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A B S T R A C T

Color quantization is a common image processing operation with various applications in computer graphics,
image processing, and computer vision. Color quantization is essentially a large-scale combinatorial optimiza-
tion problem. Many clustering algorithms, both of hierarchical and partitional types, have been applied to this
problem since the 1980s. In general, hierarchical color quantization algorithms are faster, whereas partitional
ones produce better results provided that they are initialized properly. In this paper, we propose a novel
partitional color quantization algorithm based on a binary splitting formulation of MacQueen’s online k-means
algorithm. Unlike MacQueen’s original algorithm, the proposed algorithm is both deterministic and free of
initialization. Experiments on a diverse set of public test images demonstrate that the proposed algorithm
is significantly faster than two popular batch k-means algorithms while yielding nearly identical results. In
other words, unlike previously proposed k-means variants, our algorithm addresses both the initialization and
acceleration issues of k-means without sacrificing the simplicity of the algorithm. The presented algorithm
may be of independent interest as a general-purpose clustering algorithm.
1. Introduction

True-color images have become ubiquitous over the past two
decades. A typical true-color image may contain hundreds of thou-
sands of colors, which makes it challenging to display, store, transmit,
process, and analyze such an image. Color Quantization (CQ) is a
popular image processing operation, which aims to reduce the number
of distinct colors in a true-color image with minimal distortion. Thus,
CQ is fundamentally a large-scale combinatorial optimization problem.
Recent applications of CQ include compression, segmentation, text lo-
calization/detection, color analysis, watermarking, non-photorealistic
rendering, and content-based retrieval (for specific references, refer to
our earlier work Celebi et al., 2015).

CQ consists of two main phases: palette design (the selection of a
small set of colors that represents the colors in the input image) and
pixel mapping (the assignment of each pixel in the input image to
one of the palette colors). Pixel mapping can be accomplished using
a straightforward linear-time algorithm that maps each input pixel to
the nearest palette color. For this reason, most CQ studies (including
the present one) deal with the computationally difficult palette design
phase.

Many clustering algorithms, both of hierarchical and partitional
types, have been applied to the palette design problem since the
1980s (Brun & Tremeau, 2002; Xiang, 2018). A hierarchical algorithm
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partitions the input data set into a set of nested clusters that are
organized as a tree. These algorithms recursively find nested clusters
in a top-down (divisive) or bottom-up (agglomerative) manner (Jain
et al., 1999). A partitional algorithm, on the other hand, partitions the
input data set into a number of mutually exclusive subsets. These algo-
rithms find all clusters simultaneously without imposing a hierarchical
structure on the data (Jain et al., 1999).

Classic hierarchical CQ algorithms include median-cut (Heckbert,
1982), octree (Gervautz & Purgathofer, 1988), Wan et al.’s algo-
rithm (Wan et al., 1990), Wu’s algorithm (Wu, 1991), center-cut (Joy
& Xiang, 1993), rwm-cut (Yang & Lin, 1996), and pairwise nearest
neighbor (Brun & Mokhtari, 2000). More recent hierarchical CQ al-
gorithms include variance-cut (Celebi et al., 2015) and Ueda et al.’s
algorithm (Ueda et al., 2017). Partitional algorithms adapted to CQ
include maximin (Xiang, 1997), k-means (Celebi, 2009, 2011; Hu &
Lee, 2007; Hu & Su, 2008; Huang, 2021; Thompson et al., 2020;
Valenzuela et al., 2018), self-organizing maps (Dekker, 1994; Park
et al., 2016), fuzzy c-means (Schaefer, 2014; Szilágyi et al., 2016; Wen
& Celebi, 2011), k-harmonic means (Frackiewicz & Palus, 2011), rough
c-means (Schaefer et al., 2012), and competitive learning (Celebi et al.,
2014).

Many of the recent CQ algorithms are based on metaheuristic
optimization. Metaheuristics applied to CQ in recent years include
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differential evolution (Hu et al., 2016), shuffled frog-leaping optimiza-
tion (Pérez-Delgado, 2019a), artificial bee colony optimization (Huang,
2020), ant colony optimization (Pérez-Delgado, 2021), and flower
pollination algorithm (Lei et al., 2020). Some metaheuristics-based
CQ algorithms even combine conventional clustering algorithms with
metaheuristics (Pérez-Delgado, 2020a; Pérez-Delgado & Gallego, 2019,
2020) or multiple metaheuristics (Pérez-Delgado, 2018, 2019b, 2020b).
Metaheuristics-based clustering algorithms are more powerful than
conventional clustering algorithms in that they can better optimize
nonsmooth and nonconvex objective functions. However, this comes
at the price of randomized and complex formulation, an increased
number of user-defined parameters, and increased computational re-
quirements. Nevertheless, we should mention that some of the recent
metaheuristics-based CQ algorithms (Pérez-Delgado & Gallego, 2019,
2020) have only a few user-defined parameters and are reasonably
fficient.

Hierarchical cq algorithms are generally faster, whereas partitional
nes often produce better results as long as they are initialized properly.
hanks to the increased computational power in recent years, CQ
esearch has shifted to partitional algorithms. Among these algorithms,
ost studies have concentrated on k-means (and its soft counterpart,

uzzy c-means) and self-organizing maps. In this paper, we focus on
-means for several reasons. Compared to its alternatives, k-means
equires fewer user-defined parameters, is easier to understand and
mplement, is significantly more efficient (Szilágyi et al., 2016; Wen &
elebi, 2011), and, with suitable initialization, is competitive in terms
f the distortion it generates (Celebi, 2009, 2011; Szilágyi et al., 2016;
hompson et al., 2020).

In this paper, we present a novel partitional CQ algorithm based on
n online formulation of the k-means algorithm. The main characteris-
ics of the proposed algorithm are the following:

• Unlike standard batch k-means, our algorithm makes only one
pass over the input image. This formulation renders our algorithm
significantly faster than most partitional CQ algorithms proposed
earlier.

• Unlike standard batch and online k-means, our algorithm does
not require an explicit center initialization, which simplifies its
implementation.

• Our algorithm produces slightly lower average 𝓁2
2 distortion than

standard batch and online k-means, which are considered gold
standard algorithms in the CQ literature.

• Our algorithm is deterministic thanks to its quasirandom sam-
pling scheme, which means that only a single run is sufficient to
achieve good results. By contrast, many partitional CQ algorithms
proposed earlier are randomized.

• Thanks to its one-pass formulation and built-in initialization, our
algorithm is simpler and easier to implement than its alternatives.

