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 A B S T R A C T

Color quantization is an image processing operation that attempts to reduce the number of distinct colors 
used to represent an image without significant loss of quality. This operation is useful as an initial step to 
perform further processing on the image. The interest in this operation has led to several solution methods 
being proposed over the years. Within these methods several swarm-based methods have been used in recent 
years to solve the problem. This article discusses the application of one of these methods, called grey wolf 
optimization, to perform color quantization. This algorithm has generated good results when applied to a 
variety of optimization problems. Among the features that differentiate this algorithm from other swarm 
algorithms are its ability to converge toward better solutions, its speed, and the existence of a single control 
parameter. The article describes in detail how the grey wolf optimization method should be adapted to perform 
color quantization, so that it generates a quantized palette that allows the quantized image to be represented. In 
this case, each individual in the group represents a quantized palette, which is improved with the information 
provided by the group. The detailed description of the algorithm is complemented by an extensive testing 
section that compares the results of the proposed method to those of 16 others techniques. The results, based 
on the comparison of MSE, MAE, PSNR, SSIM, and runtime, show that grey wolf optimization can generate 
good quality images, better than most of the compared methods.
. Introduction

Let us consider an RGB image where the pixels are arranged in 𝑎
ows and 𝑏 columns. Therefore, the image includes 𝑛 = 𝑎 × 𝑏 pixels. 
he pixel placed in row 𝑖 and column 𝑗 is represented by three integer 
alues from interval [0, 255], corresponding to the amount of red (R), 
reen (G) and blue (B) of the pixel: 𝑝𝑖𝑗 = (𝑅𝑖𝑗 , 𝐺𝑖𝑗 , 𝐵𝑖𝑗 ).
When considering the RGB color space, the palette used to represent 

n image can include up to 2563 = 16777216 distinct colors. The 
bjective of color quantization methods is to define a new palette that 
ncludes fewer colors to represent the image, so that the resulting image 
s as similar to the original as possible. In this case, the new palette is 
alled the quantized palette and the image represented with that palette 
s called the quantized image. Let us represent the quantized palette by 
 set of RGB colors: 𝑃 = {𝑐1,… , 𝑐𝑞}, where 𝑞 is the size of the palette 
the number of distinct colors it contains).
Color quantization is a fundamental process in the field of digital 

mage processing and analysis. By limiting the number of colors, a 
impler and more manageable representation is achieved, which is 
ssential for applications in computer vision, printing, graphic editing 
nd data transmission, among others. It is a crucial technique that goes 
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beyond simply reducing the color palette of an image, facilitating tasks 
such as compression (Chen et al., 2002; Chou and Liu, 2004), segmen-
tation (Mignotte, 2008; An and Pun, 2014), image watermarking (Tsai 
et al., 2004; Kuo and Cheng, 2007), texture analysis (Losson and 
Macaire, 2015; Ponti et al., 2016), content-based image retrieval (Girgis 
and Reda, 2014; Liu et al., 2015), image dehazing (Berman et al., 
2016), image matting (Chuang et al., 2001), color-to-greyscale conver-
sion (Kuhn et al., 2008), saliency detection (Cheng et al., 2014), and 
skin detection (Phung et al., 2005).

Proper image quantization maintains visual quality and preserves 
essential details, helping to optimize resources and improve the auto-
matic interpretation of images in various systems. The importance of 
color quantization lies in its ability to optimize visual representation 
across countless digital applications. From image compression to reduce 
file sizes and speed up web loading, to adapting graphics for devices 
with limited screen capabilities, color quantization is fundamental for 
ensuring an efficient and high-quality visual experience. Furthermore, 
it plays a vital role in graphic design, artistic visual effects, printing, 
and emerging fields like computer vision, where simplifying the color 
space can improve the performance of recognition algorithms.
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Color quantization is a difficult problem for which different solution 
methods have been proposed over the years (Celebi, 2023). Tradition-
ally, it has been tackled with methods ranging from histogram-based 
techniques to clustering algorithms like k-means. However, the non-
linear and often multimodal nature of the color space, coupled with 
the computational complexity that arises when dealing with large color 
palettes, presents significant challenges for these approaches. This is 
where swarm-based algorithms emerge as a powerful and promising 
alternative.

Swarm-based methods are optimization techniques inspired by the 
behavior observed in groups of natural individuals that exhibit intelli-
gence when solving problems. These algorithms consider a population 
of primitive individuals that collaborate to solve a problem. Each 
individual independently can only perform very simple operations. 
However, when all individuals collaborate, they can solve complex 
problems. Swarm-based algorithms have shown their potential to solve 
many optimization problems (Hassanien and Emary, 2018). Their abil-
ity to efficiently explore complex search spaces and find solutions close 
to the global optimum, without relying on gradients or assumptions 
about problem convexity, makes them particularly well-suited for color 
quantization. By treating each color palette as an agent within a mul-
tidimensional search space, these algorithms can iteratively optimize 
the selection of representative color palettes, minimizing distortion or 
quantization error in the final image.

Color quantization can be formulated as an optimization problem, 
whose objective is to find the color palette that minimizes an error func-
tion. The objective function associated with the problem determines the 
quality of said palette. To do this, an index is calculated that defines 
the quality of the quantized image obtained by applying the quantized 
palette to represent the original image. Different image quality indices 
can be used for this purpose (Pérez-Delgado and Celebi, 2024). These 
indices can be classified as full-reference indices (which compare the 
original image with the quantized image to perform the calculation) 
and no-reference indices (which use only the quantized image).

The particle swarm optimization algorithm, proposed by Kennedy 
and Eberhart in 1995, is probably the most popular swarm-based 
method (Kennedy and Eberhart, 1995). Since then, many other methods 
have been proposed that mimic the behavior of different individu-
als, such as birds, fish, fireflies, dolphins, bacteria, frogs, bees, or 
bats (Chakraborty and Kar, 2017; Tang et al., 2021). Among the most 
recent methods is the grey wolf optimization (GWO) algorithm.

The GWO method was proposed by Mirjalili et al. in 2014, (Mirjalili 
et al., 2014). It is an optimization method inspired by the behavior 
of a group of grey wolves and tries to mimic the leadership hierarchy 
and hunting method of these wolves. There is a clear hierarchy and 
the leaders condition the behavior of the group. The algorithm con-
siders a group of wolves that represent solutions to an optimization 
problem. The quality or fitness of the solution associated with a wolf is 
calculated from the objective function of the problem to be optimized. 
The method applies an iterative process that updates the solution rep-
resented by each wolf, taking into account the solution associated with 
the three best wolves in the population. GWO has several advantages 
over other swarm algorithms: it is easy to implement and has a simple 
search mechanism, only a parameter, high solution accuracy, and fast 
convergence speed.

GWO has been extensively studied in recent years (Hatta et al., 
2019). It has attracted a lot of attention due to its simplicity and ease 
of implementation. Because of this, it has been applied to solve many 
problems, including feature selection (Emary et al., 2015, 2016; Hu 
et al., 2020; Medjahed et al., 2016; Vosooghifard and Ebrahimpour, 
2015), neural network training (Amirsadri et al., 2018; Mirjalili, 2015; 
Mosavi et al., 2016; Muangkote et al., 2014), clustering (Aljarah et al., 
2020; Tripathi et al., 2018; Zhang and Zhou, 2015), parameter es-
timation (Ali et al., 2017; Miao et al., 2020; Song et al., 2015) or 
forecasting (Altan et al., 2021; Tikhamarine et al., 2020). It has also 
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been applied to several real engineering problems, including schedul-
ing (Komaki and Kayvanfar, 2015; Lu et al., 2017), path planning (De-
wangan et al., 2019; Zhang et al., 2016), dispatch problems (Kamboj 
et al., 2016; Sulaiman et al., 2015), controllers tunning (Precup et al., 
2016; Sun et al., 2019), power systems optimization (Guha et al., 
2016; Shakarami and Davoudkhani, 2016) and medical diagnosis (Li 
et al., 2017a; Sharma et al., 2019; Zhao et al., 2019; Pérez-Delgado 
and Román-Gallego, 2023). In addition, GWO has been used in the 
field of image processing to solve problems such as image classifi-
cation (Ahmed et al., 2018), image segmentation (Khairuzzaman and 
Chaudhury, 2017; Li et al., 2017b) or steganalysis (Pathak et al., 2019; 
Shankar et al., 2019).

The research described in Schaefer et al. (2017) introduces the 
possibility of applying GWO to reduce the colors of an image. It uses 
the mean squared error as the objective function of the problem to be 
optimized and includes a penalty term to avoid creating unused colors 
in the quantized palette. This article includes a limited description 
of the specific operations considered to apply GWO to perform color 
quantization. On the other hand, it only includes computational results 
for 6 images reduced to 16 colors.

In addition to the article mentioned above, there are others that 
describe swarm-based methods applied to solve the color quantization 
problem. The methods applied in these articles mimic the behavior of 
particles, ants, bees, fireflies or frogs (Pérez-Delgado, 2020c). Published 
results indicate that these methods succeed in generating good quality 
quantized images.

Taking into account the above, it can be concluded that the GWO 
method can be applied to the color quantization problem and is likely 
to produce better results than other swarm models, as has been shown 
when applied to other problems. Therefore, the objective of this article 
is to present a detailed description of how the GWO algorithm can 
be applied to perform color quantization. The original GWO algorithm 
must be adapted to solve this specific problem. The article details these 
modifications and shows the influence of each modification in the final 
result. To evaluate the quality of the method, it is applied to a set of 
24 color images commonly used in the color quantization literature. In 
addition, it is compared to 14 other color quantization techniques and 
2 general optimization methods.

The rest of the article is organized as follows. First, popular methods 
applied to color quantization are described, including various swarm-
based methods that have been applied to this problem. After this, the 
general GWO algorithm is analyzed and then its adaptation to perform 
color quantization is discussed. The article continues by presenting 
a set of experimental results obtained by the described method. The 
information is completed with a comparative analysis of the results 
obtained by other 16 methods. Finally, the conclusions of the article 
are presented.

The main contributions of the article are the following:

• The GWO method has been adapted to reduce the number of 
distinct colors in an image.

• Several modifications are proposed to avoid the two main draw-
backs of the basic GWO algorithm: premature convergence and 
weak global searchability.

• Experimental results are given showing the different options that 
were considered to define the characteristics of the proposed 
solution.

• The results of the proposed method are compared to those of 14 
other color quantization methods and 2 optimization methods. 
The set of compared methods includes both classical color quan-
tization methods and various swarm-based methods. It has been 
shown that the proposed method generates better-quality images 
than most of its rivals.
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2. Related work

Color quantization methods can be broadly classified into splitting 
methods and clustering-based methods. In general, splitting methods 
can generate a solution quickly, but clustering-based methods can 
obtain better solutions.

To define a quantized palette with 𝑞 colors, splitting methods divide 
the color space into 𝑞 regions and include a color in the palette to 
represent the pixels in each region. To accomplish this, these methods 
apply an iterative process in which a region is selected and then split 
to generate new regions.

The median-cut (MC) method (Heckbert, 1982) splits the region 
with the most pixels along the longest axis at the median point. The 
centroids of the final 𝑞 regions define the quantized palette.

The variance-based (VB) method (Wan et al., 1990) selects the 
region with the largest weighted variance. The point that minimizes 
the marginal squared error is the splitting point, and the axis with the 
least weighted sum of projected variances is the splitting axis.

Wu proposed two splitting methods. The greedy orthogonal bi-
partitioning method is based on the same idea as VB, but the split-
ting axis is the one that minimizes the sum of the variances of both 
sides (Wu, 1991). The second method sorts the colors of the image 
along their principal axis and then applies dynamic programming to 
divide the color space (Wu, 1992).

