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Abstract: A new computer-aided diagnosis (CAD) system for detecting malignant melanoma from dermoscopy images based
on a fixed grid wavelet network (FGWN) is proposed. This novel approach is unique in at least three ways: (i) the FGWN is a
fixed WN which does not require gradient-type algorithms for its construction, (ii) the construction of FGWN is based on a new
regressor selection technique: D-optimality orthogonal matching pursuit (DOOMP), and (iii) the entire CAD system relies on the
proposed FGWN. These characteristics enhance the integrity and reliability of the results obtained from different stages of
automatic melanoma diagnosis. The DOOMP algorithm optimises the network model approximation ability rapidly while
improving the model adequacy and robustness. This FGWN is then used to build a CAD system, which performs image
enhancement, segmentation, and classification. To classify the images, in the first stage, 441 features with respect to colour,
texture, and shape of each lesion are extracted. By means of feature selection, these 441 features are then reduced to 10. The
proposed CAD system achieved an accuracy of 91.82%, sensitivity of 92.61%, specificity of 91%, and area under the curve
value of 0.944 on a challenging set of 1039 dermoscopy images.

1 Introduction
The most serious type of skin cancer is malignant melanoma (MM)
which is caused by irregular development of skin pigments. This
type of cancer has increased dramatically over the past few decades
[1–3]. Diagnosis of MM, especially in the early stages of the
disease has a significant impact on its treatment [1]. There are
several approaches for diagnosing melanoma. A compelling
approach is the dermoscopy imaging (DI) method. In DI, a
dermatoscope is used to acquire images of the lesion, and then
these images are further analysed by a dermatologist. Although
dermoscopy images provide a great potential to diagnose the MM
immediately, their interpretation is quite time-consuming and
demanding on the part of specialists. The recent advancements in
computer technology have paved the way for interpreting and

analysing the dermoscopy images in a more expeditious and
effective manner [4]. Consequently, there has been a tremendous
tendency toward developing computer-aided diagnosis (CAD)
systems that takes advantage of dermoscopy images. Standard
CAD systems consist of five general stages (see Fig. 1) [5]: (i)
image acquisition, (ii) image enhancement, (iii) image
segmentation, (iv) feature extraction, and (v) lesion classification.
Numerous approaches have been developed for each of these steps.

There is an extensive body of work on the determination of MM
from dermoscopy images based on different algorithms such as:
supervised learning and maximum a posteriori estimation [5],
border and wavelet-based texture analysis [6], classical
segmentation algorithms plus k-nearest neighbour (k-NN) [7],
digital dermoscopy analyser plus artificial Multilayer Perceptron

Fig. 1  Schematic representation of the proposed method for MM diagnosis from dermoscopy images
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(MLP) [8], content-based image retrieval [9], colour mathematical
morphology-based texture descriptors [3], and texture descriptors
based on adaptive neighbourhoods [10]. This paper presents a
novel system based on wavelet network (WN) for automatic MM
diagnosis, which consists of dermoscopy images enhancement,
segmentation, and finally melanoma classification.

As stated in [11], WNs are divided into two groups: adaptive
WNs (AWNs) and fixed grid WNs (FGWNs). Owing to numerous
advantages of the FGWNs such as no need of initial parameters
and simpler calculations, they are much more suitable in many
applications [4, 11, 12].

The current study proposes an algorithm for building a specific
FGWN which is a WN with three layers, one hidden layer, d
inputs, and c outputs (a d × c FGWN). The structure of this
algorithm is specified by the following stages. First, the input data
is normalised using a linear map. Then an appropriate mother
wavelet is chosen, based on which a wavelet lattice is formed.
Wavelet lattice is a spatial arrangement of dilated and translated
version of wavelets which is applied to the inputs. The very large
dimensions of this arrangement should be reduced and effective
wavelets should be selected. All these are accomplished through
the proposed regressor selection algorithm, D-optimality
orthogonal matching pursuit (DOOMP). Once the FGWN is
constructed, the DOOMP algorithm is utilised to calculate the
network weights and to optimise the network structure. As will be
briefly discussed in Section 2, after the formation of wavelet
lattice, the WN is a linear-in-the-parameters regression, which can
then be solved using the conventional orthogonal least squares
(OLS) algorithm. Although OLS is an efficient method, the
computational cost of this technique is prohibitive. In this work, to
overcome this issue, we use OMP (also known as residual-based
selection), which gives the same results as OLS in less time [13].
Additionally, in order to optimise model adequacy and robustness,
we use a different cost function based on the D-optimality criterion
[14].