The remainder of the paper is organized as follows. Section 2 first
escribes three known variants of the k-means clustering algorithm and
hen the proposed fourth variant. Section 3 presents the experimental
esults and compares the proposed algorithm to conventional as well as
tate-of-the-art CQ algorithms. Finally, Section 4 gives the conclusions.

. K-means and its variants

This section describes four variants of the k-means clustering algo-
ithm: batch k-means, incremental batch k-means, online k-means, and
ncremental online k-means. The first three algorithms are known, and
he last one is new.

.1. Batch k-means

Batch k-means (BKM) (Forgy, 1965), also known as Lloyd’s algo-
ithm (Lloyd, 1982), is the most widely used partitional clustering
lgorithm (Wu et al., 2008). Given a data set  = {𝐱 ,… , 𝐱 } ⊂ R𝐷 and
2

1 𝑁
positive integer 𝐾 > 1, BKM divides  into 𝐾 mutually exclusive and
xhaustive clusters {1,… ,𝐾}, where each cluster 𝑖 is represented

by a center 𝐜𝑖. The algorithm starts with an arbitrary set of initial
centers, customarily chosen uniformly at random from  . Each iteration
is composed of two steps: assignment and update. In the assignment
step, each data point is assigned to the nearest center. In the update
step, each center is updated to be the centroid of the data points
assigned to it. Each iteration can be shown to either decrease the Sum of
Squared Error (SSE) defined as SSE =

∑

𝐱∈ 𝑑SE(𝐱, {𝐜1,… , 𝐜𝐾}), where
𝑑SE(𝐱,) denotes the squared Euclidean (𝓁2

2) dissimilarity between data
point 𝐱 and the nearest center in , or leave it unchanged (at which
point the algorithm is considered to have converged).

Banerjee et al. (2005) proved that the optimal center of a cluster
is given by the centroid of the cluster only for Bregman divergences, a
family of nonmetric dissimilarity functions that includes the 𝓁2

2 dissimi-
larity, squared Mahalanobis dissimilarity, Kullback–Leibler divergence,
and Itakura–Saito divergence. In practice, the most popular Bregman
divergence is 𝓁2

2 .
Let 𝐼 be the input image in a CQ application. The data set  then

represents the pixels of 𝐼 , 𝑁 is the number of pixels in 𝐼 , 𝐷 is the
number of color channels (𝐷 = 3 for the RGB color model), and 𝐾
is the number of desired colors in the output (quantized) image. The
pseudocode for BKM is given below.

1. Initialize the cluster centers {𝐜1,… , 𝐜𝐾}.
2. Assign each 𝐱 ∈  to the nearest center, i.e., 𝐜𝑖 with 𝑖 =

arg min𝑘∈{1,…,𝐾}
‖

‖

𝐱 − 𝐜𝑘‖‖
2
2, where ‖⋅‖2

2 denotes the 𝓁2
2 norm.

3. Update each cluster center 𝐜𝑖 to be the centroid of the data points
assigned to it, i.e., 𝐜𝑖 = (1∕𝑛𝑖)

∑

𝐱∈𝑖
𝐱, where 𝑛𝑖 is the number of

data points assigned to 𝐜𝑖.
4. Repeat steps (2) and (3) until convergence.

BKM converges to a local minimum of its objective when the cluster
centers stabilize (or, equivalently, when the cluster memberships of
the data points stabilize). Step (1), initialization, is the most important
step, as the algorithm is highly sensitive to the initialization of the
centers. Adverse effects of poor initialization include empty clusters,
slower convergence, and a higher chance of getting stuck in a bad local
optimum (Celebi et al., 2013).

Although it has a linear time complexity (in 𝑁 , 𝐷, and 𝐾), BKM is
computationally demanding to due its iterative nature (Celebi, 2011).
In general, the number of iterations cannot be predicted in advance
and depends on the number, dimensionality, and distribution of the
data points, the number of clusters sought, and the initial centers. For
this reason, BKM was considered impractical in the early CQ litera-
ture (Heckbert, 1982; Wan et al., 1990). More recent studies address
this problem by accelerating BKM using a combination of numerical
approximations, sampling, weighting, and geometric identities (Celebi,
2009, 2011; Hu & Lee, 2007; Hu & Su, 2008; Huang, 2021; Valenzuela
et al., 2018). However, nearly all of these algorithms sacrifice sim-
plicity for computational efficiency. Furthermore, some of them suffer
from loss of accuracy (Hu & Lee, 2007; Valenzuela et al., 2018) or
convergence guarantee (Hu & Lee, 2007).

2.2. Incremental batch k-means

Incremental batch k-means (IBKM) (Linde et al., 1980) is a variant
of BKM that features a built-in initialization scheme. The original BKM
algorithm assumes that the algorithm is supplied with appropriate
initial centers. IBKM, on the other hand, starts with a single center and
incrementally adds new centers until the number of centers reaches 𝐾.
The pseudocode for IBKM is given below.

1. Set 𝐜0 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑() and set iteration counter 𝑡 = 0.
2. For each 𝑘 ∈ {2𝑡 − 1,… ,2𝑡+1 − 2}, split node 𝐜𝑘 into nodes 𝐜2𝑘+1
and 𝐜2𝑘+2.
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3. Refine centers (2𝑡+1−1),… , (2𝑡+2−2) using BKM (the entire data
set  is clustered.)

4. Set 𝑡 = 𝑡 + 1 and repeat steps (2) and (3) until 𝑡 = log2 𝐾.

The algorithm begins by setting 𝐜0 to the centroid of  (for 𝐾 = 1,
this choice of 𝐜0 is clearly optimal). It then adds 2𝑡+1 new centers in
iteration 𝑡 (𝑡 ∈ {0,… , log2 𝐾 − 1}) by splitting each of the existing
centers into two. When a center 𝐜𝑘 is split, the left child inherits its
parent’s attributes (i.e., 𝐜2𝑘+1 = 𝐜𝑘), whereas the right child becomes
a slightly perturbed version of its parent (i.e., 𝐜2𝑘+2 = 𝐜𝑘 + 𝜺 where
𝜺 is an arbitrary vector of small positive 𝓁2 norm). Preserving the
parent’s attributes in the next iteration ensures that the SSE will not
increase (Gray, 1984). Note that in the IBKM pseudocode above, we
assumed that 𝐾 is a power of two for simplicity. If this is not the case,
we perform ⌊log2 𝐾⌋ iterations as described above and then perform
one last iteration in which we split only 𝐾 − 2⌊log2 𝐾⌋ of the centers
from the previous iteration.