The octree (OC) method (Gervautz and Purgathofer, 1990) builds a 
tree with the pixels in the image and then applies a merging process 
to the leaves that represent fewer pixels until the tree includes only 𝑞
leaves.

The binary splitting (BS) method (Orchard and Bouman, 1991) 
divides the region with the largest dominant eigenvalue along the 
principal axis of this region. The splitting point used in this case is the 
projection of the centroid to the selected axis.

The variance-cut (VC) method (Celebi et al., 2015) uses the binary 
splitting strategy to split the region with the largest sum of squared 
error along the coordinate axis with the largest variance at the mean 
point.

On the other hand, clustering-based methods create 𝑞 subsets or 
groups of pixels of the original image that have similar color. Several 
general clustering methods have been adapted to perform color quanti-
zation. These methods include the k-means algorithm, neural networks 
and swarm-based methods.

K-means is probably the most popular clustering method. There are 
several articles where it has been applied to perform color quantization 
(Abernathy and Celebi, 2022; Bounds et al., 2024; Celebi, 2009, 2011; 
Hu and Su, 2008; Kasuga et al., 2000; Thompson et al., 2020). This 
method selects 𝑞 initial centroids that define the quantized palette and 
applies an iterative process to improve them (Celebi et al., 2013). At 
each iteration, each pixel is associated with the closest centroid, and 
each centroid is then recomputed as the average value of all pixels 
associated with it in the previous operation.

The adaptive distributing units (ADU) method (Celebi et al., 2014) 
is based on the competitive learning paradigm. The iterative process 
starts with a palette that includes a single cluster whose centroid is 
the average of the pixels in the image. At each iteration, a pixel of the 
input image is associated with the closest color in the current quantized 
palette. When the number of pixels associated with a color in the palette 
reaches a threshold, a new element is added to the palette with the 
same initial color. The process concludes when the palette includes 𝑞
colors.

The neuquant (NQ) method defines a quantized palette using a 
neural network (Dekker, 1994). The final weights of a one-dimensional 
self-organizing feature map including 𝑞 neurons define such palette.

In addition to the solution based on the GWO method described in 
the introduction, various swarm-based algorithms have been applied 
to solve the color quantization problem, including artificial ant algo-
rithms, the shuffled-frog leaping algorithm (SFLA), the firefly algorithm 
3

(FA), the particle swarm optimization (PSO) method, and the artificial 
bee colony (ABC) algorithm.

The method described in Pérez-Delgado (2015), called ant-tree for 
color quantization (ATCQ), defines a tree of ants. Each ant represents 
a pixel of the original image that is connected to the tree taking into 
account the similarity between the color of the ant and the color of the 
tree node to which they are trying to connect. Once all the ants have 
been connected, each node of the second level defines a color of the 
quantized palette and is the root node of a subtree of ants (pixels) that 
will be represented in the quantized image by the color of that root 
node. The algorithm includes a parameter, 𝛼, that allows calculating a 
threshold that is used to decide if the similarity between an ant and a 
node is enough to connect the ant to the node.

ITATCQ is the iterative version of ATCQ (Pérez-Delgado, 2018b). 
ATCQ creates the initial tree. Then, each iteration starts by disconnect-
ing all the ants from the tree and then reconnecting them. The ITATCQ 
method was revised in Pérez-Delgado (2021), including several mod-
ifications to the original method. In this case, the ants are processed 
randomly (rather than sequentially), and the 𝛼 parameter is reduced 
over the course of iterations. The results showed that the quantized 
image is better and that the value of the 𝛼 parameter has less influence 
on the final results.

The ATCQ+FA method combines FA with ATCQ to perform color 
quantization (Pérez-Delgado, 2018a). Each firefly represents a quan-
tized palette and ATCQ is applied both to calculate the fitness of the 
solution it represents and to update it.

The PSO method was combined with k-means in Omran et al. 
(2005), applying k-means to improve several randomly selected parti-
cles before calculating their fitness. PSO was also used in Pérez-Delgado 
(2020a), although in this case ATCQ was used to compute the fitness 
of each particle and at the same time improve the palette represented 
by the particle. Tests conducted with both methods showed that the 
second method obtains better results in less time.

Two color quantization methods based on the use of the ABC algo-
rithm were proposed in Ozturk et al. (2014), Pérez-Delgado (2019b). 
Similar to what was described for the two PSO-based methods, these 
articles combine ABC with k-means (Ozturk et al., 2014) and ATCQ
(Pérez-Delgado, 2019b), which are used to compute the fitness of all the 
food sources except the candidate sources. The computational results 
showed that the execution time was considerably reduced by using 
ATCQ.

SFLA was used for color quantization in Pérez-Delgado (2019a). The 
algorithm works on a subset of pixels of the original image in order to 
reduce execution time.

Swarm-based methods have also been applied to the solution ob-
tained by other color quantization methods. This defines a two-stage 
method that first applies a splitting method to obtain an initial quan-
tized palette and then applies a clustering-based method that improves 
said palette. This approach was used to combine the BS method with 
ATCQ in Pérez-Delgado and Román-Gallego (2020) and then with 
ITATCQ in Pérez-Delgado (2020b). On the other hand, ATCQ was 
combined with the greedy orthogonal bi-partitioning method in Pérez-
Delgado and Román-Gallego (2019). The advantage of these solutions 
is that they generate good quality images fast.

Other swarm-based solutions to the color quantization problem are 
described in Pérez-Delgado (2020c).

Several works can be found in the literature that apply other meta-
heuristics to solve this problem. Among the techniques applied are 
simulated annealing (Nolle and Schaefer, 2007; Schaefer and Nolle, 
2015), differential evolution (Schaefer and Nolle, 2006; Su and Hu, 
2013; Hu et al., 2016), variable neighborhood search (Hansen et al., 
2007), genetic algorithms (Freisleben and Schrader, 1997; Roberto 
e Souza et al., 2020; Scheunders, 1997; Taşdizen et al., 1998) and 
evolution strategies (Carro-Calvo et al., 2010; González et al., 2000).

It is not the intention of this section to enumerate all existing color 
quantization methods. For a comprehensive review of methods devel-
oped over the past 40 years, the reader is encouraged to consult (Celebi, 
2023).
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3. GWO algorithm

Let us consider an optimization problem defined in a solution 
space of dimension 𝑟, where 𝑓 () denotes the objective function of the 
problem. The solution to the problem, 𝑆 = (𝑠1,… , 𝑠𝑟), is the value that 
minimizes (or maximizes) the objective function.

To solve the optimization problem by GWO, a population of wolves 
is considered. Let 𝑁 denote the size of the population. Each wolf 𝑖 has 
a position associated with it, 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑟), that represents a 
solution to the problem. Said position is modified over the course of 
iterations of the GWO algorithm; therefore 𝑋𝑖(𝑡) denotes the position 
of the wolf 𝑖 at iteration 𝑡. The quality or fitness of said solution is 
calculated by applying the objective function of the problem to the 
position associated with the wolf, 𝑓 (𝑋𝑖). The three wolves with the best 
fitness are used to guide the movement of the swarm. The three best 
wolves are named wolf 𝛼, 𝛽 and 𝛿, respectively, and their positions are 
𝑋𝛼(𝑡), 𝑋𝛽 (𝑡) and 𝑋𝛿(𝑡). The 𝛼 wolf is the one with the best position, that 
is, the wolf whose position generates the best value for the objective 
function of the problem.

Algorithm 1 Grey Wolf Optimization 
Define initial population 
Compute the fitness of each wolf 
Identify the 𝛼, 𝛽 and 𝛿 wolves 
Store 𝑋𝛼(0) as the global best solution (initial) 
for 𝑡 = 1 to 𝑇𝑀𝐴𝑋 do 
Update the positions of the wolves by Eq.  (1)
Compute the fitness of each wolf 
Identify the 𝛼, 𝛽 and 𝛿 wolves 
Update 𝑎 by Eq.  (10)
Update the global best solution

end for

The main operations of this method are listed in Algorithm 1. This 
algorithm includes only one parameter, 𝑎, which is initialized before the 
operations start and is updated in each iteration. The variable 𝑇𝑀𝐴𝑋
represents the maximum number of iterations of the GWO algorithm.

The first operation of the algorithm selects initial values for the 
wolves in the population, {𝑋1(0), 𝑋2(0), ..., 𝑋𝑁 (0)}. After this, the 
fitness of the wolves is computed by applying the objective function of 
the problem. Then, the three wolves with the best fitness are selected 
as the 𝛼, 𝛽 and 𝛿 wolves, respectively. In addition, the current solution 
associated with the 𝛼 wolf is stored as the best initial solution to the 
problem.

After the initialization stage, the algorithm applies an iterative 
process to improve the solution obtained by the swarm. At each iter-
ation 𝑡, the position of each wolf is updated taking into account the 
position of the three best wolves. The new position of a wolf 𝑖, 𝑋𝑖(𝑡), is 
computed by Eq.  (1), where the vectors 𝑋1, 𝑋2 and 𝑋3 are computed 
by Eqs. (2)–(4), respectively; (⊗ represents the Hadamard product).

𝑋𝑖(𝑡) = (𝑋1 +𝑋2 +𝑋3)∕3 (1)

𝑋1 = 𝑋𝛼(𝑡 − 1) − 𝐴1 ⊗𝐷𝛼 (2)

𝑋2 = 𝑋𝛽 (𝑡 − 1) − 𝐴2 ⊗𝐷𝛽 (3)

𝑋3 = 𝑋𝛿(𝑡 − 1) − 𝐴3 ⊗𝐷𝛿 (4)

The equations applied to compute 𝑋1, 𝑋2 and 𝑋3 consider the 
current position of one of the three leading wolves (𝑋𝛼(𝑡−1), X 𝛽 (𝑡−1)
or 𝑋𝛿(𝑡 − 1)), along with two additional elements. 𝐴1, 𝐴2 and 𝐴3 are 
vectors of size 𝑟 computed by applying Eq. (5) three times, where 𝑟
1
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is a vector of size 𝑟 whose components take random values from the 
interval [0, 1] and 𝑎 is a user-defined parameter. 
𝐴 = 2 𝑎 𝑟1 − 𝑎 (5)

On the other hand, 𝐷𝛼 , 𝐷𝛽 and 𝐷𝛿 are computed by Eqs. (6)–(8), 
respectively, where 𝐶1, 𝐶2 and 𝐶3 are computed by applying Eq.  (9) 
three times and 𝑟2 is a vector of size 𝑟 whose components take random 
values from the interval [0, 1]. The operator | ⋅ | used in these equations 
indicates that the absolute value of each component of the resulting 
vector is taken.

𝐷𝛼 = |𝐶1 ⊗𝑋𝛼(𝑡 − 1) −𝑋𝑖(𝑡 − 1)| (6)

𝐷𝛽 = |𝐶2 ⊗𝑋𝛽 (𝑡 − 1) −𝑋𝑖(𝑡 − 1)| (7)

𝐷𝛿 = |𝐶3 ⊗𝑋𝛿(𝑡 − 1) −𝑋𝑖(𝑡 − 1)| (8)

𝐶 = 2𝑟2 (9)

Once the positions of the wolves have been updated, the fitness of 
the new positions is computed and this allows the identification of the 
new three best wolves in the population. If the position of the 𝛼 wolf 
in the current iteration improves the global best solution stored so far, 
that information is replaced by the position of the current 𝛼 wolf.

Before completing an iteration, the algorithm updates the value of 
the 𝑎 parameter. This parameter is reduced over the course of iterations. 
The original article of Mirjalili proposes setting the initial value equal 
to 2 before applying the algorithm and then using Eq.  (10) to update 
𝑎, so as the parameter decreases linearly from 2 to 0 over the course of 
iterations. 
𝑎 = 2

(

1 − 𝑡
𝑇𝑀𝐴𝑋

)

(10)

When the algorithm terminates, the solution to the problem is given 
by the global best solution.