The CAD system block diagram which is proposed in this paper
consists of five general stages which are illustrated in Fig. 1. After
the dermoscopic image is acquired, if it is occluded with dark hair,
a hair removal algorithm (based on the proposed 3 × 1 FGWN) is
used. Then, in order to segment the dermoscopic images, the R, G,
and B pixel values of a dermoscopy image are considered as the
inputs of a 3 × 1 FGWN. The network structure is then determined
by means of the proposed algorithm, and finally, the output of the
network will specify the boundary of the skin lesion. After the
segmentation stage, 441 features are extracted from the lesion and
its boundary. These features characterise the colour, texture, and
the shape of the lesion. To reduce computational time and improve
classification accuracy, a feature selector is exploited. In this study,
ReliefF feature selector [15] is selected which offers satisfactory
results. The number of selected features after applying ReliefF
drops to ten. Finally, these selected features are submitted to a
10 × 1 FGWN. Classification is the final step in the diagnosis
process, wherein the extracted features are utilised to decide
whether the lesion is cancerous or normal. The proposed system is
tested on 1039 digital dermoscopy images and the evaluation
process is carried out using several metrics.

The main contributions of this paper are:

• To derive a WN approach of the MM diagnosis from
dermoscopy images, which is applied to all detection stages (i.e.
image enhancement, segmentation, and classification).

• To develop DOOMP algorithm for WN construction. The model
class in this work covers a large range of medical image
processing problems.

• To study the performance of a technique based on a single
algorithm for all diagnosis stages.

2 Fixed GWNs
Let (x = [x1, …, xd]T, y) denote the input–output variable pairs of
the network. The network output signal is the weighted sum of

multidimensional-wavelet families ψmi, ni
 (dilated and translated

versions of the mother wavelet function ψ)

y = ∑
i = 1

N
θiψmi, ni

(x) = ∑
i = 1

N
θi2

−mid /2ψ(2mix − ni) (1)

where θi denotes the connection weights from hidden layer to the
output layer, N is the number of wavelons (wavelet neurons) in the
hidden layer, and mi and ni are scale and shift parameters,
respectively. The construction and implementation procedure of the
proposed FGWN consist of two major phases: initialisation and
optimisation. These phases are described next.

2.1 Initialisation of FGWN

In the first phase, after mapping the input data to a certain range
(normalisation), the wavelet function, translations, and dilations of
wavelet series (1) are selected. To this end, following [4, 11, 12,
16] we use multidimensional single-scaling radial-wavelet frame as
a wavelet function. A prime example of these kinds of wavelets is
Mexican hat which is expressed as

ψmi, ni
(x) = 2−mid /2(d − ∥ 2mix − ni ∥2 )exp( ∥ 2mix − ni ∥2 /2) (2)

By applying the selected wavelet function to the input vectors, a
library of wavelets will be obtained. The number of these library
members is determined by the wavelets scale levels parameter.
Assume that the wavelet function support is [smin, smax]. It can be
shown if all the inputs of FGWN are limited to be in the interval
[xmin, xmax], by considering the minimum and maximum scale scalar
levels into the [mmin, mmax] the variation range for the shift

parameter n is 2mminxmin − smax ≤ n ≤ 2mmaxxmax − smin and the number
of d-dimensional wavelets (L) is as follows:

L = range(m) × range(n) (3)

In fact, in order to determine the wavelet library dimension, we
only need the chosen range of the dilation index [16].

2.2 Optimisation of FGWN

Suppose we have M input–output pairs. The output vector is
considered as y = [y(1)…y(M)]T. Now, we apply the L wavelets
which we obtained in the previous phase to the M model samples
and gather the results in a matrix form as follows:

W =

ψmmin, nmin
(x(1)) ⋯ ψmmin, nmax

(x(1)) ⋯ ψmmax, nmax
(x(1))

⋮ ⋮ ⋮ ⋮ ⋮
ψmmin, nmin

(x(M)) ⋯ ψmmin, nmax
(x(M)) ⋯ ψmmax, nmax

(x(M))

(4)

W ∈ ℝM × L is a large dimensional matrix and it is called wavelet
lattice. The WN is now a linear-in-the-parameters regression and
the output vector can then be expressed in terms of expanding the
wavelet lattice members and constructed as

y = Wθ (5)

where weight vector θL × 1 = θ1…θL
T is composed of the weights

between the wavelons of the hidden layer and output layer. The
purpose of this phase is to determine the coefficient vector θ such
that N ≤ L.

