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Colour quantisation (CQ) is an important operation with many applications in graphics and image

processing. Most CQ methods are essentially based on data clustering algorithms one of which is

the popular k-means algorithm. Unfortunately, like many batch clustering algorithms, k-means is

highly sensitive to the selection of the initial cluster centres. In this paper, we adapt Uchiyama and

Arbib’s competitive learning algorithm to the CQ problem. In contrast to the batch k-means

algorithm, this online clustering algorithm does not require cluster centre initialisation.

Experiments on a diverse set of publicly available images demonstrate that the presented

method outperforms some of the most popular quantisers in the literature.
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Introduction
True-colour images typically contain thousands of
colours, which makes their display, storage, transmission,
and processing problematic. For this reason, CQ is
commonly used as a pre-processing step for various
graphics and image processing tasks. In the past, CQ was
a necessity due to the limitations of the display hardware,
which could not handle over 16 million possible colours in
24-bit images. Although 24-bit display hardware has
become more common, CQ still maintains its practical
value.1 Modern applications of CQ in graphics and
image processing include: compression,2 segmentation,3

text localisation/detection,4 colour–texture analysis,5

watermarking,6 non-photorealistic rendering,7 and
content-based retrieval.8

The process of CQ is mainly comprised of two phases:
palette design (the selection of a small set of colours that
represents the original image colours) and pixel mapping
(the assignment of each input pixel to one of the palette
colours). The primary objective is to reduce the number
of unique colours, N9, in an image to K (K%N ’) with
minimal distortion. In most applications, 24-bit pixels in
the original image are reduced to 8 bits or fewer. Since
natural images often contain a large number of colours,
faithful representation of these images with a limited size
palette is a difficult problem.

CQ methods can be broadly classified into two
categories:9 image-independent methods that deter-
mine a universal (fixed) palette without regard to any
specific image,10,11 and image-dependent methods that

determine a custom (adaptive) palette based on the
colour distribution of the images. Despite being very
fast, image-independent methods usually give poor
results since they do not take into account the image
contents. Therefore, most of the studies in the literature
consider only image-dependent methods, which strive to
achieve a better balance between computational effi-
ciency and visual quality of the quantisation output.

Numerous image-dependent CQ methods have been
developed over the past three decades. These can be
categorised into two families: pre-clustering methods
and post-clustering methods.1 Pre-clustering methods
are mostly based on the statistical analysis of the colour
distribution of the images. Divisive pre-clustering meth-
ods start with a single cluster that contains all N9 image
colours. This initial cluster is recursively subdivided until
K clusters are obtained. Well-known divisive methods
include median-cut,12 octree,13 variance-based method,14

binary splitting,15 greedy orthogonal bipartitioning,16

centre-cut,17 and rwm-cut.18 More recent methods can be
found elsewhere.19–23 On the other hand, agglomerative
pre-clustering methods24–28 start with N9 singleton
clusters each of which contains one image colour. These
clusters are repeatedly merged until K clusters remain. In
contrast to pre-clustering methods that compute the
palette only once, post-clustering methods first deter-
mine an initial palette and then improve it iterative-
ly. Essentially, any data clustering method can be
used for this purpose. Since these methods involve
iterative or stochastic optimisation, they can obtain
higher quality results when compared to pre-clustering
methods at the expense of increased computational
time. Clustering algorithms adapted to CQ include
maxmin,29,30 k-means,31–35 k-harmonic means,36 compe-
titive learning,37,38 fuzzy c-means,39–45 rough c-means,46

BIRCH,47 and self-organising maps.48–53

In this paper, we adapt Uchiyama and Arbib’s
adaptive distributing units (ADU) algorithm54 to the
CQ problem. The rest of the paper is organised as
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follows. The section on ‘BATCH VS ONLINE
CLUSTERING ALGORITHMS’ describes the conven-
tional batch k-means and ADU algorithms. The section
on ‘EXPERIMENTAL RESULTS AND DISCUS-
SION’ presents the experimental setup and compares
the proposed method to other CQ methods. Finally, the
section on ‘CONCLUSION’ gives the conclusions.