Several variants of the original algorithm have been proposed to try 
to improve the performance of the method. Some variants modify the 
GWO update mechanism to improve the balance between exploration 
and exploitation. For this purpose, several authors update the param-
eters dynamically (Long et al., 2017; Mittal et al., 2016), while others 
define new methods to update the individuals (Dudani and Chudasama, 
2016; Gupta and Deep, 2019; Malik et al., 2015; Rodríguez et al., 
2017).

4. GWO applied to color quantization

This section describes how the GWO algorithm has been
adapted to perform color quantization. The resulting algorithm is called
GWO+ATCQ, to differentiate it from the original GWO.

To solve the color quantization problem, the search agents in the 
group represent quantized palettes. Let consider a group of 𝑁 search 
agents. The quantized palette corresponding to the agent 𝑖 includes 
𝑞 RGB colors: 𝑋𝑖 = {(𝑅𝑖1, 𝐺𝑖1, 𝐵𝑖1), ..., (𝑅𝑖𝑞 , 𝐺𝑖𝑞 , 𝐵𝑖𝑞)}. Therefore, the 
algorithm handles 𝑁 quantized palettes: {𝑋1,… , 𝑋𝑁}. In an 8-bit color 
system, the red, green, and blue components of each color in a palette 
are represented by integer values between 0 and 255.

In order to describe the operations, this section includes several 
figures showing the evolution of a swarm of six search agents trying to 
reduce an image to 64 colors. The results correspond to the first image 
of the test set used in Section 5 of this article. The figures show the 
fitness of each agent over 20 iterations of the algorithm. The results 
corresponding to the iteration labeled 0 represent the fitness of the 
initial palettes. To perform a fair comparison, the same initial palettes 
were used for all the examples.
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Fig. 1. Evolution of a swarm of 6 agents over 20 iterations of the GWO algorithm – original GWO and several modifications (images reduced to 64 colors). 
Algorithm 2 GWO+ATCQ 
Sample the original image 
Define initial population 
Compute the fitness of the search agents by Eq.  (11)
Identify the best three search agents 
Store the initial best solution (Set 𝑃𝑔𝑝 = 𝑋𝛼(0)) 
for 𝑡 = 1 to 𝑇𝑀𝐴𝑋 do 
Update the position of the search agents 
Adjust the palette components to [0, 255]
Improve the palette of the 𝛿 search agent 
Compute the fitness of the search agents by Eq.  (11)
Identify the best three search agents 
Update 𝑎 by Eq.  (10)
Update the global best solution 𝑃𝑔𝑝

end for
Adjust the colors of 𝑃𝑔𝑝 by using the entire original image

4.1. The steps of the solution method

Algorithm 2 shows the steps of GWO+ATCQ. The fitness of a palette 
𝑖 is denoted 𝑓𝑖𝑡𝑖 and it is computed by applying Eq.  (11), which is 
described in the next section.

First of all, a sampling process is applied to the original image in 
order to reduce the size of the set of pixels used to apply the algorithm. 
Next, the initial 𝑁 palettes are defined and their elements are sorted 
by ascending value of the color components. Once the fitness of the 𝑁
search agents has been computed, the three best agents are determined. 
The palette corresponding to the 𝛼 agent is stored as the initial best 
solution to the problem. Let 𝑃𝑔𝑝 denote the best quantized palette found 
by the group of agents.

After completing the initialization stage, the algorithm performs 
an iterative process to improve the palettes represented by the search 
agents. The steps applied during each iteration are essentially those 
described for the GWO algorithm. Nevertheless, the operations applied 
to update the positions (palettes) of the agents are modified, as will 
be described in a later section. In summary, modified equations are 
included to compute the new position of an agent and the ATCQ 
5

method is also applied to improve the solution represented by the 𝛿
agent.

The 𝑎 parameter was assigned the same values proposed in the 
original GWO method. Therefore, the initial value was set to 2 and 
it was updated by Eq.  (10). The final operation of each iteration 
determines whether the group has found a better solution than the one 
considered the best up to the current iteration (𝑃𝑔𝑝). If the fitness of 
the 𝛼 agent identified at the current iteration is better than the fitness 
of 𝑃𝑔𝑝, the palette corresponding to agent 𝛼 is saved as the global best 
solution.

It should be noted that when the positions of the search agents are 
updated, the resulting values for each component must fit to the integer 
interval [0, 255] that defines the valid values for the components of an 
RGB color.

To sum up, the main modifications and features considered to 
perform color quantization using GWO are the following:

1. the fitness function.
2. sampling of the original image.
3. initialization of the population.
4. sorting of the initial solutions represented by the search agents.
5. updating the positions of the agents.
6. improvement of the 𝛿 agent by applying ATCQ.

These modifications are discussed in the following sections.
Before starting with this description, Fig.  1 shows the results for the 

original GWO and also for this method with several of the modifications 
proposed in the article, but applied independently of each other. The 
results obtained by the basic GWO appear in Fig.  1(a) (case in which no 
modifications of the proposed method are applied). It can be observed 
that the solutions of the search agents oscillate a lot. The results shown 
in Fig.  1(b) correspond to the case in which the initial palettes were 
sorted. Then, Fig.  1(c) shows the results obtained when ATCQ is applied 
to the 𝛿 agent. Finally, Fig.  1(d) shows the results obtained for the case 
that considers new equations to update the position of the agents. The 
MSE (mean squared error) value shown next to each figure represents 
the fitness of the best palette found by the group of agents at the end 
of the iterations.
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Fig. 2. Evolution of a swarm of 6 agents over 20 iterations of GWO+ATCQ with sampled image (images reduced to 64 colors).
4.2. The fitness function

The function used to quantify the fitness of an agent is the mean 
squared error, computed by Eq.  (11). In this equation 𝑝𝑖𝑗 represents 
the color of a pixel of the original image placed in row 𝑖 and column 
𝑗, while 𝑝′𝑖𝑗 is the pixel of the quantized image which occupies the 
same position as 𝑝𝑖𝑗 . The smaller the MSE value, the better the solution 
represented by the agent.

𝑀𝑆𝐸 = 1
𝑎𝑏

𝑎
∑

𝑖=1

𝑏
∑

𝑗=1
‖𝑝𝑖𝑗 − 𝑝′𝑖𝑗‖

2 (11)

Before calculating the MSE, it is required to select a color from the 
quantized palette to represent each pixel of the image. This operation is 
performed by selecting for each pixel of the original image the closest 
color from the quantized palette.

4.3. Sampling

In general, swarm-based methods require computing the fitness of 
all the individuals in the population at each iteration of the algorithm. 
When applied to the color quantization problem, it is necessary to 
perform a calculation involving the pixels of the original image. For 
example, the objective function proposed in this article requires this 
operation. Such an operation is time consuming for large images.

When the SFLA method was applied to color quantization, it was 
proposed to use a sampled image to reduce the execution time of the 
algorithm (Pérez-Delgado, 2019a). The computational results included 
in that article showed that the method can obtain good results when 
the original image is sampled. This allows the method to be fast, 
while producing good quality results. For this reason, the method 
proposed in this article uses the same sampling strategy described for 
the application of frogs to the same problem.

The pixels of the original image are sampled at a distance defined 
by the 𝑠𝑡𝑒𝑝 parameter. Said pixels are processed sequentially from left 
to right and from top to bottom, so the following sequence of pixels 
is processed: {𝑝11, 𝑝12, ..., 𝑝1𝑏, 𝑝21, ..., 𝑝2𝑏, ..., 𝑝𝑎1, ..., 𝑝𝑎𝑏}. That is, the 
image pixels are processed considering that all of them are included in 
a linear list. The first pixel selected is 𝑝11, then, the following pixels are 
selected considering a distance equal to 𝑠𝑡𝑒𝑝 in the processing sequence. 
6

That is, the second pixel selected is the one at position 𝑠𝑡𝑒𝑝 + 1 in the 
linear list of pixels (assuming that 𝑠𝑡𝑒𝑝 < 𝑎𝑏).

The sampled image includes a subset of 𝑛′ pixels of the original 
image, with 𝑛′ < 𝑛. When the algorithm requires to compute the fitness 
of a search agent, this computation will be based on the sampled image, 
thus speeding up the process. Obviously, when 𝑠𝑡𝑒𝑝 = 1, all the pixels 
of the original image are taken without any sampling.

Fig.  2 shows the results for four sampling steps. It can be observed 
that the resulting MSE is very similar for 𝑠𝑡𝑒𝑝 = 1 and 𝑠𝑡𝑒𝑝 = 10. As will 
be described in the computational results section, the execution time 
decreases as 𝑠𝑡𝑒𝑝 increases, so these two 𝑠𝑡𝑒𝑝 values will be used to 
draw the figures that describe the remaining operations in this section. 
Specifically, the average execution time obtained for 20 independent 
tests in this case was 12035 millisecond for 𝑠𝑡𝑒𝑝 = 1, 1420 ms for 
𝑠𝑡𝑒𝑝 = 10, 322 ms for 𝑠𝑡𝑒𝑝 = 100 and 217 ms for 𝑠𝑡𝑒𝑝 = 1000. It 
can be observed that the fitness value drawn in the figure is larger 
when the image was not sampled (𝑠𝑡𝑒𝑝 = 1). It should be noted that 
the values drawn in this case correspond to the entire image, but the 
values for the other cases correspond to the subset of sampled pixels. 
Therefore, the smaller the sampled subset, the smaller the error of 
the quantized palette computed at each iteration of the algorithm. 
Nevertheless, the MSE value indicated for each subfigure is computed 
for the entire image with the best palette found along the iterations. 
Therefore, although when comparing the 4 subfigures it may seem that 
the case corresponding to the unsampled image generates larger errors, 
the MSE values clearly show that the error of the final quantized image 
increases when a sampled image is used.

4.4. Initialization of the group of agents

The algorithm requires defining 𝑁 initial palettes to associate them 
to the agents in the group. Each palette is defined by selecting 𝑞 random 
pixels from the original image and taking their color as a member of 
the quantized palette. To perform this operation, the complete original 
image (without sampling) is considered, to give more diversity to the 
initial values.

After this, the 𝑞 colors that define each palette are sorted by ascend-
ing value of the three color components. To perform this operation, the 
colors are first sorted by their red component. Then, the colors with 
the same red value are further sorted by the green component. Finally, 
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Fig. 3. Evolution of a swarm of 6 agents over 20 iterations of GWO+ATCQ when the initial palettes are not sorted (images reduced to 64 colors).
Fig. 4. Evolution of a swarm of 6 agents over 20 iterations of GWO+ATCQ when Eqs. (2) to (4) are used to compute 𝑋1, 𝑋2 and 𝑋3 (images reduced to 64 
colors).
those colors with the same red and green value are sorted by the blue 
component. In this way, the update of the agents in the initial stage 
considers similar colors to perform the operation defined in GWO.

Fig.  3 shows the results for the proposed method when the initial 
palettes are not sorted. When compared to the results of Figs.  2(a) and 
2(b), where sorted palettes were used for the same 𝑠𝑡𝑒𝑝 values, it can 
be observed that the final images have better quality in both cases.

4.5. Updating the positions of the agents

To update the palette associated with an agent, the original equa-
tions used by GWO have been adapted. Computational experiments 
showed that these equations cause the palette values to fall outside the 
valid range [0, 255] many times. This limits the effect of the equations, 
since the computed values must always be adjusted to that interval to 
represent valid RGB components. For this reason, the quality of the 
palette represented by an agent is used to update its position.

