation. This XOR operation is defined as a ratio
between the non-overlapped area and the size of the ground tru-
thed segmentation region. The smaller XOR value is, the higher
similarity between the segmentation and the ground truth is
achieved. The last column of Table 3 shows that the proposed
MSGVF algorithm has the least dissimilarity.
4. Conclusions and future work

In this paper we have presented a novel variational framework
for image segmentation. Both the accuracy and robustness of the
proposed MSGVF algorithm have been validated against competing
approaches including classical GVF and level set. Unlike these
state-of-the-art techniques, the proposed method is fairly accurate
as it obtains an optimal solution during the iterations for energy
minimisation. The proposed algorithm integrates the classical
GVF term with a mass density function. The final solution towards
this integrated functional is based on a numerical optimisation
procedure with the support of mean shift estimation.

The main drawback of the proposed algorithm is that it involves
a large amount of computation to achieve convergence. While it
has been shown that numerical convergence of the evolving
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contour is guaranteed, the solution-rendering process is rather
time consuming. An example of time consumption of different
algorithms for a single image is illustrated in Table 4. Therefore, fu-
ture work is directed towards reducing the complexity of the com-
putation by optimising the implementation whilst using gradient
descent methods.
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