While BKM is well known in virtually all scientific disciplines
wherein clustering is employed (Celebi, 2014), IBKM appears to be
known primarily in the vector quantization literature from which it
originated.

2.3. Online k-means

Online k-means (OKM) (MacQueen, 1967), also known as sequential
k-means or MacQueen’s k-means, is an online variant of BKM. The two
algorithms differ in when and how they update the cluster centers.
BKM updates all 𝐾 centers at once after all data points are assigned
to their respective nearest centers. OKM, on the other hand, updates a
single center immediately after a data point is assigned to it. OKM is
considered a noisy version of BKM where the noise aids the algorithm
in escaping bad local optima (Bottou & Bengio, 1995). The pseudocode
for OKM is given below.

1. Initialize the cluster centers {𝐜1,… , 𝐜𝐾}.
2. Set 𝑛1 = ⋯ = 𝑛𝐾 = 0, where 𝑛𝑖 is the number of data points

assigned to center 𝐜𝑖.
3. Select a data point 𝐱 from  uniformly at random.
4. Assign 𝐱 to the nearest center, say 𝐜𝑖 (refer to step (2) in the BKM

pseudocode).
5. Increment 𝑛𝑖 (i.e., 𝑛𝑖 = 𝑛𝑖 + 1) and then update 𝐜𝑖 to reflect the

newly added point as follows: 𝐜𝑖 = 𝐜𝑖 + (1∕𝑛𝑖)(𝐱 − 𝐜𝑖).
6. Repeat steps (3) through (5) until convergence.

Note that, unlike BKM, OKM traverses the data points in random
order, which aims to reduce OKM’s sensitivity to the order in which
the data points are processed. Studies have shown that for online
learning algorithms like OKM, random traversal is preferable to cyclical
traversal, which is used in BKM (Bermejo & Cabestany, 2002). This is
because cyclical presentation may bias an online learning algorithm,
especially when dealing with redundant data sets such as image data.

OKM is an instance of the competitive learning paradigm, an un-
supervised learning scheme for discovering general features that can
be used to classify a set of patterns (Grossberg, 1987; Rumelhart &
Zipser, 1985). In a basic competitive learning algorithm, given a set of
randomly distributed units, the units compete for assignment to a given
subset of inputs. After the presentation of each input, the closest unit
is deemed the winner and moved closer to the input. Hard competitive
learning, also known as winner-take-all learning, consists of algorithms
where each input determines the adaptation of a single winning unit.
OKM is an instance of hard competitive learning, as only the winning
unit is moved towards the input presented in each iteration.

Let 𝐱(𝑡) be the input at time 𝑡 (𝑡 = 1,2,…) and 𝐜(𝑡) be the correspond-
ing nearest center (winning unit) with respect to the 𝓁2

2 dissimilarity
(refer to step (2) in the BKM pseudocode). The adaptation equation for
𝐜(𝑡) is given by
(𝑡+1) (𝑡) (𝑡) (𝑡)
3

𝐜 = 𝐜 + 𝑟(𝑡)(𝐱 − 𝐜 ), (1) t
where 𝑟 ∈ [0,1] is the learning rate, which is chosen to satisfy the
Robbins–Monro conditions (Robbins & Monro, 1951)

lim
𝑡→∞

𝑟(𝑡) = 0, (2a)
∞
∑

𝑡=1
𝑟(𝑡) = ∞, (2b)

∞
∑

𝑡=1
𝑟(𝑡)2 < ∞. (2c)

These conditions ensure that the learning rate decreases at a rate that
is fast enough to suppress the noise, but not too fast to avoid premature
convergence. Under mild regularity conditions, OKM converges almost
surely to a local minimum (Bottou, 1998).

By rearranging the adaptation equation above, we obtain

𝐜(𝑡+1) = 𝑟(𝑡)𝐱(𝑡) + (1 − 𝑟(𝑡))𝐜(𝑡), (3)

which shows that new center 𝐜(𝑡+1) is a convex combination of the old
center 𝐜(𝑡) and the input data point 𝐱(𝑡).

The original OKM algorithm employs a harmonic learning rate 𝑟(𝑡) =
1∕𝑡, which can be generalized using a parameter 𝑝 ∈ (0.5,1], resulting
in the hyperharmonic rate 𝑟(𝑡) = 𝑡−𝑝. In theory, the harmonic rate
decays too rapidly, while the hyperharmonic rate with 𝑝 = 0.5 gives
much better results (Darken & Moody, 1990; Thompson et al., 2020;
Wu & Yang, 2006).

OKM scans through the input image only once, as opposed to
BKM, which scans through the image multiple times. 1 In our earlier
work (Thompson et al., 2020), we show that OKM obtains very sim-
ilar results to BKM while being 41 to 300 times faster. Unlike BKM,
however, OKM has an element of randomness in it (refer to step (3) in
the OKM pseudocode). In our earlier work (Thompson et al., 2020),
we sample the input image quasirandomly using a low-discrepancy
sequence (Bratley & Fox, 1988), and demonstrate that such a sampling
is not only deterministic, but also gives nearly identical results to
pseudorandom sampling on average. In this study, we adopt the same
quasirandom sampling approach (refer to Thompson et al., 2020 for
details.)

On a historical note, MacQueen (1967) developed the OKM algo-
rithm and coined the term ‘‘k-means’’ in the mid-1960s. However,
in time, ‘‘k-means’’ came to refer to the BKM algorithm rather than
MacQueen’s OKM algorithm. In fact, a vast majority of the clustering
literature discusses only the BKM algorithm.

2.4. Incremental online k-means

Incremental online k-means (IOKM) is a binary splitting variant of
OKM. IOKM is identical to IBKM with two exceptions. First, IOKM uses
OKM (rather than BKM) to refine the newly generated centers in each
iteration. Second, in IOKM we can safely take ‖𝜺‖2 = 0, while in IBKM
‖𝜺‖2 must be a small positive number. Otherwise, if we set ‖𝜺‖2 = 0 in
IBKM, the left and right children will be identical and the subsequent
BKM run will not be able to separate these identical centers, resulting
in an empty cluster.