When the position of an agent 𝑖 must be recomputed using Eq.  (1) of 
GWO, Eqs. (2) to (4) are replaced with Eqs. (12) to (14), respectively, 
where 𝑓𝑖𝑡𝑖 represents the fitness of the current position of said agent 
(that is, the fitness of 𝑋𝑖(𝑡 − 1)). When applying Eq.  (1) to calculate 
the new palette associated with an agent, it must be observed that the 
resulting vector is a vector of integers. Therefore, the decimal parts 
of all the components of the vector 𝑋𝑖 calculated using Eq.  (1) are 
truncated. 
𝑋1 = 𝑋𝛼(𝑡 − 1) − (𝐴1 ⊗𝐷𝛼)∕𝑓𝑖𝑡𝑖 (12)

𝑋2 = 𝑋𝛽 (𝑡 − 1) − (𝐴2 ⊗𝐷𝛽 )∕𝑓𝑖𝑡𝑖 (13)

𝑋3 = 𝑋𝛿(𝑡 − 1) − (𝐴3 ⊗𝐷𝛿)∕𝑓𝑖𝑡𝑖 (14)

In this way, the quality of the palette represented by the agent 
𝑖 influences the new position of said agent. The better the palette 
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associated with agent 𝑖, the lower its MSE. If the agent represents a 
good palette, 𝑓𝑖𝑡𝑖 is small and the final term of the above equations 
is larger than when the agent represents a bad palette. Therefore, the 
contribution of agent 𝑖 to its new position is greater when its current 
position is good than when it is bad. In the latter case, the position of 
the three leading agents is the one that most influences the new position 
of the agent 𝑖.

Fig.  4 shows the results obtained when the factor described in this 
section is not applied to GWO+ATCQ. It is clear that the solutions 
oscillate for many iterations but this does not help to generate a 
final result better than the one obtained during the initial iterations. 
Therefore, it is observed that this modification applied to the algorithm 
greatly influences the final result.

As stated above, once a color in a quantized palette is updated, it 
must always be adjusted so that all three of its components (red, green, 
blue) are integer values between 0 and 255.

4.6. Improvement of the 𝛿 agent

The GWO method includes two main stages. The first one is devoted 
to the exploration of new solutions, while the second one is devoted to 
the exploitation of the previous knowledge.

The variables 𝐴 and 𝐶 influence the exploration and exploitation 
capacity of the method. When |𝐴| >1, the exploration is intensified. 
In addition, when 𝐶 >1, the exploration ability of the agents is also 
enhanced. On the contrary, when |𝐴| <1 and 𝐶 <1, the exploitation 
ability is enhanced. The value of 𝐴 decreases over the course of algo-
rithm iterations, which enhances the exploitation ability. On the other 
hand, 𝐶 is randomly generated at each iteration and this contributes to 
balance exploration and exploitation at all times.

To improve the results of GWO applied to color quantization, the ex-
ploitation phase is strengthened by improving the solution represented 
by the best agents. Since these agents condition the new position of 
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the other individuals in the group, improving the leader agents will 
influence the entire group.

For this purpose, GWO+ATCQ adjusts the position of the 𝛿 agent by 
applying a reduced variant of the ATCQ algorithm introduced in Pérez-
Delgado (2015). In this case the ATCQ variant that builds a 3-level 
tree is considered. Furthermore, the algorithm is applied to a tree that 
already includes the maximum number of allowed children of the root 
node, so the 𝛼 parameter of the ATCQ algorithm is not required.

Algorithm 3 shows the ATCQ operations applied to improve the 
quantized palette represented by an agent. The algorithm considers 
the current palette of the agent as input information and updates that 
palette as a result of applying its operations.

First, the root node of the tree is created. Then, 𝑞 children of the 
root are created, {𝑆1,… , 𝑆𝑞}, and each is assigned a color of the input 
palette. The two values used to define the color of a node are the sum of 
the colors of the ants included in the subtree, 𝑠𝑢𝑚𝑘, and the number of 
ants in the subtree, 𝑖𝑡𝑒𝑚𝑠𝑘. When the child 𝑆𝑘 is created, both variables 
are initialized, so as 𝑠𝑢𝑚𝑘 stores a color of the input palette and 𝑖𝑡𝑒𝑚𝑠𝑘
is set to 1.

Algorithm 3 ATCQ to improve a search agent
DATA: 𝑃 = {𝑐1, ..., 𝑐𝑞} (palette of the agent) 
Create the root node of the tree 
for 𝑘 = 1 to 𝑞 do 
Create the child 𝑆𝑘 of the root 
Set 𝑠𝑢𝑚𝑘 = 𝑐𝑘
Set 𝑖𝑡𝑒𝑚𝑠𝑘 = 1

end for
Create the list of ants 
for each and ℎ𝑖𝑗 do 
Select the child of the root node most similar to ℎ𝑖𝑗 , 𝑏𝑒𝑠𝑡
Connect ℎ𝑖𝑗 to the subtree 𝑏𝑒𝑠𝑡
Set 𝑠𝑢𝑚𝑏𝑒𝑠𝑡 = 𝑠𝑢𝑚𝑏𝑒𝑠𝑡+ ℎ𝑖𝑗
Set 𝑖𝑡𝑒𝑚𝑠𝑏𝑒𝑠𝑡 = 𝑖𝑡𝑒𝑚𝑠𝑏𝑒𝑠𝑡 + 1

end for
for 𝑘 = 1 to 𝑞 do 
Set 𝑐𝑘 = 𝑠𝑢𝑚𝑘 ∕ 𝑖𝑡𝑒𝑚𝑠𝑘

end for

Each pixel 𝑝𝑖𝑗 of the sampled image is represented by the ant ℎ𝑖𝑗 and 
all the ants are inserted into a list. Next, an iterative process is applied 
to connect all the ants to the tree. In this case the ants are randomly 
selected from the set of ants.

After selecting an ant ℎ𝑖𝑗 , the most similar node of the second level 
of the tree must be identified. The color of a node 𝑆𝑘 used to compare 
it to an ant is computed by 𝑠𝑢𝑚𝑘∕𝑖𝑡𝑒𝑚𝑠𝑘. Eq.  (15) is used to compute 
the similarity between ant ℎ𝑖𝑗 and the color of the node 𝑆𝑘, where 𝑑𝑖𝑠𝑡
represents the Euclidean distance. Let 𝑏𝑒𝑠𝑡 denote the child of the root 
node most similar to ℎ𝑖𝑗 . Once this node is identified, ℎ𝑖𝑗 is connected 
to the subtree with root 𝑆𝑏𝑒𝑠𝑡 and the two variables associated with said 
node are updated: the color of ℎ𝑖𝑗 is added to the sum of colors 𝑠𝑢𝑚𝑏𝑒𝑠𝑡
and the number of ants in the subtree is increased by one. 

𝑆𝑖𝑚(ℎ𝑖𝑗 , 𝑆𝑘) =
1

1 + 𝑑𝑖𝑠𝑡(ℎ𝑖𝑗 , 𝑆𝑘)
(15)

Once all the ants have been connected to the tree, the input palette 
values are updated by using the colors of the nodes in the second level 
of the tree.

As stated above, the operations of Algorithm 3 are applied to the 
𝛿 agent. Nevertheless, other possibilities were also analyzed before 
selecting this one. Fig.  5 compares the results obtained when ATCQ 
is applied to several of the best agents.

The possibility of applying the improvement to the three best agents 
was analyzed (Figs.  5(a) and (b)). Nevertheless, the experimental re-
sults show that the exploration process of the GWO method loses its 
effect if ATCQ is applied to these three agents. On the other hand, the 
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execution time increases when upgrading three agents instead of just 
one. The average time for 20 independent tests was 16368 ms for the 
case with 𝑠𝑡𝑒𝑝 = 1 and 1792 ms for the case with 𝑠𝑡𝑒𝑝 = 10. In contrast, 
when only the 𝛿 agent is improved, the values are reduced to 12035 
and 1420 millisecond, respectively.

Next, the option of updating only one of the three agents was 
considered, thus allowing the exploration process of GWO and also 
reducing the total execution time of the method. Fig.  2 includes the 
results for the case in which only the 𝛿 agent is improved. In addition, 
Figs.  5(c) and (d) show the results for the case that only improves the 
𝛼 agent, while Figs.  5(e) and (f) show the case that only improves the 
𝛽 agent. When only the best agent is improved, it is clear that the 
group of agents does not perform exploration. The exploration increases 
when the 𝛽 agent is improved instead of the 𝛼 agent. In addition, it 
was observed that when the 𝛼 agent is improved, the same agent is 
the best in all the iterations. However, when one of the other two 
agents is improved, the three best individuals selected at each iteration 
are different. This shows that when agents 𝛽 or 𝛿 are improved the 
exploration in GWO is maintained and also that the improvement will 
affect different agents in different iterations. Finally, it was decided to 
apply ATCQ to the 𝛿 agent instead of the 𝛽 agent because this helps to 
improve the worst of both solutions.

It was also analyzed when to start applying ATCQ (Fig.  6).
GWO+ATCQ applies the modification from the initial iteration of the 
algorithm, but the figure shows the case in which only a subset of 
iterations are considered. The variable 𝐴 causes exploration to be 
enhanced in the initial half of the GWO iterations and exploitation to 
be enhanced in the second half. For this reason, the result obtained 
when ATCQ is applied to the agent 𝛿 the second half of the iterations 
of GWO+ATCQ was analyzed. As can be observed (Figs.  6(a) and (b)), 
the results are worse. The evolution of the group of agents shows that 
in the first half of the iterations the results are worse than the initial 
ones. This evolution does not improve until the stage is reached where 
ATCQ begins to be applied. In addition, a large descent in the graph 
is observed when ATCQ begins to be applied. Therefore, the figures 
show that the algorithm wastes the initial set of iterations, since it fails 
to improve the initial result until ATCQ begins to be applied. On the 
other hand, the case in which ATCQ is not applied was also considered 
(Figs.  6(c) and (d)). In this case, it is clearly observed that the trend 
of the initial iterations is maintained until the end of the iterations. 
Certainly, the best palette found by the algorithm belongs to the initial 
set of palettes selected to apply the algorithm; that is, the iterations of 
the method do not contribute to improve the initial solutions.

4.7. Final quantized palette

When the original image is sampled, the algorithm defines a quan-
tized palette for the pixels in the sample. If the sampled image includes 
only a few colors, the final palette might not adequately represent 
the pixels not included in the sample. For this reason, after defining 
the palette by applying the algorithm, said palette is adapted to the 
total set of pixels of the original image. With this purpose, the color 
of the palette that is most similar to each pixel of the original image 
is determined (the similarity is computed based on the Euclidean 
distance). After this, each color in the quantized palette is recomputed 
as the average value of all pixels in the original image associated with 
it in the previous operation. This operation improves the quality of 
the final image, especially when the sampled image includes a limited 
number of colors.

5. Results and discussion

5.1. GWO+ATCQ results

The proposed method was applied to 24 RGB color images available 
at Franzen (2019), each including 393216 pixels. Fig.  7 shows the 
images.
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Fig. 5. Evolution of a swarm of 6 agents over 20 iterations of GWO+ATCQ when the palettes of several wolves are adjusted by ATCQ (images reduced to 64 
colors).

Fig. 6. Evolution of a swarm of 6 agents over 20 iterations of GWO+ATCQ when the palette of the 𝛿 wolf is improved by ATCQ for several iterations (images 
reduced to 64 colors).