Batch vs online clustering algorithms

Batch k-means algorithm
Given a data setX~ x1,x2, . . . ,xNf g[RD, hard partitional
algorithms divide X into K exhaustive and mutually
exclusive clusters S~ S1,S2, . . . ,Skf g,

SK
k~1 Sk~X ,

Si\Sj~1 for 1ƒi=jƒK. These algorithms usually
generate clusters by optimising a criterion function. The
most intuitive and frequently used criterion function is
the sum of squared error (SSE) given by

SSE~
XK

k~1

X
xi[Sk

xi{ckk k2
2 (1)

where E:E2 denotes the Euclidean (L2) norm and
ci~1= Sij j

P
xj[Si

xj is the centroid of cluster Si whose

cardinality is Sij j.
The number of ways in which a set of N objects can be

partitioned into K non-empty groups is given by Stirling
numbers of the second kind

N

K

� �
~

1

K !

XK

i~0

({1)K{i K

i

� �
iN (2)

which can be approximated by KN=K!. It can be seen
that a complete enumeration of all possible clusterings
to determine the global minimum of (1) is clearly
computationally prohibitive except for very small data
sets. In fact, this non-convex optimisation problem is
proven to be NP-hard even for K52 (Ref. 55) or D52
(Ref. 56). Consequently, various heuristics have been
developed to provide approximate solutions to this
problem.57 Among these heuristics, Lloyd’s algorithm,58

often referred to as the batch k-means algorithm, is the
simplest and most commonly used one. This algorithm
starts with K arbitrary centres, typically chosen uni-
formly at random from the data points. Each point is
assigned to the nearest centre and then each centre is
recalculated as the mean of all points assigned to it.
These two steps are repeated until a predefined
termination criterion is met. The pseudocode for this
procedure is given in Algorithm (1) (bold symbols denote
vectors). Here m[i] denotes the membership of point xi,
i.e. index of the cluster centre that is nearest to xi

Algorithm 1: batch k-means algorithm

input X~ x1,x2, . . . ,xNf g[RD

(N6D input data set)
output C~ c1,c2, . . . ,cKf g[RD (K cluster centres)
Select a random subset C of X as the initial set of
cluster centres
while termination criterion is not met do

for (i~1; iƒN; i~iz1) do
Assign xi to the nearest cluster;
m½i�~ argmin

k[ 1,2,...,Kf g
xi{ckk k2

end
Recalculate the cluster centres;

for (k~1; kƒK ; k~kz1) do

Cluster Sk contains the set of points xi that
are nearest to the centre ck

Sk~ xi m½i�~kjf g
Calculate the new centre ck as the mean of

points that belong to Sk

ck~
1

Skj j
P

xi[Sk

xi

end

end

From a CQ perspective the batch k-means algorithm
has two main drawbacks. First, due to its batch nature,
i.e. cluster centres are updated after the presentation of
all input vectors, the algorithm might get stuck in a local
minimum. Second, the algorithm is highly sensitive to
the selection of the initial cluster centres.59 Adverse
effects of improper initialisation include empty clusters
(dead units), slower convergence, and a higher chance of
getting stuck in bad local minima.35

Adaptive distributing units (ADU) algorithm
The ADU algorithm is an online clustering algorithm
based on the competitive learning paradigm, which is
closely related to neural networks.60 According to
Rumelhart and Zipser,61 a competitive learning scheme
consists of the following three basic components:

1. Start with a set of units that are all the same except
for some randomly distributed parameter, which
makes each of them respond slightly differently to a
set of input patterns.

2. Limit the ‘strength’ of each unit.

3. Allow the units to compete in some way for the right
to respond to a given subset of inputs.

The pseudocode for the ADU algorithm is given in
Algorithm (2). Here, at any given time, n and wc[i]
denote the number of units (clusters) determined so far
and the number of times that the i-th unit, represented
by ci, won the competition in the past, respectively. The
algorithm parameters h, tmax, and c denote the
maximum number of times a particular unit can win,
maximum number of iterations, and the learning rate,
respectively. The procedure starts with a single unit
whose centre, c1, is given by the centroid of the data set
X . In each iteration, an input vector x is randomly
selected from X and the unit that is nearest to x with
respect to Euclidean distance is declared as the winner.
This unit is then updated by moving its centre closer to x
and incrementing its win count. New units are added by
splitting existing units that reach the threshold number
of wins, h, until the number of units reaches K. This
splitting rule prevents certain units from monopolising
the input vectors and thus effectively avoids the dead
unit problem. When a new unit is generated by splitting
an existing unit, the two units are temporarily colocated.
Whenever an input vector that is nearest to these two
units is presented, one of them becomes the winner and
gets updated, while the other one remains unchanged.
Hence, the problem of two units moving together cannot
occur. Following,54 the algorithm parameters were set to
h~400K1=2, tmax~(2K{3)h, and c50?015.