Since a frame generally provides a redundant or over-complete
basis, it is possible that some (or even many) elements of the
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wavelet lattice do not contain any sample points in their supports.
Therefore, the dimensionality of the wavelet lattice is too high.
These redundant wavelets are useless for processing the available
data, so they should be removed from the wavelet lattice and only
effective wavelets should be selected. Moreover, because the
output information is not taken into account in forming the wavelet
lattice, some of the matrix elements are also redundant.
Furthermore, in order to avoid overfitting problems that result from
an over parameterisation of the model, it is important to select a
reduced and effective subset of wavelets [16].

An efficient approach for model structure determination has
been implemented using the OLS algorithm [4, 11, 16, 17]. In this
algorithm, the regression matrix [W in (5)] is decomposed into a
product of an upper triangular matrix and a matrix with orthogonal
columns.

Since, at every stage of the OLS algorithm, all non-selected
regression matrix columns should be orthogonalised to the
previously selected ones, the computational cost of the OLS
method is very high [13]. In the case of WNs, to reduce the
computational requirements of OLS, several approaches have been
presented so far. For instance, in [16], before executing the OLS
algorithm, by selecting effective wavelets in wavelet lattice, the
dimension of the regression matrix is reduced. In addition, the
researchers have proposed a technique based on two stages of
screening for eliminating redundant wavelets in wavelet lattice in
[4, 12]. Although, this procedure has decreased the OLS
complexity significantly, because the structure of the OLS method
has not changed yet by means of modification strategies, the
applications of these approaches is restricted to low-dimensional
problems.

As mentioned earlier, the OMP algorithm gives the same results
as OLS, but the former requires less computational time than the
latter [13]. To implement this algorithm, first, similar to the first
stage of OLS algorithm, the most correlated column of the
regression matrix to the output vector is selected and is considered
as a new basis vector. Second, the output vector is perpendicular to
the new basis and defined as the residual error. Third, most similar
columns of the regression matrix to the residual error vector is
selected and orthogonalised to the selected ones. Then, the residual
error will be updated and so on. In the OMP algorithm, the residual
energy from each basis vector can be considered as the cost
function.

To optimise the WN model, taking advantage of the optimum
experimental design technique is a proper strategy [14]. In this
method, the quality of a model is assessed by a particular design

criterion. The D-optimality measure is known to be one of the most
effective among such criteria [14]. For this purpose, a logarithmic
term related to the wavelet lattice is added to the cost function of
OMP algorithm. Following [14], a subset selection procedure
based on combination of D-optimality design and OMP, which is
called DOOMP algorithm, is employed in the current study. The
algorithm is summarised in Algorithm 1 (see Fig. 2). 

The D-optimality measure in the cost function increases the
condition number of the wavelet lattice which can be desirable for
near ill-conditioned regression matrices [14]. According to Hong
and Harris [14], in Algorithm 1 (Fig. 2) the selection procedure
will terminate if the cost function J(i) ⩽ 0. This means that the
error tolerance is no longer needed for the algorithm termination.
So, the network parameters will be optimised in an automatic
manner.

3 Acquisition, enhancement, and segmentation
3.1 Database and ground truth

The dataset used in this paper includes 1039 dermoscopic true-
colour images from different parts of the body, taken under the
same imaging conditions with polarised light. All of these images
are 24 bit red, green, and blue (RGB), with a spatial resolution of
485 × 716 pixels, and are taken from patients suspected of having
melanoma. The disease was confirmed by histopathological
examination and biopsy and was diagnosed by the dermatologist.
Lesion border segmentation was performed by an experienced
team consisting of dermatologists, neuroradiologists, and
pathologists. From these 1039 images, 528 were categorised as
MMs and the remaining 511 were categorised as non-melanomas.