9
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Fig. 7. Images in the test set.
Table 1
MSE, MAE, PSNR, SSIM and execution time (T) for the set of quantized images 
with 16, 64 and 256 colors obtained by GWO+ATCQ (𝑠𝑡𝑒𝑝: value used to 
sample the original image; 𝑎𝑣: average; 𝑑𝑒𝑣: standard deviation). 
 16 colors 64 colors 256 colors
 𝑠𝑡𝑒𝑝 𝑎𝑣 𝑑𝑒𝑣 𝑎𝑣 𝑑𝑒𝑣 𝑎𝑣 𝑑𝑒𝑣

 MSE 10 206.944 84.343 61.408 27.237 23.519 10.458 
 1 204.771 84.735 59.757 26.809 22.189 9.943  
 MAE 10 18.015 3.885 9.452 2.277 5.663 1.385  
 1 18.006 3.879 9.386 2.281 5.568 1.368  
 PSNR 10 25.318 1.738 30.659 1.895 34.823 1.878  
 1 25.376 1.772 30.790 1.929 35.081 1.886  
 SSIM 10 0.891 0.041 0.957 0.023 0.982 0.011  
 1 0.891 0.041 0.958 0.023 0.983 0.011  
 T 10 413 21 1437 55 4983 162  
 1 3481 187 11997 459 43647 1555  

Four error measures were computed for the resulting quantized 
images: the MSE, the mean absolute error (MAE), the peak signal-to-
noise ratio (PSNR), and the structural similarity index measure (SSIM). 
These error measures are commonly used in research articles related to 
color quantization methods (Pérez-Delgado and Celebi, 2024).

The proposed algorithm was coded using C programming language. 
The experiments were performed on a PC running Linux operating 
10
system (Ubuntu 20.04), with 16 GB of RAM memory, and I7 processor 
(2.3 GHz). A population including 6 search agents was considered and 
20 iterations of the algorithm were executed. Results were calculated 
for three different sizes of the quantized palette: 16, 64 and 256 colors.

Table  1 shows the average results of the errors obtained for each 
image after applying 20 independent tests, together with the execution 
time of the tests. The table shows results considering a sampled image 
with 𝑠𝑡𝑒𝑝 = 10 and an image without sampling (𝑠𝑡𝑒𝑝 = 1). The 
supplementary material includes detailed results for each image in the 
test set, each palette size, and both 𝑠𝑡𝑒𝑝 values.

It can be observed that the execution time is remarkably reduced 
when sampled images are used to apply GWO+ATCQ. The execution 
time for the case that considers 𝑠𝑡𝑒𝑝 = 10 is approximately 12% of the 
time consumed when the original image has not been sampled. On the 
other hand, the error of the quantized images is very similar in many 
cases for both 𝑠𝑡𝑒𝑝 values.

5.2. The main operations of the method

Section 5 describes the operations that define the GWO+ATCQ 
method and includes several figures showing the effect of each oper-
ation for a single image (kodim01) and palette size (64 colors). Below 
are the results obtained for the set of 24 images when each of the 
fundamental operations of the algorithm is omitted. To do this, the 
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Table 2
Average MSE, MAE, PSNR, SSIM and execution time (milliseconds) for GWO+ATCQ and several variants. 
 colors BASIC NO SORT NO DELTA NO EQS NO SAMP GWO-1 GWO-10

 MSE 16 206.9444 207.4816 310.8868 209.4125 204.7712 479.7279 545.7692 
 64 61.4082 65.3715 99.2373 65.2294 59.7570 99.0994 99.3712  
 256 23.5191 29.3722 34.9268 26.4453 22.1886 30.9865 34.7357  
 MAE 16 18.0148 18.1479 20.3907 18.3434 18.0064 22.0920 22.6252  
 64 9.4518 9.8135 10.9877 9.9715 9.3856 11.0033 10.9959  
 256 5.6628 6.2657 6.3826 6.1303 5.5676 6.1467 6.3679  
 PSNR 16 25.3177 25.3050 23.5308 25.2514 25.3762 23.3060 23.2658  
 64 30.6590 30.3113 28.5100 30.3400 30.7902 28.5181 28.5060  
 256 34.8226 33.7446 33.0669 34.2729 35.0807 33.6127 33.0889  
 SSIM 16 0.8914 0.8893 0.8813 0.8885 0.8914 0.8715 0.8698  
 64 0.9573 0.9540 0.9472 0.9523 0.9573 0.9470 0.9471  
 256 0.9821 0.9779 0.9779 0.9787 0.9821 0.9794 0.9780  
 T 16 413 404 359 399 3481 3325 334  
 64 1437 1328 1231 1347 11997 11600 1172  
 256 4983 4569 4505 4766 43647 41558 4118  
method was applied to the set of images by removing one of the 
following operations:

• sampling of the original image.
• sorting of the initial solutions represented by the search agents.
• improvement of the 𝛿 agent by applying ATCQ.
• new equations defined to update the position of each agent.

Twenty independent tests were performed for each variant of the 
method, image and palette size. Then, the average MSE, MAE, PSNR, 
SSIM and execution time were calculated for each variant of the method 
and palette size. The analysis of this information makes it possible to 
identify the elements of the algorithm that most influence the results.

Table  2 compares the results of the GWO+ATCQ method to those 
obtained when one of the main operations are eliminated. It includes 
results for the following cases: the GWO+ATCQ method proposed in 
this article, as described in Section 5.1 for the case with 𝑠𝑡𝑒𝑝 = 10
(labeled BASIC), GWO+ATCQ without the sorting operation (labeled 
NO SORT), GWO+ATCQ without the improvement of the 𝛿 search agent 
(labeled NO DELTA), GWO+ATCQ using the original GWO equations to 
update the position of the search agents (labeled NO EQS), GWO+ATCQ 
without sampling the original image (labeled NO SAMP). To complete 
the analysis, the table also shows the results obtained when applying 
the original GWO algorithm to unsampled images (labeled GWO-1), 
and to images sampled with 𝑠𝑡𝑒𝑝 = 10 (labeled GWO-10).

Regarding the four error measures, the feature that reduces the error 
the most is the improvement of the 𝛿 search agent. On the other hand, 
the sampling of the original image with 𝑠𝑡𝑒𝑝 = 10 does not increase the 
error of the resulting image too much. It is clear that this operation is 
the one that affects the final result the least, since the average results of 
the error measures are very similar for the case with sampling (BASIC) 
and for the case that eliminates the sampling process (NO SAMP). The 
sorting of the initial solutions increases its influence for the largest 
palette, while for the other two palettes the effect of the new equations 
is greater than that of the sorting operation.

The execution time is clearly influenced by the sampling process 
of the original image. This is the most time-consuming case. On the 
contrary, the NO DELTA case is the fastest, since ATCQ operations are 
not applied.

In summary, it is clearly observed that the execution time is mainly 
affected by the sampling of the original image and the enhancement 
of the 𝛿 agent. When a balance between execution time and quantized 
image error is required, the sampling of the original image is an option 
that reduces execution time and also provides good quality images. As 
for the operation that improves the 𝛿 agent, the reduction in execution 
time obtained by removing that operation does not compensate for the 
loss of quality of the generated image.
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Table  2 also shows the average results for the original GWO method 
applied to sampled and unsampled images. It is clearly observed that 
the average error obtained by GWO is always much worse than that 
obtained by GWO+ATCQ. It is also observed that the NO DELTA variant 
obtains errors similar to those of GWO for larger palettes. This indicates 
that the improvement applied to the 𝛿 agent in the proposed algorithm 
is essential for improving the results. Obviously, the execution time of 
GWO with sampled images is slightly smaller than that of GWO+ATCQ, 
since the second method includes additional operations. Nevertheless 
the difference is not very large.

A statistical test was performed to complete the comparison of the 
cases. Specifically, the Wilcoxon test was applied to compare the results 
of the basic GWO+ATCQ to those of the 6 cases discussed in the 
previous paragraphs. The Wilcoxon test can be applied to compare two 
solution methods and determines if there is no significant difference 
between the results of both methods. Table  3 shows the test results. 
To apply the test, five sets of values were considered, corresponding to 
the mean MSE, MAE, PSNR, SSIM, and execution time of each pair of 
compared methods. For this reason, the table includes a block with the 
results corresponding to each of the five cases. For each test, the table 
shows the sum of the positive (𝑝𝑜𝑠) and negative (𝑛𝑒𝑔) ranks and the 
value of the statistic (𝑍). The probability associated with the value 𝑍
is smaller than 0.001 for all cases, so it is not included in the table. The 
significance level used in the Wilcoxon test was 0.05.

The statistical test indicates that there are significant differences 
between the results of each pair of methods compared. GWO+ATCQ 
with 𝑠𝑡𝑒𝑝 = 10 is significantly faster than the case that considers unsam-
pled data (NO SAMP) and the original GWO applied to unsampled data 
(GWO-1). On the other hand, the result for the four error measures is 
similar. The GWO+ATCQ method with 𝑠𝑡𝑒𝑝 = 10 is significantly worse 
than the case with unsampled data (NO SAMP), but significantly better 
than the remaining variants tested (including the original GWO).

In summary, it is observed that all the operations added to the GWO 
algorithm to define the GWO+ATCQ method significantly influence the 
quantization quality. The sampling of the original image is an operation 
that allows choosing between obtaining a faster solution and obtaining 
a higher quality solution, which allows the user to decide which of the 
two options is more important in a particular application.

5.3. Sensitivity analysis

Although the previous results were obtained with the parameter 
values defined in Section 5.1, the results obtained with other parameter 
values are summarized in this section. Specifically, several values were 
considered for the 𝑠𝑡𝑒𝑝 parameter, the size of the population (𝑁) and 
the number of iterations of the method (𝑇𝑀𝐴𝑋). The values consid-
ered for these parameters are the following: 𝑠𝑡𝑒𝑝 = {1, 10, 100, 1000}, 
𝑇𝑀𝐴𝑋 = {10, 20, 30, 40}, 𝑁 = {6, 8, 10, 12}.
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Table 3
 Results of the Wilcoxon signed rank test applied to compare GWO+ATCQ and some variants that do not apply any of its operations (𝑝𝑜𝑠: sum of positive ranks; 
𝑛𝑒𝑔: sum of negative ranks; 𝑍: value of the test statistic). The probability 𝑝 corresponding to the 𝑍 value is < 0.001 for all cases. 
 MSE MAE PSNR SSIM T

 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍

 NO SORT 224 2404 −6.117 46 2582 −7.116 2419 209 −6.201 2569 59 −7.043 2519 37 −7.111 
 NO DELTA 0 2628 −7.374 0 2628 −7.374 2628 0 −7.374 2600 28 −7.217 2628 0 −7.374 
 NO EQS 215 2413 −6.167 11 2617 −7.312 2413 215 −6.167 2560 68 −6.992 2592 36 −7.172 
 NO SAMP 2603 25 −7.233 2340 288 −5.758 7 2621 −7.334 555 2073 −4.259 0 2628 −7.374 
 GWO-1 99 2529 −6.818 202 2426 −6.240 2424 204 −6.229 2377 251 −5.965 0 2628 −7.374 
 GWO-10 0 2628 −7.374 0 2628 −7.374 2628 0 −7.374 2628 0 −7.374 2592 36 −7.172 
Fig. 8. Average MSE and MAE comparison for GWO+ATCQ results obtained with various parameter values.
Additional tests were carried out modifying one of the three pa-
rameters and keeping the other two parameters with the same value 
proposed in Section 5.1 (𝑠𝑡𝑒𝑝 = 10, 𝑇𝑀𝐴𝑋 = 20 and 𝑁 = 6). Several 
figures are included showing the average results obtained for the set of 
24 images. In each case, 20 independent tests were performed for each 
image, palette size and parameter value; then, the average error and the 
average execution time for the entire set of images were computed. The 
results are given in Figs.  8–10. A subfigure is included for each palette 
size, in order to show the results more clearly. To better appreciate 
the influence of each parameter on the final results, the same subfigure 
is used to show the results obtained for all the values considered for 
each of the three parameters. Thus, each subfigure shows three groups 
of bars. The first group corresponds to the results obtained when the 
𝑇𝑀𝐴𝑋 parameter is modified; the second group shows the results for 
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the 𝑠𝑡𝑒𝑝 values considered; the last group shows the results for the cases 
that consider different population sizes. Each group of bars includes a 
green bar that represents the GWO+ATCQ results obtained with the 
parameter values proposed in Section 5.1 (𝑇𝑀𝐴𝑋 = 20, 𝑠𝑡𝑒𝑝 = 10 and 
𝑁 = 6). This case is represented with a different color to facilitate its 
identification in each group of cases.