Following our earlier work (Thompson et al., 2020), we imple-
ment OKM as a one-pass algorithm. In other words, we terminate
the iterations once the algorithm is presented with 𝑁 data points.
In each iteration, 𝐾 centers compete to represent the presented data
point. Thus, OKM performs on the order of 𝑁𝐾 computations. IOKM,
on the other hand, performs log2 𝐾 passes over the input image, but
the number of centers competing in each pass is different. In pass 𝑡
(𝑡 ∈ {0,… , log2 𝐾 − 1}), 2𝑡+1 centers compete, resulting in a total of
∑log2 𝐾−1

𝑡=0 2𝑡+1 = 2𝐾 − 2 centers competing. Hence, for 𝐾 ≪ 𝑁 , IOKM

1 Thompson et al. (2020) show that a single-pass variant of BKM is faster
han OKM, but performs very poorly.
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Table 1
Comparison of the four k-means variants.

Variant Mode Parameters Initialization # Passes Time complexity

BKM batch – explicit many (𝑁𝐾𝐷)
IBKM batch 𝜀 built-in many (𝑁𝐾𝐷)
OKM online 𝑝 explicit one (𝑁𝐾𝐷)
IOKM online 𝜀, 𝑝 built-in one (𝑁𝐾𝐷)

performs on the order of roughly 2𝑁𝐾 computations. Consequently, for
reasons of fairness, we terminate each call to OKM inside IOKM after
𝑁∕2 iterations rather than 𝑁 .

Table 1 compares the four k-means variants in terms of their oper-
ation mode (batch or online), user-defined parameters, center initial-
ization (explicit or built-in), number of passes over the input image
(one or many), and time complexity per pass. Here, an ‘‘explicit’’ ini-
tialization refers to the case where the clustering algorithm in question
is supplied with appropriate initial centers, whereas a ‘‘built-in’’ ini-
tialization refers to the case where the clustering algorithm determines
the initial centers by itself. Thus, a clustering algorithm with a built-in
initialization can be characterized as an initialization-free algorithm. It
can be seen that the proposed IOKM algorithm has the most desirable
characteristics among the four k-means variants. One could argue that
IOKM has more user-defined parameters than its rivals, but, as we
demonstrate in Section 3.1, our algorithm is not particularly sensitive
to the precise value of either of its parameters provided that they are
both taken to be small.

As mentioned earlier, BKM is very popular in the clustering litera-
ture, whereas its incremental version, IBKM, is popular particularly in
the vector quantization literature. Despite its significant computational
efficiency over BKM, however, OKM does not seem to be as widely used
as its batch counterpart. Finally, to the best of our knowledge, IOKM,
which is the incremental version of OKM, has not been investigated in
the literature.

2.5. Initialization of BKM and OKM

Recall that both BKM and OKM include an initialization step wher-
ein the initial cluster centers are determined. It is well known that
initialization is especially important for a batch learning algorithm like
BKM (Celebi & Kingravi, 2015; Celebi et al., 2013). In this study, we
address the initialization problem for BKM and OKM using the maximin
algorithm (Gonzalez, 1985). This algorithm begins by taking an arbi-
trary data point to be the first center 𝐜1. The remaining (𝐾 −1) centers
are determined iteratively as follows. For 𝑖 ∈ {2,… , 𝐾}, center 𝐜𝑖 is cho-
sen to be the point with the largest minimum-distance to the previously
selected (𝑖 − 1) centers, i.e., 𝐜𝑖 = arg max𝐱∈ min

(

𝑑(𝐱, 𝐜1),… , 𝑑(𝐱, 𝐜𝑖−1)
)

where 𝑑 is a metric distance (it is common to take 𝑑 = 𝓁2). By using
(𝑁) additional memory, maximin can be implemented in (𝑁𝐾) time
(see below). We should also mention that Feder and Greene (1988)
described an elaborate implementation of the maximin algorithm with
(𝑁 log𝐾) time complexity, which is optimal under the algebraic com-
putation tree model. However, this time-optimal maximin formulation
is quite complicated and thus primarily of theoretical interest.

The maximin algorithm calls for an arbitrary selection of the first
center. Selecting this center uniformly at random from  is customary,
but this makes the otherwise deterministic algorithm randomized. In
this study, we achieve determinism by taking the first center as the
centroid of  , which can be computed as  is read from the disk. The
pseudocode for maximin is given below.

1. Set, 𝐜1 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(). Let 𝑑𝑗 (𝑗 ∈ {1,… , 𝑁}) denote the distance
of 𝐱𝑗 to its nearest center. Set the index of the next center to
be found as 𝑖 = 2. Initialize 𝑑max = −∞, the maximum distance
between any data point and its nearest center.
4

Fig. 1. Test images.

2. For each 𝑗 ∈ {1,… , 𝑁}, if 𝑑(𝐱𝑗 , 𝐜𝑖−1) < 𝑑𝑗 , then set 𝑑𝑗 =
𝑑(𝐱𝑗 , 𝐜𝑖−1). If 𝑑max < 𝑑𝑗 , then update 𝑑max and the index of the
corresponding point (i.e., 𝑑max = 𝑑𝑗 and 𝑗∗ = 𝑗).

3. Set 𝐜𝑖 = 𝐱𝑗∗ and increment 𝑖 (i.e., 𝑖 = 𝑖 + 1).
4. Repeat steps (2) and (3) for the remaining (𝐾 − 2) centers.

An interesting and little known property of maximin is that it
selects exactly one center from each of the 𝐾 clusters provided that
 contains compact and separated clusters, i.e., each of the possible
intra-cluster distances is less than each of the possible inter-cluster
distances (Hathaway et al., 2006). In other words, maximin is an ideal
initializer for k-means on well-clusterable data sets.
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Table 2
Raw MSE results for IBKM.
𝜀 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0.255 372.6 234.0 149.2 95.3 138.1 84.6 51.2 31.8 143.1 84.0 52.1 33.7 117.5 71.7 45.4 29.6
1.02 374.0 233.5 149.5 95.4 139.4 83.8 50.9 31.6 143.1 84.0 52.1 33.8 117.7 71.4 45.4 29.7
4.08 374.1 233.3 149.7 95.5 136.9 84.6 52.4 32.1 143.1 84.0 52.3 34.0 117.3 71.6 45.5 29.7
16.32 373.1 234.5 149.8 96.3 137.7 85.3 53.6 34.0 146.6 87.2 55.0 36.8 119.4 72.7 46.2 30.7

