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Background: Computer vision may aid in melanoma detection.
Objective:We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists
using dermoscopic images.
Methods: We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50
melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset
(n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and
machine learning) to combine individual automated predictions into ‘‘fusion’’ algorithms. In a companion
study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.
Results: The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82%
sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but
lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic
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area of the top fusion algorithm was greater than the mean receiver operating characteristic area of
dermatologists (0.86 vs. 0.71, P = .001).
Limitations: The dataset lacked the full spectrum of skin lesions encountered in clinical
practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or
lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical
practice.
Conclusion: Deep learning computer vision systems classified melanoma dermoscopy images with
accuracy that exceeded some but not all dermatologists. ( J Am Acad Dermatol 2018;78:270-7.)

Keywords: computer algorithm; computer vision; dermatologist; International Skin Imaging Collaboration;
International Symposium on Biomedical Imaging; machine learning; melanoma; reader study; skin cancer.
CAPSULE SUMMARY

d Computer vision has shown promise in
medical diagnosis.

d A machine learning fusion algorithm
using predictions from 16 algorithms
exceeded the performance of most
dermatologists in the classification of
100 dermoscopic images of melanomas
and nevi.

d These results should not be extrapolated
to clinical practice until validation in
prospective studies.
The early diagnosis ofmel-
anoma remains challenging.1

Estimates of the sensitivity of
dermatologists for melanoma
in reader studies were 70%
for the Nevisense trial2 and
78% for the MelaFind trial.3 In
addition, because nonphysi-
cians detect the majority of
melanomas4 and because
population-based melanoma
screening by clinicians is not
recommended in the United
States,5 there is not only in-
terest in the development of
automated image analysis al-

gorithms to help dermatologists classify dermoscopic
images, but also to aid laypersons or nondermatology
physicians in melanoma detection.6-13 To date, the
lack of a large, public dataset of skin images has
limited the ability to directly compare the diagnostic
performance of competing automated image analysis
approaches against clinicians.

To address this limitation, the International Skin
Imaging Collaboration (ISIC) Melanoma Project
created an open-access archive of dermoscopic
images of skin lesions for education and research.14

We describe the melanoma classification results from
a challenge conducted by the ISIC Archive15 at the
2016 International Symposium on Biomedical
Imaging (ISBI) involving 25 competing teams.16 We
further performed a companion reader study with 8
experienced dermatologists on a subset of images;
these results served as a reference comparator to the
automated algorithm approaches.
MATERIALS AND METHODS
Institutional review board approval

Institutional review board approval was obtained
at Memorial Sloan Kettering and the study
was conducted in accordance
with theHelsinki Declaration.
ISBI 2016 melanoma
detection challenge
dataset

Details of the challenge
tasks, evaluation criteria,
timeline, and participation
have been previously des-
cribed.15,17,18 In December
2015, 1552 lesions were cho-
sen from ;12,000 dermo-
scopic images in the ISIC
Archive; after excluding 273
for inadequate image quality,
1279 lesions (248 [19.3%] melanomas and 1031
[80.7%] nevi or lentigines) were included. Images
were excluded because of poor focus or if they
included multiple lesions or lesions that
encompassed the entire field of view. The
dataset was randomly divided into training (n = 900
[19.2% melanomas]) and test (n = 379 [19.8%
melanomas]) sets. All melanomas and a majority of
the nevi/lentigines (n = 869, 84%) had been histo-
pathologically examined. Nonhistopathologically
examined nevi (n = 162) originated from a
longitudinal study of children; selection from this
dataset was biased to include lesions with the largest
diameters, and all images were reviewed by $2
dermatologists to confirm their benign nature.19

Images used in this challenge were obtained with
multiple camera/dermatoscope combinations and
originated from [12 dermatology clinics around
the world.

Twenty-five teams participated in the challenge,
all of which used deep learning, a form of machine
learning that uses multiple processing layers to
automatically identify increasingly abstract concepts
present in data. Computer algorithms were ranked
using average precision, which corresponds to the



Abbreviations used:

ISBI: International Symposium on Biomedical
Imaging

ISIC: International Skin Imaging Collaboration
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integral under a precision-recall curve (which de-
picts positive predictive value [ie, the proportion of
positive results that are true positives] and sensitivity
[ie, the proportion of positive results that are
correctly identified]), and the final results and
rankings are publically available.15,18
Reader study
A reader study was performed on 50 randomly

selected melanomas (31 invasive, 19 in situ) and 50
benign neoplasms (44 nevi, 6 lentigines) from the
379 test images. Nonhistopathologically examined
benign lesions were excluded from this image set.
The median (range) Breslow depth for the invasive
melanomas was 0.70 mm (0.10-2.06 mm). Eight
experienced dermatologists from 4 countries were
invited onMay 13, 2016, and all agreed to participate.
The mean (range) number of years of (1) postresi-
dency clinical experience and (2) use of dermoscopy
among readers was 13 years (range, 3-31 years) and
13.5 years (range, 6-27 years), respectively, and all
had a primary clinical focus on skin cancer. For each
dermoscopic image, readers: (1) classified the lesion
(benign vs. malignant) and (2) indicated manage-
ment (obtaining a biopsy specimen or observation/
reassurance). Readers were blinded to diagnosis and
clinical images/metadata. There were no time re-
strictions and participants could complete evalua-
tions over multiple sittings.
Automated predictions
We report the performance of the 5 top-ranked

individual algorithms of the ISBI 2016 Challenge on
the reader set of 100 dermoscopic images. In
addition, we implemented 5 methods of fusing all
automated predictions from the 25 participating
teams in the ISBI challenge into a single prediction.
These methods included 2 nonlearned approaches
(prediction score averaging and voting) and 3 ma-
chine learning methods: greedy ensemble fusion,20

linear binary support vector machine (SVM), and
nonlinear binary SVM (histogram intersection
kernel) (Supplemental materials; available at http://
www.jaad.org).21 Test set images that were not
involved in the reader study (n = 279) were used to
train fusion methods; fusion algorithms were ranked
by average precision on the reader set of 100 images.
Statistical analysis
The primary outcomes and measures were sensi-

tivity, specificity, and area under the receiver oper-
ating characteristic (ROC) curves. Sensitivity in
classification was defined as the percentage of
melanomas that were correctly scored as malignant.
Sensitivity in management decision was defined as
the percentage of melanomas for which obtaining a
biopsy specimen was correctly indicated. Specificity
in classification was defined as the percentage of
benign lesions that were correctly scored as benign.
Specificity in management decision was defined as
the percentage of benign lesions that were correctly
indicated for observation/reassurance.

Computers submitted predictions between 0.0
and 1.0, with 0.5 used as a dichotomous threshold
in the ISBI Challenge: values #0.5 were benign and
values[0.5 to 1.0 weremalignant. For analyses here,
we considered scores closer to 0 to indicate a higher
probability of a benign diagnosis and scores closer to
1 to indicate a higher probability of malignancy.

As ground truth data provided to participants in
the ISBI 2016 challenge was restricted to classifica-
tion (benign vs. malignant) and did not include
management data (obtaining a biopsy specimen vs.
observation/reassurance), we chose classification
performance as the primary outcome. To inform
clinical practice, however, we also compared man-
agement decisions of dermatologists to computer
classification performance as an exploratory
outcome; another rationale for reporting manage-
ment decision performance was that most studies
comparing human readers to computers have used
management decision, and not classification, as the
primary outcome. Our primary comparison between
readers and computers was specificity at average
dermatologist sensitivity; the secondary comparison
between readers and computers was ROC area of the
algorithm and mean ROC area of the dermatologists.

Descriptive statistics, such as relative frequencies,
means, and standard deviationswere used to describe
the dermatologist lesion classifications and manage-
ment decisions for each evaluation. Overall percent
agreement, kappa, and intraclass correlation were
used to evaluate reader responses for lesion classifi-
cation and management. Levels of interrater agree-
ment were evaluated as percent agreement and
multirater kappa. In addition, patterns of agreement
for the dermatologist assessments were evaluated on
the lesion level, where lesions were classified as
havingunanimous agreement between readers or not.

http://www.jaad.org
http://www.jaad.org


Table I. Reader results

Reader no.

Classification Management

Sensitivity Specificity ROC area Sensitivity Specificity ROC area

1 68% 72% 0.70 72% 68% 0.70
2 68% 66% 0.67 86% 40% 0.63
3 98% 54% 0.76 100% 38% 0.69
4 86% 62% 0.74 88% 56% 0.72
5 88% 34% 0.61 90% 30% 0.60
6 74% 68% 0.71 76% 66% 0.71
7 82% 58% 0.70 100% 32% 0.66
8 92% 60% 0.76 96% 48% 0.72
Average 82% 59% 0.71 89% 47% 0.68

ROC, Receiver operating characteristic.