Algorithm 2: adaptive distributing units algorithm

input X~ x1,x2, . . . ,xNf g[RD (N6D input data
set)

output C~ c1,c2, . . . ,cKf g[RD (K cluster centres)
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The first unit is given by the centroid of the input
vectors
n51

cn~1=N
PN

i~1 xi

Initialise the win counts to 0;
for (i~1; iƒK ; i~iz1) do

wc½i�~0;
end
for (t~1; tƒtmax; t~tz1) do

Select an input vector x randomly from X
Determine the winner (nearest) unit;
winner~ argmin

k[ 1,2,...,nf g
x{ckk k2

Update the winner and its win count;
cwinner~cwinnerzc x{cwinnerð Þ;
wc½winner�~wc½winner�z1;
Split the unit if its win count exceeds the

threshold;
if wc½winner�~h and n,K then

n5nz1
cn5cwinner;
wc[n]5wc[winner]50;

end
end

Due to their online formulation, i.e. cluster centres are
updated after the presentation of each input vector,
clustering algorithms based on the competitive learning
paradigm are generally more adaptive and thus more
likely to escape local minima when compared to batch
algorithms. The online nature of such clustering algo-
rithms, however, presents two drawbacks. First, these
algorithms are order-dependent, that is, different pre-
sentation orders of the data vectors induce different
partitions. Second, random selection of the input vectors
renders these algorithms nondeterministic, i.e. each run

could potentially generate different clustering results.
We avoid these problems by substituting the pseudo-
random sampling scheme used in the ADU algorithm
with quasi-random sampling. More specifically, we
sample the image data by means of a quasi-random
Sobol’ sequence.62 A quasi-random sequence is a
sequence of D-tuples that fill RD more uniformly than
uncorrelated pseudo-random points.63 This is illustrated
in Fig. 1. Here the top row shows three pseudo-random
sequences with increasing length from left to right
generated by the MT19937 variant of the celebrated
Mersenne Twister algorithm,64 whereas the bottom row
shows the corresponding quasi-random sequences gen-
erated by a Sobol’ sequence. It can be seen that the
pseudo-random sequences exhibit clumping, leading to
rather uneven coverage of the sampled area,65 whereas
the quasi-random sequences result in a significantly
more uniform point distribution. It should be noted
that, despite their name, quasi-random sequences are in
fact completely deterministic. This means that the
proposed sampling scheme selects exactly the same set
of pixels in each run. Since the theory and implemen-
tation of Sobol’ sequences is mathematically in-
volved, the interested reader is referred to the relevant
literature62,63,65 for further information.

Experimental results and discussion

Image set and performance criteria
The proposed method was tested on a set of eight true-
colour (24-bit) test images commonly used in the
quantisation literature: Baboon (USC-SIPI Image
Database, 5126512, 230427 colours), Flowers & Sill
(Kodak Lossless True Colour Image Suite, 7686512,
37552 colours), Hats (Kodak Lossless True Colour
Image Suite, 7686512, 34871 colours), Lenna (USC-
SIPI Image Database, 5126512, 148279 colours),

(a) (b) (c)

(d) (e) (f)

1 Comparison of pseudo-random a, b, c and quasi-random sampling d, e, f: a random sequence (1024 pts); b random

sequence (2048 pts); c random sequence (4096 pts); d Sobol’ sequence (1024 pts); e Sobol’ sequence (2048 pts);

f Sobol’ sequence (4096 pts)
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Motocross (Kodak Lossless True Colour Image Suite,
7686512, 63558 colours), Parrots (Kodak Lossless True
Colour Image Suite, 7686512, 72079 colours), Pills
(Karel de Gendre, 8006519, 206609 colours), and
Sailboats (Kodak Lossless True Colour Image Suite,
5126768, 24106 colours). These images are shown in
Fig. 2.