𝜀 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0.255 187.9 107.8 62.3 37.0 235.0 127.7 72.4 42.3 228.9 131.8 82.7 53.1 202.4 111.7 65.5 40.1
1.02 187.8 106.8 62.3 37.1 235.1 127.5 73.0 42.7 228.8 132.1 82.3 53.0 202.0 111.0 65.5 40.2
4.08 190.0 107.3 62.3 37.1 234.3 125.4 72.0 42.1 228.7 132.0 82.2 53.1 202.0 111.4 65.5 40.4
16.32 189.0 107.9 64.1 39.4 242.4 128.0 73.9 44.2 229.2 132.2 83.0 53.9 198.6 111.2 66.2 41.9
Table 3
Rank MSE results for IBKM.
𝜀 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0.255 1 3 1 1 3 2 2 2 2 1 1 1 2 3 1 1
1.02 3 2 2 2 4 1 1 1 3 2 2 2 3 1 2 2
4.08 4 1 3 3 1 3 3 3 1 3 3 3 1 2 3 3
16.32 2 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4

𝜀 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0.255 2 3 1 1 2 3 2 2 3 1 3 3 4 4 2 1
1.02 1 1 2 3 3 2 3 3 2 3 2 1 2 1 3 2
4.08 4 2 3 2 1 1 1 1 1 2 1 2 2 3 1 3
16.32 3 4 4 4 4 4 4 4 4 4 4 4 1 2 4 4
Table 4
Raw MSE results for OKM.
𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0.5 373.5 236.4 151.7 97.9 145.6 93.1 59.0 36.5 144.3 83.8 52.8 35.4 130.4 75.3 47.6 31.2
0.75 376.7 241.6 153.3 99.6 149.9 94.6 61.6 37.7 148.5 87.5 56.0 37.0 130.9 76.3 49.1 32.3
1 387.8 249.8 160.6 105.4 172.6 100.6 63.1 40.1 164.8 95.2 61.2 41.0 137.7 80.7 52.8 34.1

𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0.5 193.6 111.3 71.1 44.7 234.0 128.6 75.7 45.0 258.5 149.9 89.6 57.2 198.6 112.1 67.1 42.2
0.75 212.5 130.9 80.6 49.0 251.8 132.4 81.1 48.3 260.1 150.4 92.0 60.0 200.4 114.3 69.3 43.9
1 245.4 166.0 93.0 55.1 257.9 149.2 86.5 53.1 280.4 167.9 98.7 65.4 210.8 125.2 77.1 49.2
Table 5
Rank MSE results for OKM.
𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5
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Table 6
Raw MSE results for IOKM (Baboon, Fish, Goldhill, Lenna).
𝜀 𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0 0.5 374.3 235.4 151.9 97.4 137.9 84.4 51.8 32.4 142.6 83.3 52.4 33.8 118.4 72.0 46.1 30.1
0 0.75 373.8 237.2 151.8 97.4 138.4 85.1 52.2 32.2 144.8 85.1 52.3 34.1 119.2 72.3 46.1 30.3
0 1 384.6 241.7 156.3 100.0 144.8 87.5 54.9 34.4 148.0 87.2 54.6 36.0 121.4 73.4 47.2 31.2
0.255 0.5 373.5 236.4 152.1 97.3 140.3 84.8 52.0 32.1 142.4 83.8 52.3 33.9 118.1 72.1 46.1 30.1
0.255 0.75 377.5 236.9 152.4 97.3 139.5 85.5 52.7 32.3 142.7 84.4 52.4 33.9 118.6 72.2 46.3 30.2
0.255 1 396.0 246.6 158.8 100.2 147.3 86.8 55.2 33.9 146.2 89.3 54.4 34.7 119.8 73.4 47.8 31.2
1.02 0.5 374.1 236.4 152.1 97.5 138.1 85.8 51.7 32.5 142.5 83.7 52.4 33.7 118.5 71.7 45.9 30.1
1.02 0.75 377.7 237.0 152.6 97.3 138.5 84.3 52.3 32.3 144.8 85.3 53.3 34.3 119.0 72.6 46.0 30.2
1.02 1 391.2 242.6 159.4 101.4 144.4 86.9 53.1 33.4 147.7 86.5 54.4 35.1 121.2 74.1 47.0 31.1
4.08 0.5 374.4 235.8 152.4 97.4 139.7 84.6 52.3 32.7 142.9 83.7 52.5 34.4 118.7 71.8 46.0 30.3
4.08 0.75 374.9 236.3 151.5 98.0 139.5 85.0 52.5 33.3 142.2 85.4 53.1 34.8 118.2 72.4 46.2 30.3
4.08 1 382.8 240.4 160.7 101.2 146.1 89.9 55.0 33.9 146.7 87.7 55.4 35.5 119.7 73.9 47.7 31.7
16.32 0.5 374.7 237.1 152.1 98.4 141.1 86.5 55.6 35.7 145.8 86.6 55.2 36.8 120.4 72.1 47.3 31.6
16.32 0.75 379.4 236.8 155.5 103.6 141.3 89.1 59.7 37.3 147.4 87.1 57.4 39.5 122.2 76.1 48.8 34.4
16.32 1 392.4 253.9 175.5 119.1 148.6 95.6 66.4 41.8 158.8 95.4 65.1 42.7 126.4 80.8 53.3 40.8
Table 7
Raw MSE results for IOKM (Motocross, Parrots, Peppers, Pills).
𝜀 𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0 0.5 196.3 106.6 61.5 36.8 234.6 125.2 72.0 42.3 227.3 135.4 83.2 55.2 200.7 110.8 66.0 40.7
0 0.75 187.8 109.1 62.4 37.2 238.9 127.6 73.0 43.4 227.9 135.8 83.5 54.0 201.4 113.1 66.0 41.2
0 1 195.8 112.6 64.5 38.1 257.4 128.1 75.8 46.3 238.7 138.8 86.9 56.4 207.6 118.1 68.3 42.3
0.255 0.5 195.5 106.1 61.6 36.8 231.7 126.2 72.2 42.2 229.4 133.0 83.5 54.6 201.2 111.0 65.7 40.7
0.255 0.75 190.9 107.1 62.7 37.4 240.9 130.1 73.9 42.4 233.6 142.4 83.8 54.0 199.6 114.1 66.3 41.0
0.255 1 195.0 115.8 66.1 38.5 251.1 130.3 75.0 44.7 264.4 144.9 88.8 55.6 204.4 115.3 68.7 42.8
1.02 0.5 193.1 108.5 62.1 37.2 242.5 127.6 72.6 42.2 229.3 135.2 83.1 53.8 199.3 111.3 65.5 40.8
1.02 0.75 195.1 108.1 63.5 37.1 234.7 130.4 73.0 43.0 230.4 133.9 83.5 53.9 205.9 111.8 66.3 40.8
1.02 1 210.2 112.1 65.7 39.1 265.9 131.8 76.9 43.8 233.3 136.6 86.2 55.9 199.3 113.3 68.8 42.3
4.08 0.5 192.1 106.7 62.2 37.1 233.2 126.8 72.3 41.8 237.6 133.0 83.7 54.7 197.2 111.1 65.9 40.9
4.08 0.75 192.9 109.5 62.3 37.2 238.0 135.7 72.8 43.4 230.5 136.5 84.3 55.1 201.8 112.6 66.2 41.7
4.08 1 196.9 111.2 66.6 39.9 241.6 131.6 79.0 45.3 237.1 145.0 86.5 56.0 207.6 116.6 67.9 42.5
16.32 0.5 188.2 108.4 62.5 38.4 234.8 126.2 74.5 44.1 229.9 133.5 86.1 54.8 200.3 112.4 66.0 41.8
16.32 0.75 188.5 114.7 65.8 40.5 240.2 129.2 76.9 50.0 259.5 135.4 85.8 60.6 199.4 112.8 68.9 45.7
16.32 1 198.0 128.3 74.9 48.9 267.7 141.1 82.8 53.6 238.1 153.8 90.0 63.9 213.3 122.2 73.8 53.1
Table 8
Rank MSE results for IOKM (Baboon, Fish, Goldhill, Lenna).
𝜀 𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