As expected, it is clearly observed that the error decreases as the 
iterations of the algorithm increase or the 𝑠𝑡𝑒𝑝 value decreases. On the 
other hand, the effect on the execution time is the opposite for both 
values (when the error decreases, the execution time increases). The 
𝑠𝑡𝑒𝑝 value is the parameter that most influences the execution time. 
Although using unsampled images generates the best error values, it is 
clearly observed that this case is much more time-consuming than the 
cases corresponding to sampled images. Furthermore, the size of the 
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Fig. 9. Average PSNR and SSIM comparison for GWO+ATCQ results obtained with various parameter values.
Table 4
 Results of the Wilcoxon signed rank test applied to compare GWO+ATCQ executed with several values of the parameters 𝑇𝑀𝐴𝑋, 𝑠𝑡𝑒𝑝 and 𝑁 (𝑝𝑜𝑠: sum of positive 
ranks; 𝑛𝑒𝑔: sum of negative ranks; 𝑍: value of the test statistic; 𝑝: probability corresponding to the 𝑍 value). Since 𝑝 < 0.001 for all the cases that compare T, 
this information is not included in the table to reduce its size. 
 MSE MAE PSNR SSIM T

 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍

 𝑇𝑀𝐴𝑋 = 10 24 2604 −7.239 <0.001 170 2458 −6.420 <0.001 2624 4 −7.351 <0.001 2026 602 −3.996 <0.001 2628 0 −7.374 
 𝑇𝑀𝐴𝑋 = 30 2523 105 −6.785 <0.001 2156 472 −4.725 <0.001 36 2592 −7.172 <0.001 665 1963 −3.642 <0.001 0 2628 −7.374 
 𝑇𝑀𝐴𝑋 = 40 2527 101 −6.807 <0.001 2100 528 −4.411 <0.001 33 2595 −7.189 <0.001 669 1959 −3.620 <0.001 0 2628 −7.374 
 𝑠𝑡𝑒𝑝 = 1 2603 25 −7.233 <0.001 2340 288 −5.758 <0.001 7 2621 −7.334 <0.001 555 2073 −4.259 <0.001 0 2628 −7.374 
 𝑠𝑡𝑒𝑝 = 100 3 2625 −7.357 <0.001 42 2586 −7.138 <0.001 2625 3 −7.357 <0.001 2427 201 −6.246 <0.001 2628 0 −7.374 
 𝑠𝑡𝑒𝑝 = 1000 0 2628 −7.374 <0.001 7 2621 −7.334 <0.001 2628 0 −7.374 <0.001 2580 48 −7.104 <0.001 2628 0 −7.374 
 𝑁 = 8 1680 648 −2.054 0.040 1380 1248 −0.370 0.711 830 1798 −2.716 0.007 1221 1407 −0.522 0.602 0 2628 −7.374 
 𝑁 = 10 1797 831 −2.710 0.007 1475 1153 −0.903 0.366 730 1898 −3.277 0.001 1200 1428 −0.640 0.522 0 2628 −7.374 
 𝑁 = 12 2110 518 −4.467 <0.001 1820 808 −2.840 0.005 411 2217 −5.067 <0.001 1196 1432 −0.662 0.508 0 2628 −7.374 
population is the parameter with the least influence on the final error. 
On the contrary, the execution time depends on this parameter, as more 
search agents require more operations.

The Wilcoxon test was applied to compare the results obtained in 
Section 5.1 with 𝑠𝑡𝑒𝑝=10, 𝑇𝑀𝐴𝑋=20 and 𝑁=6, and those of each 
of the 9 cases considered in the previous discussion (Table  4). It is 
observed that there are significant differences for all the cases except 
5 (those correponding to SSIM with different 𝑁 values, and MAE with 
𝑁 = 8 and 𝑁 = 10). Therefore, the value of the parameters 𝑇𝑀𝐴𝑋 and 
𝑠𝑡𝑒𝑝 significantly influences the results obtained by the method, while 
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the parameter 𝑁 only influences the results obtained for the execution 
time and the errors MSE and PSNR.

Regarding the error values, the reference case (which uses 𝑠𝑡𝑒𝑝 =
10, 𝑇𝑀𝐴𝑋 = 20 and 𝑁 = 6) is significantly better than the cases 
with larger 𝑠𝑡𝑒𝑝, but significantly worse than the case that considers 
unsampled data (𝑠𝑡𝑒𝑝 = 1). On the other hand, the reference case is 
significantly worse than the cases with more iterations. It is also signif-
icantly worse than the cases with more search agents when considering 
the MSE and PSNR results. Regarding the execution time, the results 
are the opposite to those obtained for the errors. The reference case 
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Fig. 10. Average time comparison (milliseconds) for GWO+ATCQ results obtained with various parameter values.
is significantly faster than the one without sampling, but significantly 
slower than the cases with larger 𝑠𝑡𝑒𝑝. Furthermore, the reference 
case is significantly faster than the cases that consider more than 20 
iterations and the same is true for the three cases that use more than 6 
search agents.

The previous analysis shows that the value of the algorithm param-
eters influences the final result, both in the quality of the quantized 
image and in the execution time of the method. The sampling step is 
the parameter that can reduce the execution time the most, but it also 
has a great influence on the quality of the resulting image if its value 
is too large.

5.4. Results of other methods

Some other color quantization methods were tested on the same im-
ages, in order to compare their results to those of the proposed method. 
The methods considered are VB, VC, MC, OC, ADU, BS, NQ, the greedy 
orthogonal bi-partitioning method (WU) (Wu, 1991), WU combined 
with ATCQ (WUATCQ) (Pérez-Delgado and Román-Gallego, 2019), BS 
combined with ATCQ (BSATCQ) (Pérez-Delgado and Román-Gallego, 
2020), BS combined with ITATCQ (BSITATCQ) (Pérez-Delgado, 2020b), 
SFLA applied to color quantization (SFLA-CQ) (Pérez-Delgado, 2019b), 
PSO combined with ATCQ (PSO +ATCQ)  (Pérez-Delgado, 2020a) 
and ITATCQ. Two optimization algorithms that generate good results, 
although not specifically designed to solve the color quantization prob-
lem, were also applied: adaptive differential evolution with optional 
external archive (JADE) (Zhang and Sanderson, 2009), and success-
history based adaptive differential evolution (SHADE) (Tanabe and 
Fukunaga, 2013).

Since the tests performed with GWO+ATCQ use a population of 6 
search agents, PSO+ATCQ uses 6 particles, SFLA-CQ uses 6 frogs, and 
SHADE uses a historical memory of size 6. The iterative methods were 
executed for 20 iterations (the same as GWO+ATCQ). For methods 
that apply ATCQ and require multiple values of the 𝛼 parameter, the 
following values were used: 𝛼 = {0.25, 0.30, 0.35, 0.40, 0.45, 0.50}. 
14
SFLA-CQ was applied considering the sampling step equal to 10. In 
addition, 2 memeplexes and 4 improvement iterations were considered 
for this algorithm. As for the PSO+ATCQ algorithm, the weights used in 
the equation that calculates the velocity of the particles and the interval 
that limits the speed were set to the same values proposed in Pérez-
Delgado (2020a). ITATCQ was applied considering the modification 
described in Pérez-Delgado (2021) since it provides better results.

Table  5 summarizes the results obtained with the methods for each 
palette size considering all the images of the test set. The best value 
in each results column appears in bold and the second-best appears 
underlined. The table includes the results for GWO+ATCQ considering 
both sampling steps. The case with 𝑠𝑡𝑒𝑝 = 1 is labeled GWO+ATCQ-1 
and the case with 𝑠𝑡𝑒𝑝 = 10 is labeled GWO+ATCQ-10. The detailed 
results for each problem in the set are included as supplementary 
material.

Several conclusions can be drawn from the analysis of the error 
indices calculated for the methods tested in this article:

• GWO+ATCQ (with 𝑠𝑡𝑒𝑝 = 1 and 𝑠𝑡𝑒𝑝 = 10) outperforms MC, OC, 
VB, VC, WU, JADE, SHADE, and SFLA-CQ for any palette size and 
all the error indices. Certainly, MC and OC generate much worse 
images than all the other methods.

• GWO+ATCQ outperforms NQ and ITATCQ in all cases except 
one for the set of error measures. For images with 256 colors, 
NQ obtains better MAE than GWO+ATCQ, while ITATCQ obtains 
better MSE and PSNR than GWO+ATCQ-10.

• GWO+ATCQ outperforms BS in terms of MSE, PSNR and SSIM, 
although it obtains worse MAE values for the two larger palettes.

• BSATCQ obtains worse errors than GWO+ATCQ-1 in all cases ex-
cept MSE and PSNR when considering a 256-color palette. In ad-
dition, BSATCQ only obtains better results than GWO+ATCQ-10 
for the larger palette and the MSE, PSNR and MAE errors.



M.-L. Pérez-Delgado, J.-Á. Román-Gallego and M.E. Celebi Computer Vision and Image Understanding 265 (2026) 104659
Table 5
Average results obtained by several color quantization methods. Results are shown for 16-color, 64-color, and 256-color quantized palettes. 
 MSE MAE T

 16 64 256 16 64 256 16 64 256

 WU 267.3077 77.0203 27.8067 20.1922 10.6991 6.5445 1 2 2
 VB 366.6962 122.4960 47.6271 22.1815 12.3173 7.4339 116 157 199
 VC 249.2683 79.2038 34.0929 20.1421 11.3345 7.7528 23 33 53
 MC 557.1945 260.8573 140.4371 26.9482 18.3897 13.6371 31 30 30
 OC 1026.2450 218.8099 62.9065 40.4983 18.9238 10.2917 56 56 63
 ADU 221.5569 61.5356 21.0925 17.9276 9.2370 5.2116 15 39 715
 BS 259.5589 73.5253 25.0600 18.3229 8.9307 4.5427 113 189 307
 NQ 382.5106 76.5883 24.4757 20.6501 9.5273 5.2758 70 159 275
 WUATCQ 220.6627 60.9096 21.0296 17.2603 8.3119 4.3764 16 45 163
 BSATCQ 225.0996 61.9886 21.4038 18.7249 9.7571 5.6519 151 304 689
 BSITATCQ 214.8677 59.2126 20.5969 18.3165 9.5469 5.5611 909 2499 7972
 SFLA-CQ 213.0496 64.8728 25.2269 18.0959 9.6072 5.7860 994 3139 14113
 PSO+ATCQ 200.6647 57.7642 21.2013 17.9357 9.3935 5.5210 7288 15620 44549
 ITATCQ 272.8545 70.4755 23.3758 21.2611 10.6901 6.1226 932 2064 5776
 JADE 236.2184 73.0825 26.7329 18.6830 9.9225 5.8133 6004 15484 51054
 SHADE 234.9992 72.9159 26.6041 18.5963 9.9473 5.8038 6101 15687 52073
 GWO+ATCQ-1 204.7712 59.7570 22.1886 18.0064 9.3856 5.5676 3481 11997 43647
 GWO+ATCQ-10 206.9444 61.4082 23.5191 18.0148 9.4518 5.6628 413 1437 4983