The effectiveness of a quantisation method was
quantified by the mean squared error (MSE) measure

MSE X,
^
X

� �
~

1

HW

XH

h~1

XW
w~1

X(h,w){
^
X(h,w)

��� ���2

2
(3)

where X and
^
X denote respectively the H6W original

and quantised images in the RGB colour space. MSE
represents the average colour distortion with respect to

the L2
2 (squared Euclidean) norm and is the most

commonly used evaluation measure in the quantisation
literature.1

Comparison of ADU against other CQ methods
The proposed method was compared to 13 well-known
CQ methods:

N Popularity (POP):12 This method builds a 166
16616 colour histogram using 4 bits/channel uniform
quantisation and then takes the K most frequent
colours in the histogram as the colour palette.

N Median-cut (MC):12 This method starts by building a
32632632 colour histogram using uniform quanti-
sation. This histogram volume is then recursively split
into smaller boxes until K boxes are obtained. At each
step, the box that contains the greatest number of
colours is split along the longest axis at the median
point, so that the resulting subboxes each contain
approximately the same number of colours. The
centroids of the final K boxes are taken as the colour
palette.

N Modified Popularity (MPOP):66 This method starts
by building a 2R62R62R colour histogram using R
bits/channel uniform quantisation. It chooses the
most frequent colour as the first palette colour c1 and
then reduces the frequency of each colour c by a
factor of 1{ea c{c1k k2

2

� �
, where a is a user-defined

parameter. The remaining palette colours are chosen
similarly. In the experiments, best results were
obtained with the following parameter configuration:
a50?25 and R54 for K#64 and R55 otherwise.

N Octree (OCT):13 This two-phase method first builds
an octree (a tree data structure in which each internal
node has up to eight children) that represents the
colour distribution of the input image and then,
starting from the bottom of the tree, prunes the tree
by merging its nodes until K colours are obtained. In
the experiments, the tree depth was limited to 6 to
obtain the best results.

N Variance-based method (WAN):14 This method is
similar to MC with the exception that at each step
the box with the greatest SSE is split along the axis
with the least weighted sum of projected variances at
the point that minimises the marginal squared error.

N Greedy orthogonal bipartitioning (WU):16 This
method is similar to WAN with the exception that
at each step the box is split along the axis that
minimises the sum of variances on both sides.

N Centre-cut (CC):17 This method is similar to MC with
the exception that at each step the box with the
greatest range on any coordinate axis is split along its
longest axis at the mean point.

N Self-organising map (SOM):48 This method utilises a
one-dimensional self-organising map with K neurons.
A random subset of N/f pixels is used in the training
phase and the final weights of the neurons are taken
as the colour palette. In the experiments, the sampling
factor was set to f51 to obtain the best results.

N Radius-weighted mean-cut (RWM):18 This method is
similar to WAN with the exception that the box is
split along the vector from the origin to the radius-
weighted mean (rwm) at the rwm point.

N Modified maxmin (MMM):30 This method chooses
the first palette colour c1 arbitrarily from the input
image colours and the i-th colour ci (i~2,3, . . . ,K) is
chosen to be the colour that has the greatest
minimum weighted L2

2 distance (the weights for the
red, green, and blue channels are taken as 0?5, 1?0,
and 0?25, respectively) to the previously selected
colours, i.e. c1,c2, . . . ,ci{1. Each of these initial palette
colours is then recalculated as the mean of the colours
assigned to it. In the experiments, the first colour was
chosen as the centroid of the input image colours.

N Pairwise clustering (PWC):27 This method is an
adaptation of Ward’s agglomerative hierarchical
clustering method67 to CQ. It builds a 2R|2R|2R

colour histogram and constructs a Q6Q joint
quantisation error matrix, where Q is the number of
colours in the reduced colour histogram. The cluster-
ing procedure starts with Q singleton clusters each of
which contains one image colour. In each iteration,
the pair of clusters with the least joint quantisation
error are merged. This merging process is repeated
until K clusters remain.

N Split and Merge (SAM):28 This two-phase method
first partitions the colour space uniformly into B
partitions. This initial set of B clusters is represented
as an adjacency graph. In the second phase, (B2K)
merge operations are performed to obtain the final K
clusters. At each step of the second phase, the pair of
clusters with the least joint quantisation error are
merged. In the experiments, the initial number of
clusters was set to B520K to obtain the best results.