0 0.5 4 1 3 5 1 2 2 5 4 1 4 2 3 3 4 3
0 0.75 2 10 2 4 3 6 4 2 7 6 1 5 8 7 6 6
0 1 12 12 11 10 12 12 10 12 14 12 11 12 13 10 10 11
0.255 0.5 1 4 5 3 8 4 3 1 2 4 2 4 1 5 5 2
0.255 0.75 8 7 8 1 6 7 8 3 5 5 5 3 5 6 8 5
0.255 1 15 14 12 11 14 10 12 10 10 14 9 8 10 11 13 10
1.02 0.5 3 5 4 7 2 8 1 6 3 3 3 1 4 1 1 1
1.02 0.75 9 8 9 2 4 1 6 4 8 7 8 6 7 9 3 4
1.02 1 13 13 13 13 11 11 9 9 13 9 10 10 12 13 9 9
4.08 0.5 5 2 7 6 7 3 5 7 6 2 6 7 6 2 2 7
4.08 0.75 7 3 1 8 5 5 7 8 1 8 7 9 2 8 7 8
4.08 1 11 11 14 12 13 14 11 11 11 13 13 11 9 12 12 13
16.32 0.5 6 9 6 9 9 9 13 13 9 10 12 13 11 4 11 12
16.32 0.75 10 6 10 14 10 13 14 14 12 11 14 14 14 14 14 14
16.32 1 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
3. Experimental results and discussion

3.1. Image set and parameter configuration

The proposed IOKM algorithm was tested on eight popular 24-bit
test images shown in Fig. 1. Of these images, Baboon (512 × 512),
Lenna (512 × 512), and Peppers (512 × 512) are from the USC-SIPI
6

Image Database2; Motocross (768 × 512) and Parrots (768 × 512)
are from the Kodak Lossless True Color Image Suite3; and Goldhill
(720 × 576), Fish (300 × 200), and Pills (800 × 519) are by Lee Crocker,
Luiz Velho, and Karel de Gendre, respectively.

2 Available at http://sipi.usc.edu/database/.
3 Available at http://r0k.us/graphics/kodak/.

http://sipi.usc.edu/database/
http://r0k.us/graphics/kodak/
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Table 9
Rank MSE results for IOKM (Motocross, Parrots, Peppers, Pills).
𝜀 𝑝 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

0 0.5 12 2 1 1 3 1 1 4 1 6 2 9 7 1 4 1
0 0.75 1 8 6 6 7 5 6 7 2 8 5 3 9 9 6 7
0 1 11 12 10 9 13 7 11 13 13 11 13 13 13 14 11 11
0.255 0.5 10 1 2 2 1 2 2 3 4 2 3 5 8 2 2 2
0.255 0.75 4 4 8 8 9 9 8 5 9 12 7 4 5 11 8 6
0.255 1 8 14 13 11 12 10 10 11 15 13 14 10 11 12 12 13
1.02 0.5 7 7 3 5 11 6 4 2 3 5 1 1 3 4 1 4
1.02 0.75 9 5 9 3 4 11 7 6 6 4 4 2 12 5 9 3
1.02 1 15 11 11 12 14 13 13 9 8 10 11 11 2 10 13 10
4.08 0.5 5 3 4 4 2 4 3 1 11 1 6 6 1 3 3 5
4.08 0.75 6 9 5 7 6 14 5 8 7 9 8 8 10 7 7 8
4.08 1 13 10 14 13 10 12 14 12 10 14 12 12 14 13 10 12
16.32 0.5 2 6 7 10 5 3 9 10 5 3 10 7 6 6 5 9
16.32 0.75 3 13 12 14 8 8 12 14 14 7 9 14 4 8 14 14
16.32 1 14 15 15 15 15 15 15 15 12 15 15 15 15 15 15 15
t
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Table 10
Mean MSE rank for IBKM, OKM, and IOKM for various parameter
combinations (best values are shown in bold).

Algo 𝜀 𝑝 Mean rank

IBKM 0.255 – 2.00
IBKM 1.02 – 2.09
IBKM 4.08 – 2.19
IBKM 16.32 – 3.69

OKM – 0.5 1.00
OKM – 0.75 2.00
OKM – 1 3.00

IOKM 0 0.5 3.22
IOKM 0 0.75 5.44
IOKM 0 1 11.53
IOKM 0.255 0.5 3.28
IOKM 0.255 0.75 6.47
IOKM 0.255 1 11.63
IOKM 1.02 0.5 3.75
IOKM 1.02 0.75 6.06
IOKM 1.02 1 10.94
IOKM 4.08 0.5 4.44
IOKM 4.08 0.75 6.81
IOKM 4.08 1 12.06
IOKM 16.32 0.5 8.09
IOKM 16.32 0.75 11.44
IOKM 16.32 1 14.84

The effectiveness of a CQ algorithm was quantified by the Mean
quared Error (MSE) measure given by

SE(𝐼, 𝐼) = 1
𝐻𝑊

𝐻
∑

𝑟=1

𝑊
∑

𝑐=1

‖

‖

𝐼(𝑟, 𝑐) − 𝐼(𝑟, 𝑐)‖
‖

2
2 , (4)

where 𝐼 and 𝐼 respectively denote the 𝐻 × 𝑊 original input and
quantized output images. MSE represents the average color distortion
with respect to 𝓁2

2 .
As mentioned in Section 2.2, when a center 𝐜𝑘 is split, the left child

inherits its parent’s attributes (i.e., 𝐜2𝑘+1 = 𝐜𝑘), while the right child
becomes a slightly perturbed version of its parent (i.e., 𝐜2𝑘+2 = 𝐜𝑘 + 𝜺,
where 𝜺 is an arbitrary vector of small positive 𝓁2 norm). Without loss
of generality, we assume 𝜺 = (𝜀, 𝜀, 𝜀) with 𝜀 ≥ 0.