3.2 Enhancement of dermoscopy images

Among the 1039 dermoscopy images in our database, only 54
images (5.2%) had lesions occluded with dark thick hairs that
could cause problems in the segmentation and classification
processes. For these images we used a new two-level hair removal
procedure. In the first place, hair pixels are detected with the
proposed FGWN and then replaced by the median value of the
adjacent local non-hair pixels (in a 3 × 3 square block with the
centre of hair pixel). From all 54 images with dark hairs, 34 (about
63%) of them are randomly selected and used in the construction of
a 3 × 1 FGWN with R, G, and B matrices of an image pixels as the
network inputs. The rest of them, 20 images, are then applied for
the FGWN testing. The output layer included one node that
represented the identified attribution of the pixel: hair or non-hair.
The desired values of the output vector are considered as 1 for hair
pixels and −1 for others. By applying the proposed Algorithm 1
(Fig. 2) to this network, 10 wavelons in the hidden layer were
achieved. The derived mean squared error (MSE) over the training
and the testing sets are 0.0024 and 0.0039, respectively. Increscent
in the number of wavelons has not significant changes in the MSE.
The results of the proposed hair removal algorithm in comparison
with the well-known Dull-Razor algorithm [18] are given in
Table 1. For the implementation of the Dull-Razor algorithm, the
software provided at http://www.dermweb.com/dull_razor/ was
used. The results were evaluated using the detection accuracy
measure for hair detection part and peak signal-to-noise ratio
criteria for the hair removal algorithm. From Table 1, it can be
noted that the proposed hair removal algorithm achieves high
performance. 

Fig. 2  Algorithm 1: DOOMP subset selection
 

Table 1 Hair removal methods comparison for 20
dermoscopy images
Method DA = TP

TP + FP + FN, % PSNR = 20 log10
MAX
MSE, %

Dull-Razor 89.8 89.1
proposed
FGWN

90.3 89.2

TP: true positives, FP: false positives, and FN: false negatives. MAX is the maximum
possible pixel value of the image and MSE is the mean squared error.
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3.3 Segmentation

The authors introduced a new approach for the skin lesions
segmentation using an FGWN based on the OLS algorithm.
Preliminary results of this work were published in [4]. This paper
also took advantage of the proposed FGWN based on the DOOMP
algorithm for segmenting the boundary of the lesion accordingly.
Segmentation based on the DOOMP algorithm is faster than the
OLS method, but the accuracy of the two implementations is
identical. Therefore, for the sake of brevity, we do not report the
experimental results of this stage. For more details we refer the
readers to [4].

4 Melanoma diagnosis
4.1 Feature extraction

After the segmentation stage, features characterising colour,
texture, and shape of the lesion should be extracted. Tables 2–4
present these features along with their formulae and identifiers. 

Here, in order to describe and represent the colour of image
pixels which encompass the lesion, colour histogram, and

autocorrelogram are utilised. The extracted features of colour
histogram include the first- to fourth-order colour moments, peak,
and median. In addition, since histogram does not contain spatial
information, in this paper, the autocorrelogram has also been used.
Colour autocorrelogram characterises colour distributions of pixels
and spatial correlation of colours.

A colour correlogram (henceforth correlogram) expresses how
the spatial correlation of pairs of colours changes with distance.
Informally, a colour correlogram of an image is a vector indexed
by colour pairs, where the kth entry for (i, j) specifies the
probability of finding a pixel of colour j at a distance k from a pixel
of colour i in the image, where the colours i, j are quantised from m
quantisation levels [20]. The autocorrelogram is a subset of the
correlogram which captures spatial correlation between identical
colour levels (i.e. i = j). The computational cost of the
autocorrelogram is lower than that of the correlogram and also
since the autocorrelogram gives the occurrences of the similar
colours instead of different colours, it may be useful as a proper
feature for melanoma diagnosis. For these reasons, we take the
advantages of the autocorrelogram instead of correlogram in this

Table 2 Colour features extracted from dermoscopy images with their formulae and identifiers
Feature type Feature

name
Formula Identifier

R G B H S V L a b
colour histogram moments

Mk
h = 1

MN ∑
x = 1

N

∑
y = 1

M
( f k(x, y) − Mk

1)h
1/h

h = 1, 2, 3, 4, k = R, G, B, H, S, V, L, a, b

1, …, 4 5, …, 8 9, …, 12 13, …, 16 17, …, 20 21, …, 24 25, …, 28 29, …, 32 33, …, 36

peak pk = max
x = 1…N, y = 1…M

( f k(x, y)) 37 38 39 40 41 42 43 44 45

median mk = median
x = 1…N, y = 1…M

( f k(x, y)) 46 47 48 49 50 51 52 53 54

autocorrelogram — — 55, …, 118, 119, …, 246
f k is the pixel value in the kth colour channel. The detail of shape features formula described in [19].