N Cheng and Yang (CY):20 This method is similar to
WAN with the exception that at each step the box is
split along a specially chosen line defined by the mean
colour and the colour that is farthest away from it at
the mean point.

Two variants of ADU were implemented: one with
pseudo-random sampling (ADU-PRS) and the other
with quasi-random sampling (ADU-QRS). We also
implemented the batch k-means (KM) algorithm with
randomly chosen initial centres. Convergence of KM
was determined by the following commonly used
criterion: SSEi{1{SSEið Þ =SSEiƒe, where SSEi denotes
the SSE (1) value at the end of the i-th iteration. The
convergence threshold was set to e50?001.

Table 1 compares the effectiveness of the CQ methods
on the test images. The best (lowest) error values are shown
in bold. Note that since ADU-PRS and KM involve
randomness, the quantisation errors for these methods are
specified in the form of mean¡standard deviation over
100 runs. The following observations are in order:

Celebi et al. Colour quantisation using distributing units algorithm

The Imaging Science Journal 2014 VOL 62 NO 2 83



2 Test images: a Baboon; b Flowers & Sill; c Hats; d Lenna; e Motocross; f Parrots; g Pills; h Sailboats
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N In general, post-clustering methods, i.e. SOM,
MMM, KM, ADU-PRS, and ADU-QRS, are sig-
nificantly more effective than the pre-clustering
methods.

N KM, ADU-PRS, and ADU-QRS are the most
effective post-clustering methods.

N Except in few cases, ADU-PRS is slightly more
effective than KM. Furthermore, as expected, ADU-
PRS is significantly less sensitive to randomness,
which is evidenced by its low standard deviation.

N In about half of the cases, ADU-QRS is more
effective than ADU-PRS, whereas in the remaining

3 Hats output images (K532): a Original; b WAN output; c MC output; d SOM output; e KM output; f ADU-PRS output; g

ADU-QRS output
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cases the two methods have similar effectiveness.
Note that the primary advantage of ADU-QRS over
KM and ADU-PRS is its deterministic formulation,
i.e. it gives exactly the same results in every run.

N POP is the least effective pre-clustering method. This is
not surprising as this method disregards colours in

sparse regions of the colour space. Interestingly, despite
being a simple modification of POP, MPOP performs
surprisingly well, surpassing some of the better known
methods such as MC, OCT, WAN, and CC.

N Despite its iterative nature, MMM performs poorly
even when compared to pre-clustering methods. This

4 Sailboats output images (K564): a Original; b WAN output; c MMM output; d OCT output; e KM output;f ADU-PRS out-

put; g ADU-QRS output
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is because MMM tries to distribute the quantisation
distortion more or less evenly throughout the image
at the expense of increased mean distortion.

Figures 3 and 4 show sample quantisation results for
close-up parts of the Hats and Sailboats images,
respectively. Figures 5 and 6 show the full-scale error
images for the respective images. The error image for a
particular quantisation method was obtained by taking
the pixelwise absolute difference between the original
and quantised images. In order to obtain a better
visualisation, pixel values of the error images were
multiplied by 4 and then negated. It can be seen that the
proposed method, ADU-QRS, performs exceptionally
well in allocating representative colours to various image
regions, resulting in cleaner error images.

Conclusions
In this paper, an effective CQ method based on the
ADU algorithm was introduced. This online clustering
algorithm is advantageous over the conventional batch
k-means clustering algorithm in that it does not require

cluster centre initialisation and that it avoids the dead
unit problem. Due to its online formulation, however,
the ADU algorithm is both order-dependent and
nondeterministic. These drawbacks were overcome using
quasi-random sampling. The proposed ADU variant
with quasi-random sampling, ADU-QRS, was shown to
give comparable or better results than the original one
based on pseudo-random sampling, ADU-PRS.

Experiments on a diverse set of classic test images
demonstrated that the proposed method outperforms
well-known CQ methods with respect to distortion
minimisation. In addition, our method is significantly
easier to implement when compared to dedicated CQ
methods.
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5 Hats error images (K532): a WAN error; b MC error; c SOM error; d KM error; e ADU-PRS error; f ADU-QRS error
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6 Sailboats error images (K564): a WAN error; b MMM error; c OCT error; d KM error; e ADU-PRS error; f ADU-QRS

error
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