In order to identify suitable parameter values for each k-means
variant, we test the following combinations of values:

• BKM (no additional user-defined parameters)
• IBKM (𝜀 ∈ {0.255,1.02,4.08,16.32})
• OKM (𝑝 ∈ {0.5,0.75,1})
• IOKM (𝜀 ∈ {0,0.255,1.02,4.08,16.32} and 𝑝 ∈ {0.5,0.75,1})

Recall that 𝜀 = 0 is disallowed for IBKM, as explained in Section 2.4.
7

Table 2 gives the raw MSE results for IBKM. In order to facilitate
comparisons among the different 𝜀 values, we give the MSE ranks for
each image and 𝐾 value combination in Table 3. In this table, lower
ranks indicate better 𝜀 values, with ranks of 1 and 4 corresponding to
the best and worst 𝜀 values, respectively. For example, for Baboon and
𝐾 = 32, the parameter values that generate the lowest and highest
distortion (as measured by the MSE) are 𝜀 = 0.255 and 𝜀 = 4.08, respec-
ively. Similarly, Tables 4 and 5 give respectively the raw and rank MSE
esults for OKM. Finally, Tables 6 and 7 give the raw MSE results for
OKM for the first and second half of the images, respectively; whereas,
ables 8 and 9 give the rank MSE results corresponding to Tables 6
nd 7, respectively. In order to aggregate the rank information given
n Tables 3, 5, 8, and 9, for each algorithm, we give the mean rank
ttained by each parameter value combination in Table 10.

Let us now analyze the parameter sensitivities of IBKM, OKM, and
OKM:

• IBKM: Table 2 shows that IBKM is somewhat insensitive to the
value of 𝜀. In other words, for a given image and 𝐾 value combi-
nation, the algorithm attains more or less the same MSE regardless
of the 𝜀 value. Nevertheless, Table 10 shows that 𝜀 = 0.255 and
𝜀 = 16.32 generally give the best and worst results, respectively.

• OKM: Tables 4 and 5 clearly show that 𝑝 = 0.5 and 𝑝 = 1
consistently give the best and worst results, respectively. As men-
tioned in Section 2.3, the disappointing performance of 𝑝 = 1 (i.e.,
MacQueen’s original choice) can be attributed to the fact that
this value causes the learning rate to decay too rapidly. These
observations are consistent with those reported in our earlier
work (Thompson et al., 2020).

• IOKM: Analysis of Tables 6 and 7 (or their respective rank coun-
terparts Tables 8 and 9) is a bit more difficult because of the
large (15) number of parameter value combinations. Neverthe-
less, Table 10 clearly shows that for a given 𝜀 value, the mean
MSE rank monotonically increases with increasing 𝑝 values, which
is consistent with our analysis of OKM. On the other hand, for
a given 𝑝 value, the mean MSE rank generally increases with
increasing 𝜀 values. Hence, smaller 𝜀 and 𝑝 values are generally
preferable, with (𝜀, 𝑝) = (0,0.5) being the best combination.

Based on the above analyses, we set the parameters for the four
k-means variants as follows: BKM (no additional user-defined param-
eters), IBKM (𝜀 = 0.255), OKM (𝑝 = 0.5), and IOKM (𝜀 = 0 and
𝑝 = 0.5).

3.2. Comparison against other CQ algorithms

The proposed IOKM algorithm and the other k-means variants (i.e.,
KM, IBKM, and OKM) were compared to 13 well-known CQ algo-
ithms, namely popularity (POP) (Heckbert, 1982), median-cut (MC)
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Fig. 2. Baboon output images (𝐾 = 32).

(Heckbert, 1982), modified popularity (MPOP) (Braudaway, 1987),
octree (OCT) (Gervautz & Purgathofer, 1988), variance-based algo-
rithm (WAN) (Wan et al., 1990), greedy orthogonal bipartitioning
(WU) (Wu, 1991), center-cut (CC) (Joy & Xiang, 1993), self-organizing
map (SOM) (Dekker, 1994), radius-weighted mean-cut (RWM) (Yang &
Lin, 1996), modified maximin (MMM) (Xiang, 1997), split and merge
8

Fig. 3. Baboon error images (𝐾 = 32).

(SAM) (Brun & Mokhtari, 2000), variance-cut (VC) (Celebi et al., 2015),
and variance-cut with Lloyd iterations (VCL) (Celebi et al., 2015).

Among these SOM, MMM, VCL, BKM, IBKM, OKM, and IOKM are
partitional algorithms, whereas the remaining ones are hierarchical
algorithms. Brief descriptions of these algorithms (except IBKM, OKM,
and IOKM, which are described in this paper) can be found in our
previous work (Celebi, 2009, 2011; Celebi et al., 2014, 2015).

Table 11 compares the effectiveness of the CQ algorithms quantified
by the MSE measure, with the lowest/best values shown in bold.
Table 12, on the other hand, compares the efficiency of the four
k-means-based CQ algorithms on three of the test images: Baboon,
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Fig. 4. Peppers output images (𝐾 = 64).

Lenna, and Peppers. These images were chosen as they have iden-
tical dimensions (512 × 512), while the other images have varying
dimensions. The efficiency of a CQ algorithm was measured by CPU
time in milliseconds (averaged over 10 independent runs). Each of the
remaining CQ algorithms was excluded from the efficiency comparisons
for one of two reasons: (1) The algorithm is a hierarchical one that
trades effectiveness for efficiency, or (2) The algorithm is a partitional
one that is neither effective nor efficient (compared to the four k-means
variants). All algorithms were implemented in C/C++, and executed on
a 1.8 GHz Intel Core i7-8665U CPU. The following observations are in
order:

• As expected, the partitional algorithms are generally more effec-
tive, than the hierarchical ones.