Bolded identifiers indicate selected features in feature selection stage.
 

Table 3 Texture features extracted from dermoscopy images with their formulae and identifiers
Feature type Feature

name
Formula Identifier

R G B H S V L a b
texture wavelet —

El
t = 1

MN ∑
x = 1

N

∑
y = 1

M
|cDl

(t) | , t = h, v, d

El = 1
3 ∑

t
El

t, l = 1, 2

db1 247,
248

249,
250

251,
252

253,
254

255,
256

257,
258

259, 260 261,
262

263,
264

db4 265,
266

267,
268

269,
270

271,
272

273,
274

275,
276

277, 278 279,
280

281,
282

sym2 283,
284

285,
286

287,
288

289,
290

291,
292

293,
294

295, 296 297,
398

399,
300

sym8 301,
302

303,
304

305,
306

307,
308

309,
310

311,
312

313, 314 315,
316

317,
318

coif1 319,
320

321,
322

323,
324

325,
326

327,
328

329,
330

331, 332 333,
334

335,
336

coif3 337,
338

339,
340

341,
342

343,
344

345,
346

347,
348

349, 350 351,
352

353,
354

bior1.3 355,
356

357,
358

359,
360

361,
362

363,
364

365,
366

367, 368 369,
370

371,
372

bior1.5 373,
374

375,
376

377,
378

379,
380

381,
382

383,
384

385,386 387,
388

389,
390

bior3.1 391,
392

393,
394

395,
396

397,
398

399,
400

401,
402

403, 404 405,
406

407,
408

bior5.5 409,
410

411,
412

413,
414

415,
416

417,
418

419,
420

421, 422 423,
424

425,
426

GLCM energy Ene = ∑i ∑ j C(i, j)2 427

entropy Ent = − ∑i ∑ j C(i, j)logC(i, j) 428

inertia Ine = ∑i ∑ j (i − j)2C(i, j) 429

homogeneity Hom = ∑i ∑ j (C(i, j)/(1 + | i − j | )) 430

correlation Cor = (∑i ∑ j (i − μx)( j − μy)C(i, j))/(σxσy) 431

El
t is the L1-norm of horizontal, vertical, and diagonal detail coefficient and El is the average of these three norms. C is a CM.

Bolded identifiers indicate selected features in feature selection stage.
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work. For convenience, we use the L∞ norm to measure the
distance between pixels and the number of quantisation colours is
considered as m = 64. In addition, for the sake of simplicity the
proximitiy of the pixels are applied as k = 1, 2, 3. In this way,
64 × 3 = 192 colour autocorrelogram features are extracted from
available dermoscopy images and they are numbered from 55 to
246 in Table 2. Moreover, we used the popular wavelet and grey-
level co-occurrence matrix (GLCM) features to capture the texture
characteristics of the lesions. The GLCM is created from a grey-
scale dermoscopy intensity image.

As shown in Fig. 3, at each decomposition level, two-
dimensional (2D)-wavelet coefficients are divided into four sub-
blocks. The sub-block labelled cA corresponds to coefficients
representing the approximation image. For detail coefficients, the
superscripts h, v, and d stand for horizontal, vertical, and diagonal,
respectively, and the subscripts denote the decomposition level. For
computing the texture descriptor, at each decomposition level, the
L1-norm of each detail coefficient was computed. The average of
the three norms was calculated as it is shown in Table 3. As
portrayed in this table, in the present study ten common and useful
wavelets were utilised. In this way, overall 10 × 9 × 2 = 180
wavelet texture features were computed (feature number 247–426
in Table 3). In total, the number of features extracted from each
lesion was 441 (246 colour-related, 185 texture-related, and 10
shape-related features). 

4.2 Feature selection

The extracted features were considered as the inputs of a feature
selector in order to choose more effective and weakly correlated
features and also to reduce the classifier complexity. To do this, we
chose five conventional feature selectors and through a comparison
procedure the best feature selector was opted. To perform the
comparison, all the 441 features related to an independent set of
200 images (100 melanoma and 100 non-melanoma) from the
database were submitted to the k-NN classifier and the accuracy
measure was computed. In addition, the redundancy rate (RR) of
each feature selector was calculated as well.