 PSNR SSIM

 16 64 256 16 64 256

 WU 24.2929 29.7130 34.0381 0.8729 0.9433 0.9741
 VB 22.9401 27.8660 31.8427 0.8584 0.9237 0.9591
 VC 24.4426 29.4522 33.0513 0.8809 0.9450 0.9667
 MC 21.0247 24.3504 27.0072 0.8575 0.9135 0.9436
 OC 18.3919 25.0785 30.5118 0.7347 0.8751 0.9434
 ADU 24.9987 30.6428 35.3056 0.8951 0.9582 0.9838
 BS 24.3684 29.9599 34.6449 0.8755 0.9477 0.9789
 NQ 22.6914 29.6637 34.6729 0.8810 0.9558 0.9821
 WUATCQ 25.0917 30.7618 35.3584 0.8870 0.9534 0.9801
 BSATCQ 24.9661 30.6563 35.2963 0.8856 0.9536 0.9817
 BSITATCQ 25.1641 30.8532 35.4554 0.8893 0.9554 0.9823
 SFLA-CQ 25.1718 30.3697 34.4653 0.8915 0.9565 0.9817
 PSO+ATCQ 25.4641 30.9546 35.2849 0.8915 0.9576 0.9832
 ITATCQ 24.2200 30.0717 34.8742 0.8714 0.9461 0.9786
 JADE 24.7193 29.8570 34.2535 0.8885 0.9537 0.9807
 SHADE 24.7515 29.8718 34.2681 0.8892 0.9533 0.9808
 GWO+ATCQ-1 25.3762 30.7902 35.0807 0.8914 0.9578 0.9827
 GWO+ATCQ-10 25.3177 30.6590 34.8226 0.8914 0.9573 0.9821
• GWO+ATCQ outperforms BSITATCQ for MSE and PSNR in the 
16-color case, and also for MAE in the case of the two smallest 
palettes. Regarding SSIM, GWO+ATCQ-1 outperforms BSITATCQ 
and GWO+ATCQ-10 also outperforms it for the two smallest 
palettes.

• WUATCQ is better than GWO+ATCQ for all palettes with respect 
to MAE, but is worse with respect to SSIM. In terms of MSE and 
PSNR, GWO+ATCQ-1 outperforms WUATCQ for the two smallest 
palettes, but GWO+ATCQ-10 only outperforms WUATCQ for the 
smallest palette.

• ADU achieves the best SSIM values of the compared methods. It 
also achieves better MAE values than the proposed method. How-
ever, it only achieves better MSE and PSNR than GWO+ATCQ for 
the 256-color case.

• PSO+ATCQ obtains better average MSE and PSNR values than the 
proposed method, although the difference in errors is very small 
for many images. For the other two error indices, PSO+ATCQ only 
outperforms GWO+ATCQ for two of the palette sizes considered.

It is clear that there is no single method that is best according to 
all error measures. Considering MSE and PSNR, PSO+ATCQ is the best 
method for the two smallest palettes, but BSITATCQ is the best for 
the larger palette. However, WUATCQ is the best method according to 
MAE, and ADU is the best according to SSIM.

Regarding the worst methods, there is consistency among all the 
error indices, since the four indicate that MC and OC generate the worst 
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results for all the palettes. Furthermore, WU, VB and VC are also among 
the worst methods for all error measures, although with better results 
than MC and OC.

For the 16-color palette, the proposed method is among the top 
3 according to MSE and PSNR, and among the top 5 according to 
MAE and PSNR. For the 64-color palette, the GWO+ATCQ-1 variant 
ranks between second and fourth best methods (depending on the error 
considered) while GWO+ATCQ-10 ranks between fourth and sixth. For 
the 256-color palette, GWO+ATCQ-1 is the third-best method according 
to SSIM, and it is among the top seven for the other error indices. 
Meanwhile, GWO+ATCQ-10 is among the top nine methods.

To conclude this analysis, Fig.  11 compares the results of all the 
methods, but considering the average results of all the palettes. In 
this case it can be observed that PSO+ATCQ is the only method that 
obtains better average MSE results than GWO+ATCQ (for both 𝑠𝑡𝑒𝑝
values). PSO+ATCQ and BSITATCQ perform slightly better on PSNR 
than GWO+ATCQ-1, while WUATCQ, ADU, and BSATCQ also perform 
better than GWO+ATCQ-10, although the difference among the seven 
methods is very small. On the other hand, PSO+ATCQ, ADU, BS, and 
WUATCQ obtain better average MAE than GWO+ATCQ, although the 
difference between GWO+ATCQ-1 and the first three methods is very 
small. Finally, PSO+ATCQ and ADU obtain slightly better average SSIM 
results than the GWO+ATCQ variants.

It can be observed that some of the fastest methods are among 
those that generate the worst quality images. Fig.  12 compares the 
average execution time of all the methods discussed in this article. 
The three slowest methods are JADE, SHADE, and PSO+ATCQ. As 
expected, it can be observed that splitting-based methods are less time 
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Fig. 11. Average MSE, MAE, PSNR and SSIM comparison for all palettes.
Fig. 12. Average execution time (milliseconds) comparison.
consuming than GWO+ATCQ. On the other hand, GWO+ATCQ applied 
to unsampled images is faster than the three slowest methods. In 
addition, the proposed method applied to sampled data is also faster 
than ITATCQ, BSITATCQ, and SFLA-CQ.

As a summary of the previous discussion, it has been found that the 
PSO+ATCQ method can obtain better quality images than the proposed 
method, but it is slower. On the other hand, although GWO+ATCQ is 
slower than WU, VB, VC, MC, NQ, OC and BSATCQ, it generates better 
quality images than these methods. ITATCQ, SFLA-CQ and BSITATCQ 
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are faster than the proposed method applied to unsampled images, 
but they obtain images of poorer quality in many cases. JADE and 
SHADE are worse than the proposed method in speed and quality of 
the resulting image. WUATCQ and ADU are faster than the proposed 
method, generate better quality images regarding MAE, but worse 
regarding MSE. The PSNR results of both methods are between those 
of the two GWO+ATCQ variants. Furthermore, ADU generates images 
with better SSIM values than GWO+ATCQ, while WUATCQ generates 
images with worse SSIM values.
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Table 6
 Results of the Wilcoxon signed rank test applied to compare GWO+ATCQ to other color quantization methods (𝑝𝑜𝑠: sum of positive ranks; 𝑛𝑒𝑔: sum of negative 
ranks; 𝑍: value of the test statistic; 𝑝: probability corresponding to the Z value). 
 MSE MAE

 GWO+ATCQ-1 GWO+ATCQ-10 GWO+ATCQ-1 GWO+ATCQ-10

 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝

 GWO+ATCQ-10 25 2603 −7.233 <0.001 288 2340 −5.758 <0.001  
 WU 0 2628 −7.374 <0.001 3 2625 −7.357 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 VB 0 2628 −7.374 <0.001 3 2625 −7.357 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 VC 0 2628 −7.374 <0.001 3 2625 −7.357 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 MC 0 2628 −7.374 <0.001 3 2625 −7.357 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 OC 0 2628 −7.374 <0.001 3 2625 −7.357 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 ADU 764 1864 −3.086 0.002 1210 1418 −0.584 0.559 2288 340 −5.466 <0.001 2345 283 −5.786 <0.001 
 BS 9 2619 −7.323 <0.001 61 2567 −7.031 <0.001 2000 628 −3.85 <0.001 2049 579 −4.125 <0.001 
 NQ 9 2619 −7.323 <0.001 67 2561 −6.998 <0.001 784 1844 −2.974 0.003 918 1710 −2.222 0.026  
 WUATCQ 761 1867 −3.103 0.002 1168 1460 −0.819 0.413 2616 12 −7.306 <0.001 2614 14 −7.295 <0.001 
 BSATCQ 436 2192 −4.927 <0.001 822 1806 −2.761 0.006 150 2478 −6.532 <0.001 292 2336 −5.735 <0.001 
 BSITATCQ 1142 1486 −0.965 0.334 1608 1020 −1.65 0.099 424 2204 −4.994 <0.001 792 1836 −2.929 0.003  
 SFLA-CQ 0 2628 −7.374 <0.001 57 2571 −7.054 <0.001 173 2455 −6.403 <0.001 337 2291 −5.483 <0.001 
 PSO+ATCQ 2617 11 −7.312 <0.001 2628 0 −7.374 <0.001 1715 913 −2.25 0.024 2229 399 −5.135 <0.001 
 ITATCQ 37 2591 −7.166 <0.001 198 2430 −6.263 <0.001 0 2628 −7.374 <0.001 0 2628 −7.374 <0.001 
 JADE 0 2628 −7.374 <0.001 1 2627 −7.368 <0.001 0 2628 −7.374 <0.001 17 2611 −7.278 <0.001 
 SHADE 0 2628 −7.374 <0.001 1 2627 −7.368 <0.001 0 2628 −7.374 <0.001 25 2603 −7.233 <0.001 
Table 7
 Results of the Wilcoxon signed rank test applied to compare GWO+ATCQ to other color quantization methods (𝑝𝑜𝑠: sum of positive ranks; 𝑛𝑒𝑔: sum of negative 
ranks; 𝑍: value of the test statistic; 𝑝: probability corresponding to the Z value). 
 PSNR SSIM

 GWO+ATCQ-1 GWO+ATCQ-10 GWO+ATCQ-1 GWO+ATCQ-10

 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝

 GWO+ATCQ-10 2621 70 −7.334 <0.001 2073 555 −4.259 <0.001  
 WU 2628 0 −7.374 <0.001 2626 2 −7.363 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 
 VB 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 
 VC 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2625 3 −7.357 <0.001 
 MC 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 
 OC 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 
 ADU 1633 995 −1.79 0.073 1097 1531 −1.218 0.223 454 2174 −4.826 <0.001 308 2320 −5.645 <0.001 
 BS 2582 46 −7.116 <0.001 2515 113 −6.74 <0.001 2625 3 −7.357 <0.001 2617 11 −7.312 <0.001 
 NQ 2600 28 −7.217 <0.001 2553 75 −6.953 <0.001 2298 330 −5.522 <0.001 2140 488 −4.635 <0.001 
 WUATCQ 1454 1174 −0.786 0.432 998 1630 −1.773 0.076 2519 109 −6.762 <0.001 2472 156 −6.498 <0.001 
 BSAT 1896 732 −3.266 0.001 1323 1305 −0.051 0.960 2502 126 −6.667 <0.001 2355 273 −5.842 <0.001 
 BSITATCQ 1087 1541 −1.274 0.203 641 1987 −3.777 <0.001 2159 469 −4.742 <0.001 1901 727 −3.294 <0.001 
 SFLA 2628 0 −7.374 <0.001 2570 58 −7.048 <0.001 2055 573 −4.158 <0.001 1757 871 −2.486 0.013  
 PSOATCQ 15 2613 −7.290 <0.001 0 2628 −7.374 <0.001 1174 1454 −0.786 0.432 850 1778 −2.604 0.009  
 ITATCQ 2573 55 −7.065 <0.001 2357 271 −5.853 <0.001 2628 0 −7.374 <0.001 2628 0 −7.374 <0.001 
 JADE 2628 0 −7.374 <0.001 2627 1 −7.368 <0.001 2527 101 −6.807 <0.001 2479 149 −6.538 <0.001 
 SHADE 2628 0 −7.374 <0.001 2626 2 −7.363 <0.001 2452 176 −6.386 <0.001 2401 227 −6.1 <0.001 
The Wilcoxon test was performed to complete the comparison of 
the methods (Tables  6–8). The test was applied to compare the results 
of GWO+ATCQ with 𝑠𝑡𝑒𝑝 = 1 (labeled GWO+ATCQ-1) and 𝑠𝑡𝑒𝑝 = 10
(labeled GWO+ATCQ-10) to those of the other methods considered in 
this section. Therefore, each block includes two subsets of columns 
with results corresponding to both values of 𝑠𝑡𝑒𝑝. The block set on 
the left shows the results obtained when GWO+ATCQ-10 is compared 
to GWO+ATCQ-1. However, the results of the comparison are not re-
peated in the group of columns on the right side, since the information 
is redundant. The significance level used in the Wilcoxon test was 0.05.