Table II. Results of the International Symposium on Biomedical Imaging Challenge top 5 individual algorithms
and fusion algorithms on the reader study dataset on 100 images evaluated by dermatologists

Algorithm Sensitivity Specificity

Specificity at

82% sensitivity

Specificity at

89% sensitivity

ROC1 at

82% sensitivity*

ROC1 at

89% sensitivity* ROC2y
Average

precisionz

Rank 1 52% 92% 0.62 0.38 0.72 0.64 0.79 0.84
Rank 2 60% 80% 0.56 0.40 0.69 0.65 0.80 0.83
Rank 3 36% 96% 0.48 0.34 0.65 0.62 0.79 0.81
Rank 4 68% 84% 0.50 0.38 0.66 0.64 0.80 0.83
Rank 5 26% 100% 0.60 0.52 0.71 0.71 0.81 0.84
Average fusion 46% 92% 0.78 0.66 0.80 0.78 0.86 0.86
Voting fusion 56% 90% 0.82 0.60 0.82 0.75 0.86 0.86
Greedy fusion 58% 92% 0.76 0.64 0.79 0.77 0.86 0.87
Linear SVM fusion 66% 86% 0.68 0.42 0.75 0.66 0.82 0.85
Nonlinear SVM fusion 70% 88% 0.68 0.34 0.75 0.62 0.82 0.86

ROC, Receiver operating characteristic; SVM, support vector machine.

*Based on dichotomizing data for response.
yBased on using continuous probability generated from algorithm.
zIntegral under a precision-recall curve (or positive predictive valueesensitivity curve).
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Levels of classification and management accuracy
were calculated for each individual reader and for the
readers as a group. To describe the study sample, and
to provide comparisons between measures of diag-
nostic performance between readers and algorithms,
2-sample tests for proportions along with chi-square
tests were used. In addition, regression models for
binary outcomes using a general estimating equa-
tions approach with a log link and an exchangeable
correlation structure were used. In these models,
readers were considered a covariate, allowing for
between-reader comparisons of accuracy and strati-
fied analyses. The exchangeable correlation structure
was used to adjust the standard error estimates for the
potential of clustered observations within readers. In
addition, ROC curves were estimated for the individ-
ual readers and for the readers as a group.
Comparisons of area under the ROC curves were
performed to assess differences in reader perfor-
mance and tomake comparisons between the reader
and algorithm performance. For dichotomous pre-
dictions, area under ROC curves is equivalent to the
average of sensitivity and specificity. Alpha level was
set at 5% and all presented P values are 2-sided. All
analyses were performed with Stata SE software
(version 14.1; Stata Corp, College Station, TX).

RESULTS
Diagnostic accuracy of dermatologists for
melanoma

The average (min-max) sensitivity and specificity
of the 8 readers for lesion classification (ie, benign vs.
malignant) was 82% (68-98%) and 59% (34-72%),
respectively (Table I). This corresponded to an
average (min-max) ROC area of 0.71 (0.61-0.76).
The average (min-max) sensitivity for melanoma in
situ and invasive melanoma was 68.4% (53-95%) and
89.1% (75-100%), respectively. Data describing
levels of agreement among dermatologists are
included in the Supplementary materials.
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Diagnostic accuracy of computer algorithms
Performance of automated systems on the 100

images evaluated by the dermatologists is shown in
Table II. Ranked on average precision, greedy fusion
was the top performing fusion algorithm (selected 16
algorithms for fusion from the 25 total). While
nonlearning methods performed similarly, more
complex SVM models demonstrated a slight reduc-
tion in performance. The relearned probabilistic
SVM thresholds increased sensitivity of the corre-
sponding systems considerably. Fig 1 shows the
mean probability score for the top 5 algorithms and
the best performing fusion algorithm by diagnosis.
Comparison of diagnostic accuracy of
dermatologists to computers

The ROC area of the best fusion computer algo-
rithm (greedy fusion) was 0.86, which was signifi-
cantly greater than the mean ROC area of 0.71 of the 8
readers in classification (P = .001). Using the derma-
tologist mean sensitivity value for classification (82%)
as the operating point on the computer algorithm
ROC curves (Figs 2,A and B), the top fusion algorithm
specificity was 76%, which was higher than the
average dermatologist specificity of 59% (P = .02)
and the top-ranked individual algorithm specificity of
62% (P = .13). Using the dermatologist mean sensi-
tivity value for management (89%) as the operating
point on the computer algorithm ROC curves, the
fusion algorithm specificity was 64%, which was
higher than the average dermatologist specificity of
47% (P = .02) and the top-ranked individual algorithm
specificity of 38% (P = .009). At this cut-off threshold,
there was no difference between the average derma-
tologist specificity and the top-ranked individual
algorithm (47% vs. 38%, P = .22).

DISCUSSION
We compared the melanoma diagnostic perfor-

mance of computer algorithms from an international
challenge to the average performance of 8 experi-
enced dermatologists using 100 dermoscopic images
of pigmented lesions. We found that individual
computer algorithms have comparable diagnostic
accuracy to dermatologists; at 82% sensitivity,
average reader specificity was similar to the top
computer algorithm. Fusion techniques significantly
improved computer performance; at 82% sensitivity,
the top-ranked fusion algorithm had higher average
specificity than dermatologists. In our exploratory
analysis using arguably the most clinically relevant
sensitivity value, the dermatologists’ mean sensitivity
in management decision (89%), dermatologists had
specificity similar to the top algorithm, but lower
than the top fusion algorithm approach. It is worth
noting that some dermatologists had higher diag-
nostic performance than all individual and fusion
algorithms in classification or management.