• In general, VC is the most effective hierarchical algorithm.
• Overall, IBKM is the most effective algorithm as it often attains

the best MSE, with IOKM usually attaining the second best MSE.
IBKM often gives a slightly lower MSE than IOKM, but this comes
at a very high computational cost (IBKM is 42 to 385 times slower
than IOKM.) The superiority of IOKM can be attributed to the
online nature of IOKM and its built-in initialization scheme.

• OKM is more efficient than IOKM for 𝐾 < 128. At 𝐾 = 128, the
two algorithms are almost equally efficient. For 𝐾 > 128, IOKM
is more efficient than OKM.

• Compared to OKM, IOKM does not require an explicit initializa-
tion and attains better MSE values, in general. On average, the
two algorithms have about the same efficiency.
9

Fig. 5. Peppers error images (𝐾 = 64).

• The execution time of BKM varies widely among the three im-
ages Baboon, Lenna, and Peppers (all of which have the same
number of pixels) for a given 𝐾 value, as shown in Table 12.
For example, for 𝐾 = 64, clustering Baboon with BKM took
approximately 14.5 s, while using the same algorithm to cluster
Peppers took approximately 6.5 s. On the other hand, for 𝐾 =
128, clustering Baboon with BKM took approximately 27.5 s,
while clustering Peppers took longer, with an approximate time
of 34s. The execution time of IBKM is also similarly unpredictable
across the images. In contrast to these batch algorithms, the
online algorithms exhibit a very steady trend. In other words, for
any given 𝐾 value, OKM and IOKM take nearly constant time for
each image.

Figs. 2, 4, and 6 show sample quantization results for close-up
sections of the Baboon, Peppers, and Pills images, respectively. Figs. 3,
5, and 7 show the full-scale error images for the respective images.
Given a pair of original and quantized images, the error image was
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Fig. 6. Pills output images (𝐾 = 128).

obtained by amplifying the pixelwise normalized 𝓁2 differences by a
factor of four and then negating them for better visualization. It can
be seen that the proposed IOKM algorithm performs remarkably well,
resulting in clean images with low distortion. Combined with the MSE
figures given in Table 11, these error images demonstrate that the
proposed algorithm and IBKM produce very similar results.

4. Conclusions and future work

In this paper, an effective, efficient, and deterministic color quanti-
zation algorithm called incremental online k-means was introduced. Our
algorithm is based on MacQueen’s online k-means algorithm, but unlike
that algorithm and many other partitional clustering algorithms, ours
10
Fig. 7. Pills error images (𝐾 = 128).

does not require an explicit center initialization. In addition, unlike
MacQueen’s algorithm, ours is deterministic thanks to its quasirandom
sampling scheme. This means that one needs to run our algorithm only
once to obtain high-quality results. The performance of the proposed
algorithm was examined on a diverse set of public test images and
compared to those of conventional as well as state-of-the-art color
quantization algorithms. The results showed that our algorithm is
competitive with the best algorithm (incremental batch k-means) in
terms of effectiveness, while being one to two orders of magnitude
faster. Our algorithm is easy to implement4 and very efficient (requiring
about a third of a second to quantize a 512 × 512 image to 256
colors). It is also easy to use, requiring no user-defined parameters other
than 𝐾 (the number of output colors). Apart from the quasirandom
sampling part, which is introduced to achieve determinism, nothing in
the proposed algorithm makes it specific to image data. For example,
hierarchical color quantization algorithms are often optimized heavily
for integer arithmetic and use lookup tables to accelerate various
operations (Celebi et al., 2015). By contrast, our algorithm does not
exploit the discrete nature of the 24-bit pixel data in any way. This
means that, just like the other three k-means variants investigated in
this paper, the proposed algorithm can be used to partition any given
numerical data set into a predefined number of clusters.

4 The source code of the proposed algorithm and the other three k-means
variants are available at https://github.com/AmberAbernathy.

https://github.com/AmberAbernathy


Expert Systems With Applications 207 (2022) 117927A. Abernathy and M.E. Celebi

g
t
m
a
s

Table 11
MSE comparison of the CQ algorithms.

Algo 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna

POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3
MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3
MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8
OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6
WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7
WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4
CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2
RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2
SAM 464.9 293.9 188.8 119.8 198.5 120.1 74.0 48.5 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4
VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9
VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6
SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9
MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5
BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3
IBKM 372.6 234.0 149.2 95.3 138.1 84.6 51.2 31.8 143.1 84.0 52.1 33.7 117.5 71.7 45.4 29.6
OKM 375.7 235.2 152.2 97.7 144.5 93.1 59.0 35.9 144.1 84.3 52.8 35.5 131.3 75.1 47.5 31.1
IOKM 376.2 237.7 153.7 98.3 141.8 85.6 52.9 33.0 143.5 83.6 52.5 34.2 118.0 72.1 46.3 30.6

Algo 𝐾 𝐾 𝐾 𝐾

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Motocross Parrots Peppers Pills

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3
MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4
MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1
OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9
WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7
WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0
CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4
RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6
SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7
VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2
VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8
SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0
MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6
BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0
IBKM 187.9 107.8 62.3 37.0 235.0 127.7 72.4 42.3 228.9 131.8 82.7 53.1 202.4 111.7 65.5 40.1
OKM 197.3 116.4 72.4 44.9 241.0 128.5 75.4 45.0 260.8 148.9 89.3 57.3 200.1 112.7 66.9 42.0
IOKM 191.5 108.1 62.9 37.9 241.8 127.1 73.4 42.7 230.3 134.0 83.7 54.5 199.1 112.4 66.6 41.1
Table 12
CPU time (in ms.) comparison of the CQ algorithms.

Algorithm 𝐾

32 64 128 256

Baboon

BKM 4432 14450 27452 39083
IBKM 5573 16674 73407 126005
OKM 89 139 220 409
IOKM 132 175 232 328

Lenna

BKM 4529 9690 27149 33139
IBKM 5787 14229 37642 72996
OKM 90 140 226 401
IOKM 129 172 230 332

Peppers

BKM 2744 6525 34149 30483
IBKM 5610 16215 45464 91373
OKM 92 137 228 403
IOKM 123 169 230 324

Future work includes exploring the applicability of the proposed al-
orithm to higher-dimensional clustering problems. It should be noted
hat making our algorithm deterministic in a high-dimensional space
ay be non-trivial, as it is more difficult to cover such a space using
low-discrepancy quasirandom sequence. Therefore, pseudorandom
11

ampling may be unavoidable in high dimensions.
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