The feature selection algorithms utilised in our work are as
follows: (i) ReliefF algorithm, which is noise-tolerant and robust to
feature interactions [15], (ii) fast correlation-based filter (FCBF)
which measures feature–class and feature–feature correlations and
provides an effective way to handle feature redundancy in feature
selection [21], (iii) Fisher score (FS) which selects features that
assign similar values to the samples from the same class and
different values to samples from different classes [22], (iv)
minimum-redundancy-maximum-relevance (mRMR) algorithm
which selects features that are mutually far away from each other,
while they still have high correlation to the classification variable
[23], and (v) chi-square which is used as a test of independence to
assess whether the class label is independent of a particular feature
[24]. The reason why k-NN classifier is applied in this section is
that this classifier is shown to be highly effective in the
classification of melanoma lesions and easy execution [7]. In
extensive experiments, K = 12 neighbours delivered the most
reliable results for several different selection strategies which are
implemented in the MATLAB software. In the classification
experiments presented in this section, the dataset of 200 lesions
was split into two distinct train and test subsets. The training data
consisted of 60% of 200 independent images and the remaining
subset served as the test set to estimate classification performances
for the selected features. The accuracy rate is obtained by running
k-NN classifier on the first z(1 ≤ z ≤ 441) highest ranked features
selected by different feature selection algorithms. Fig. 4 shows the
obtained accuracies of various feature selectors. 

Table 4 Shape features extracted from dermoscopy images with their formulae and identifiers
Feature type feature name Formula Identifier
shape border perimeter P = 0.5∑r (xr − xr − 1)2 + (yr − yr − 1)2 432

eccentricity Ec = (minor axis length)/(major axis length) 433
convexity Con = (convex perimeter)/P 434
elongation El = widthbounding box/lengthbounding box 435

sphericity Sp =Rinscribing/Rcircumscribing 436
region area A = ∑x ∑y I(x, y) 437

irregularity Ir = (π max
r

((xr − x)2 + (yr − y)2)/A) 438

compactness Com = 4πA/P2 439
solidity So = A/(convex area) 440
extent Ex = A/(bounding box area) 441

Bolded identifiers indicate selected features in feature selection stage.
 

Fig. 3  Two-level 2D-wavelet decomposition of a dermoscopy image
 

Fig. 4  Accuracy of various feature selectors for some features
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Let F be the set of selected features. The following
measurement is used for measuring RR of F [25]:

RR(F) = 1
m(m − 1) ∑

f i, f j ∈ F, i > j
ci, j (6)

where m is the number of features and ci, j is the correlation
between the two features f i and f j. The measurement assesses the
averaged correlation among all feature pairs, and a large value
indicates that many selected features are strongly correlated and
thus redundancy is expected to exist in F.

The accuracy and RR evaluation measurements are calculated
for each of five feature selectors and these are shown in Table 5. As
depicted in this table, the values of ReliefF algorithm for all the
evaluation criteria are better than the other methods; for this
reason, we adopted the ReliefF feature selector in this paper. 

As illustrated in Fig. 4, when the number of selected features is
more than ten, the accuracy rate for ReliefF feature selector does
not change very much. So it could be concluded that the best subset
of features has a cardinality of ten, which is small enough to avoid
overfitting. These ten selected features are made bolded in
Tables 2–4. These features include: median and kurtosis of the blue
channel, the probabilities of the 64th quantised colour occurrence
in RGB image (autocorrelogram), level-2 decomposition of RGB
colour space image with Symlet (sym2) wavelet, correlation,
convexity, sphericity, area, compactness, and solidity.

In Table 6, we compare the number of selected features in the
feature selection stage in terms of the type of features. For
example, if the feature selector selects 50 features out of 441
extracted features, the decomposition of these 50 selected features
will be as follows: 21 colour-related (16 histogram plus 5
autocorrelogram), 19 texture-related (14 wavelet plus 5 GLCM),
and 10 shape-related (5 border plus 5 region). The rest of the
feature numbers illustrated in Table 6 can be interpreted similarly. 