When the results for the MSE values are considered, it can be ob-
served that there are no significant differences between
GWO+ATCQ-1 and BSITATCQ, but the first method is significantly 
better than the other methods except PSO+ATCQ. When consider-
ing GWO+ATCQ-10, PSO+ATCQ is still significantly better than the 
proposed method. On the other hand, there are no significant differ-
ences between GWO+ATCQ-10 and ADU, WUATCQ, or BSITATCQ, and 
GWO+ATCQ-10 is significantly better than the other methods.

When the MAE results are considered, GWO+ATCQ (with both 
steps) is significantly better than the other methods except ADU, WU-
ATCQ, BS and PSO+ATCQ.

Regarding PSNR, there are no significant differences between
GWO+ATCQ-1 and ADU, WUATCQ or BSITATCQ, and the method is 
17
significantly better than the remaining methods except PSO+ATCQ. In 
addition, there are no significant differences between GWO+ATCQ-10 
and ADU, WUATCQ or BSATCQ, and it is significantly better that the 
other methods except PSO+ATCQ and BSITATCQ.

According to SSIM results, there are no significant differences be-
tween GWO+ATCQ-1 and PSO+ATCQ, but the differences are signif-
icant for the remaining cases. Only ADU is significantly better than 
both GWO+ATCQ variants, and PSO+ATCQ is significantly better than 
GWO+ATCQ-10.

Regarding the execution time, the differences between each pair 
of methods are significant. GWO+ATCQ-10 is significantly faster than 
GWO+ATCQ-1, BSITATCQ, SFLA-CQ, ITATCQ, PSO+ATCQ, JADE, and 
SHADE. On the other hand, GWO+ATCQ-1 is significantly faster than 
the last three methods in the previous list.

Therefore, the results obtained by applying the Wilcoxon test sup-
port the conclusions set forth in the previous discussion.

5.5. Qualitative comparison of methods

The analysis of the numerical results carried out in the previous 
sections allows us to determine which of the compared methods are 
better. To try to understand the reasons why one method is faster or 
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Table 8
Results of the Wilcoxon signed rank test applied to compare GWO+ATCQ to 
other color quantization methods (𝑝𝑜𝑠: sum of positive ranks; 𝑛𝑒𝑔: sum of 
negative ranks; 𝑍: value of the test statistic). The probability 𝑝 corresponding 
to the 𝑍 value is not included because it is < 0.001 for all cases. 
 GWO+ATCQ-1 GWO+ATCQ-10

 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍 𝑝𝑜𝑠 𝑛𝑒𝑔 𝑍

 T GWO+ATCQ-10 2628 0 −7.374  
 WU 2628 0 −7.374 2628 0 −7.374 
 VB 2628 0 −7.374 2628 0 −7.374 
 VC 2628 0 −7.374 2628 0 −7.374 
 MC 2628 0 −7.374 2628 0 −7.374 
 OC 2628 0 −7.374 2628 0 −7.374 
 ADU 2628 0 −7.374 2628 0 −7.374 
 BS 2628 0 −7.374 2628 0 −7.374 
 NQ 2628 0 −7.374 2628 0 −7.374 
 WUATCQ 2628 0 −7.374 2628 0 −7.374 
 BSATCQ 2628 0 −7.374 2628 0 −7.374 
 BSITATCQ 2628 0 −7.374 0 2628 −7.374 
 SFLA-CQ 2579 49 −7.099 0 2628 −7.374 
 PSO+ATCQ 0 2628 −7.374 0 2628 −7.374 
 ITATCQ 2628 0 −7.374 0 2628 −7.374 
 JADE 0 2628 −7.374 0 2628 −7.374 
 SHADE 0 2628 −7.374 0 2628 −7.374 

produces better results than another, the characteristics of each method 
can be also analyzed. The rest of this section shows this analysis.

Splitting-based color quantization methods are fast because they do 
not process each individual pixel in the image, but instead divide the 
solution space into boxes containing pixels and process those boxes. 
Therefore, methods that apply this solution approach are fast. However, 
these methods generate a final solution that cannot be improved at the 
cost of increasing processing time. They are deterministic methods that 
apply a specific criterion to choose a box and split it, which means 
that for the same original image the same quantized image is always 
obtained. On the contrary, clustering-based methods can refine the 
obtained solution by adjusting the number of iterations that a method 
applies.

The experimental results show that PSO+ATCQ can produce better 
quality images, but it takes more time than GWO+ATCQ to obtain 
a solution. It should be noted that PSO+ATCQ is not only slower 
than GWO+ATCQ, but also requires more memory. PSO stores three 
vectors for each search agent in the population, corresponding to the 
current position, the current velocity and the best position so far of 
each agent. By contrast, GWO only stores the current position of each 
search agent. Therefore, PSO+ATCQ requires two additional vectors of 
size 𝑞 to perform the color quantization operation. Each iteration of 
this method should update each agent’s position and velocity, plus the 
personal best position if the current position of the agent has improved. 
These operations, together with the fact that the fitness of an agent is 
calculated taking into account all the pixels of the original image, make 
PSO+ATCQ slower than GWO+ATCQ.

SFLA-CQ works on images sampled using the same technique ap-
plied in this article. However, it is observed that the method using frogs 
is slower. The operation that most influences this result is the number 
of times the fitness is calculated in each iteration of the algorithm. As 
indicated when analyzing the complexity of the GWO+ATCQ method, 
the calculation of the fitness of a position has a high computational cost 
within the algorithm. In this case, the calculation of the fitness of a 
position has the same cost both in GWO+ATCQ and in SFLA-CQ, since 
both methods use sampled images. Each iteration of both algorithms 
needs to calculate the fitness of all individuals in the population. 
However, the frog-based method must also compute the fitness for the 
candidate positions chosen to move the worst agent in each group. 
This method applies several iterations to improve the position of the 
worst agent in a group. In the best case, each improvement iteration 
should calculate a candidate position and its fitness; however, in the 
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worst case, three candidate positions and two fitness values must be 
calculated. Therefore, although SFLA does not update the position of all 
the agents in the population, it requires calculating the fitness function 
more times than GWO.

We can conclude that the fitness calculation is a critical point for the 
GWO+ATCQ, PSO+ATCQ and SFLA-CQ methods. This operation is the 
one that requires more calculation time and depends on the size of the 
set of input pixels. GWO+ATCQ and SFLA-CQ speed up this calculation 
by working on a reduced set of points. However, it must also be taken 
into account that the number of times each algorithm performs this 
operation also has a significant influence on the execution time of the 
algorithm.

Regarding the ITATCQ method, each iteration of this algorithm 
processes the 𝑛 pixels of the original image. However, it does not 
require computing a global error measure over all the pixels in the 
image to check the quality of the current quantized palette. Therefore, 
the speed of this method depends fundamentally on the number of 
pixels in the image and the size of the quantized palette. An important 
difference between this method and the other swarm methods used 
in this article is that ITATCQ does not work with a set of solutions. 
In PSO+ATCQ, SFLA-CQ and GWO+ATCQ each individual represents 
a color palette, while in ITATCQ each individual represents a pixel. 
Therefore, ITATCQ works on a palette that can be improved throughout 
the iterations, while the other three methods can work on several 
palettes in parallel and choose the best one. This feature makes it 
possible for the other methods to define a final quantized palette of 
better quality.

NQ uses a one-dimensional neural network that is trained using the 
pixels of the original image. The neuron weights are updated to learn 
the color distribution of the original image colors. This method can 
be applied to a sampled image, resulting in a lower quality quantized 
image, although the process is faster. The results included in this article 
consider the unsampled image, to obtain the highest quality result that 
this method can achieve. NQ was proposed to reduce an image to 256 
colors, and various authors have verified that it does not work well 
when applied to quantized palettes that include only a few colors. The 
numerical results presented in this article also confirm that the best NQ 
results are obtained for palettes with 256 colors.

ADU applies an iterative process that starts with a single cluster and 
obtains a total of 𝑞 clusters by splitting clusters that reach a certain size. 
As in NQ, each iteration processes all the pixels of the original image. 
Although both ADU and NQ use competitive learning, it is clearly seen 
that ADU generates better quality images because it does not impose a 
one-dimensional structure to the neurons.

WUATCQ, BSATCQ ans BSITATCQ are mixed methods, which apply 
a clustering method to the solution generated by a splitting-based 
method. In these cases, the objective is to take advantage of the speed 
of the first method to obtain a good initial solution and then apply 
a method that improves the said solution. In general, the longer the 
second method runs, the better the solution. Therefore, an advantage in 
applying these methods lies in the possibility of choosing between the 
speed and the quality of the result (obtain a result quickly or improve 
that result by taking a little more time). However, it must be taken 
into account that the palette generated by the first of the two combined 
methods conditions the final result of the method.

6. Conclusion

This article discusses the application of the grey wolf optimization 
algorithm to perform color quantization. Several new operations have 
been added to the original GWO to adapt it to the proposed problem. 
The method uses the mean squared error as objective function of the 
color quantization problem, which is formulated as an optimization 
problem. On the other hand, the input image is sampled to speed up 
the process. Each search agent in the group represents a quantized 
palette. The initial palettes associated with the search agents are sorted 
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to allow a better adjustment at the beginning of the algorithm. The 
equations used to update the position of the search agents include the 
fitness of the position as a penalty term that improves the result of the 
algorithm. Furthermore, the position of the 𝛿 search agent is improved 
by applying the ATCQ method. All these features contribute to the 
algorithm obtaining a good quantized palette to represent the original 
image.

Computational results show that the proposed method can generate 
better quality images than most of the compared color quantization 
methods. It generates better global values for the four error measures 
analyzed with respect to WU, VB, VC, MC, OC, NQ, ITATCQ, SFLA-CQ, 
JADE and SHADE methods. On the other hand, it also obtains better 
global values than other methods, such as BS, BSATCQ, BSITATCQ or 
WUATCQ, when only some of the four error indices is considered. It 
has also been proven that sampling the original image allows to speed 
up the algorithm and still obtain good quality images.

It would be interesting to speed up the proposed method. As has 
been verified, the execution time of the algorithm mainly depends on 
the size of the set of pixels that represent the image. Therefore, among 
the future directions of research, the use of a reduced set of data to 
apply the method will be analyzed. It should be noted that some of the 
faster classical methods apply an initial operation in which they create 
a histogram from the pixels of the original image and then work on that 
histogram to apply the remaining operations of the method. This same 
technique could be useful to speed up the proposed method.

As another future direction of research, it is intended to integrate 
the proposed method into a system to help people with color blindness. 
This is a visual problem that prevents differentiating certain colors. 
Among other situations, this problem affects the use of computers and 
other devices that display images. A useful tool to combat this problem 
would be a recoloring system that transforms the colors of the palette 
that a color blind individual confuses into others that the individual 
can distinguish, thereby allowing this person to recognize contrasts and 
different chromatic tones. The color quantization method described in 
this article could be integrated into such a tool to reduce the size of the 
color palette and identify subsets of pixels in an image whose color is 
not perceived by the user.
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Appendix A. Supplementary data

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.cviu.2026.104659. It includes results 
for each test image and each method compared to GWO+ATCQ in 
this article. It also includes figures that compare GWO+ATCQ-1 and 
GWO+ATCQ-10.
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The data is available online. The URL is provided in the article.
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