It is interesting to point out that among the ten selected features
in feature selection stage only one of them is related to wavelets.
The reason is that we have decomposed the signal on a wavelet tree
with fix structure and we have selected different wavelets such as
db1, db4, sym2 etc. for each of ten leaves. Therefore, there are ten
trees, one for each wavelet. Although the decomposed data on the
leaves of the tree are different for various wavelets, there is some
sort of similarity between ten wavelets. The decomposed data on
the relevant ten tree leaves also have some sort of correlation.
Furthermore, wavelet texture features are based on the 2D-wavelet
decomposition level of each sub-block that has important
discriminatory power, but are highly correlated [26]. Thus, they are

normally removed in feature selection stage and only the most
effective ones of them are kept.

Then, selected features are considered as the inputs of classifier
which is described in the following section.

4.3 Classification

In the final step of MM diagnosis, the feature set selected by
ReliefF algorithm is submitted to the proposed FGWN classifier.
To avoid overfitting and also reduce bias in terms of evaluating the
prediction accuracy of the developed CAD system, we used a ten-
fold cross-validation scheme [27]. To do this, the database is
divided into ten random groups with no overlap as the
configuration train and test data. For each train set, all previous
steps are applied, then ten selected features described in the
previous section are calculated from each image and considered as
FGWN inputs for building a 10 1 FGWN (formation of the wavelet
lattice, determination of the shift and scale parameters, and
calculation of the network weights). In this way, the FGWN is
formed. After that, the values of the ten features from the test set
are considered as FGWN inputs (according to the best result of
each of the ten configuration related to ten-fold cross-validation),
whereas the output of FGWN is a number (1 or −1) that
discriminates melanoma form non-melanoma in the images. In our
experiments, 18–21 wavelons in hidden layer were large enough to
achieve good results.

This algorithm is compared with four state-of-the-art techniques
that have been successfully used in many classification problems:
MLP, k-NN, AWN, and the Support Vector Machine (SVM). The
evaluation process is carried out using four metrics including
sensitivity, specificity, accuracy, and precision.

The MLP employed here is a three-layered multilayer
perceptron with ten inputs, a hidden layer, and an output. A matrix
of ten selected feature values is considered as the MLP inputs. The
MLP was trained by means of the fastest training function
available in MATLAB. Comparable results have been found for a
number of neurons ranging from 24 to 27 for our MLP. The AWN
was implemented following [28]. Comparable results have been
found for a number of wavelons ranging from 18 to 22 for our WN.

SVMs perform classification by constructing a set of N-
dimensional hyperplanes that optimally separate the given data into
classes, using the largest possible margin. Margin is the distance
between optimal hyperplane and the nearest training data points of
any class, and the larger the margin the lower the generalisation
error of the classifier [6]. An SVM classifier with a Gaussian radial
basis function kernel was implemented using MATLAB.

Table 5 Comparison of different feature selector results
Parameter Feature selector

ReliefF FCBF FS mRMR Chi-square
mean of accuracy, % 87.14 85.79 85.78 86.97 85.79
RR 78.8 82.7 80.2 80.1 81.1

 

Table 6 Decomposition of features in the feature selection stage
Feature numbers Colour Texture Shape

Histogram Autocorrelogram Wavelet GLCM Border Region
441 54 192 180 5 5 5
50 16 5 14 5 5 5
48 14 5 14 5 5 5
42 12 4 13 4 5 4
35 10 3 10 3 5 4
20 4 2 5 2 4 3
17 3 1 4 2 4 3
15 2 1 4 2 3 3
12 2 1 3 1 2 3
10 2 1 1 1 2 3
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4.4 Evaluation of results

In our experimental evaluation, we used a personal computer with
Intel(R) Core(TM)2 Duo central processing unit T9550 (2.66 GHz)
and 4 GB random access memory. All algorithms were
implemented in MATLAB 7.12.

In this paper, four criteria of standard evaluation which have
been used in a large number of related research are employed as
classification performance criteria. These criteria are presented in
Table 7. As depicted in this table, the values of our proposed
algorithm for all the evaluation measure are better than other
methods. 

Furthermore, when images with different qualities are taken (for
example, under different zooming conditions and having various
resolutions or different lightings), the inputs of the network in each
stage of detection (e.g. feature values in classification stage) may
be highly scattered. This problem is solved by the normalisation
step in the algorithm of FGWN structure formation. The details of
normalisation step are available in [4].

Since the proposed FGWN has satisfactory characteristics such
as robustness and optimal approximation, it can be used as a good
classifier in MM diagnosis. This results in the precision rate in
Table 7 to be high. The point that is a failure in classification could
be attributed to inaccurate lesion segmentation. Failure often
happens when the lesion has multiple or unclear boundaries or
when it exhibits regression (scar-like depigmentation) structures
[19]. In these cases, segmentation algorithm and the following
post-processing stage face problems and the lesion boundary may
be detected incorrectly. In this way, it is likely that some important
features are lost and classification algorithm fails.

The Receiver Operating Characteristic (ROC) curve as a metric
to quantify the performance of a classifier is plotted in Fig. 5. An
ROC diagram plots the true positive (TP) rate versus the false
positive (FP) rate for different discrimination thresholds of the
classifier. The point (0, 1) represents a perfect classification and the
diagonal line represents random performance. A convenient way of
comparing ROC curves is the area under the curve (AUC). A larger
AUC means better classification performance. In other words, the
superior classifier is located at the left uppermost while the poorer
is closest to the diagonal. The AUC measures for all the evaluated
classification algorithms are also computed and illustrated in

Fig. 5. It is evident from this figure that the presented FGWN
algorithm achieves a high value of AUC and is more
discriminating than other classifiers. Our method is quite simple
and is applicable for melanoma detection by means of a CAD
system. 

As may be recalled, in the proposed FGWN, a new construction
algorithm (DOOMP) is employed for building the WN. This
method is different from our earlier work which applied OLS
technique with two stages of screening for the formation of WN. In
comparative Table 8, the execution-time of some WN-based
method for the middle three stages of MM diagnosis is presented. 

In AWN [28], the network parameters are initialised with some
random values and then optimised through a backpropagation
procedure. Thus, such an iterative approach with tedious
calculations can increase the computational time. In FGWN [16], a
WN based on OLS algorithm is proposed. Since this WN does not
need an iterative training procedure, it has lower complexity than
AWN, but because of the OLS structure, the computational time of
this technique is high. Moreover, in our previous FGWN [4], the
network computation was reduced by adding two screening stages
before OLS execution. Nevertheless, because of OLS restrictions,
the computational time of that method is higher than that of the
FGWN proposed in this paper.

According to similarities between FGWN and SVM, we
compare their accuracies in Table 9, which includes a reduction in
the feature space dimension. Since SVM is known for coping with
large dimensionality feature spaces, it turned out that in higher
dimensions SVM gets better results than FGWN. However, in our
dataset, dimensional reduction via feature selection not only
reduced the computational time of classification, but also it
improved the performance of discrimination in terms of accuracy.
Besides, applying a technique based on a single algorithm makes
MM diagnosis become a uniform, entirely automatic, and fast
process. 

5 Conclusion
Building up on our previous work [4], and presenting a fully-
automatic pre-screening method, in this work we proposed a novel
CAD system for the diagnosis of MM to assist dermatologists. The
most important advantage of the proposed algorithm was its
uniformity and accuracy which are crucial in pathological
diagnosis. All important standard stages for detecting MM were
done through a single algorithm based on WNs. This type of WNs
instead of using gradient-type algorithms converts the network into

Table 7 Ten-fold cross-validation of classification
performance on database
Evaluation Sensitivity Specificity Accuracy Precision
formula TP

TP + FN
TN

TN + FP
TP + TN

TP + TN + FP + FN
TP

TP + FP
MLP 86.17 87.08 86.62 87.33
k-NN 88.07 87.28 87.68 87.74
AWN 90.91 89.24 90.09 89.72
SVM 92.22 90.41 91.34 90.86
FGWN 92.61 91.00 91.82 91.40

TP: true positives, TN: true negatives, FP: false positives, and FN: false negatives.
In each algorithm the best configuration results are shown.
 

Fig. 5  ROC curve for the classifier. For each ROC diagram, the AUC measures were also computed
 

Table 8 Computational time (seconds) comparison of some
WN-based method for triple stages of MM detection for each
image on average
Stage AWN [28] FGWN [16] FGWN [4] Proposed

FGWN
hair removal 181 102 87 63
segmentation 215 197 164 118
classification 288 242 201 185
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a linear-in-the-parameters problem, which can then be solved using
OMP plus D-optimality criterion. Uniform algorithm, simple
structure, and quick running time make this method a good option
for designing automatic skin cancer diagnosis software.
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