There has been considerable interest in devel-
oping computer vision systems for melanoma diag-
nosis, but few groups have directly compared
computer algorithms to human performance. In
2017, Esteva et al22 trained a deep learning convo-
lution neural network on 129,450 images of 2032
different diseases and reported dermatologist-level
classification of skin cancer. In the corresponding
reader studies using clinical images (33 melanomas
and 97 nevi) and dermoscopy images (71 mela-
nomas, 40 benign), the convolution neural network
had a ROC area of 0.94 and 0.91, respectively, which
was superior to dermatologists.22 In 2015, Ferris et al8

compared the diagnostic accuracy of a computer
classifier to 30 dermatology health care providers on
a dataset of 65 lesions (25 melanomas, 32 nevi, 4
lentigines, and 4 seborrheic keratoses); the computer
algorithm had a sensitivity of 96% and specificity of
42.5%, and the human readersdincluding dermatol-
ogists, dermatology residents, and physician assis-
tantsdhad amean sensitivity of 70.8% and specificity
of 58.7%. In 2005, Menzies et al11 reported on the
performance of SolarScan and included a reader
study of 78 lesions (13 melanomas, 63 nevi, and 2
lentigines). The computer classifier had a sensitivity
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Fig 2. Diagnostic accuracy of algorithms and dermatologists for melanoma on the 100-image
dataset. Receiver operating characteristic curves demonstrating sensitivity and specificity for
melanoma of (A) top 5 ranked individual algorithms and (B) 5 fusion algorithms, with
melanoma classification and management performance of 8 dermatologists indicated by small
colored solid circles and triangles, respectively. Small colored solid circles and triangles of the
same color indicate the performance of an individual dermatologist. The large transparent
circle and triangle with black outline indicate the average diagnostic performance of
dermatologists in classification and management, respectively.
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of 85% and specificity of 65%; this compared to a
mean sensitivity and specificity of 79.5% and 50.8%
for the 13 human readers. Differences in study design
make comparisons of our computer algorithm results
to these data challenging, highlighting the impor-
tance of creating open datasets like ours.

Compared to previous investigations, there are
novel aspects to our study: (1) we comparedmultiple
computer classifiers from around the world and an
aggregated model of their performance to dermatol-
ogists, increasing the likelihood that the computer-
vision results reflect the current state-of-the-art; (2)
our dataset originated from[12 dermatology clinics,
possibly increasing the generalizability of our find-
ings; (3) the readers originated from 4 countries,
which may have improved the generalizability of our
dermatologists’ results; and (4) our dataset is public,
permitting external and independent analysis and
use as a future reference dataset by developers of
diagnostic tools.

Our results should be interpreted with caution. A
significant limitation is that our dataset did not
sufficiently include: (1) the complete spectrum of
skin lesions encountered in clinical practice that can
mimic melanoma, including pigmented seborrheic
keratoses; (2) less common presentations of mela-
noma, such as amelanotic, nodular, or desmoplastic
types that are challenging to identify; (3) lesions from
all anatomic sites, skin types, genetic backgrounds,
and age ranges; and (4) a sufficiently representative
group of benign lesions from which biopsy speci-
mens would not typically be obtained or histopath-
ologic examination conducted. It can reasonably be
inferred that [99.9% of all benign skin lesions are
routinely correctly classified by dermatologists (eg,
nevi, angiomas, seborrheic keratoses, and lenti-
gines), and therefore results obtained using our
study design cannot be extrapolated to clinical
practice. Our study setting was artificial because
computer algorithms and readers did not have access
to clinical data that might have improved diagnostic
performance (eg, age, lesion history/symptoms,
etc).23 It has also been shown that the real-world
performance of a computer-based system for mela-
noma in the hands of nonexperts is lower than that
expected from experimental data; diagnostic accu-
racy depends on the ability of users to identify
appropriate lesions for analysis.24 Finally, partici-
pants of the ISBI 2016 melanoma challenge were
instructed that computer algorithms would be
ranked using average precision, a metric that does
not target a clinically relevant sensitivity or specificity
threshold; therefore, the algorithms were not opti-
mized for comparison to dermatologist diagnostic
performance.

Our results underscore the value of public chal-
lenges conducted in open-access image resources
like the ISIC archive. This platform permits compar-
ison of the performance of individual algorithms, as
well as the type of fusion experiments presented
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here. Larger and more diverse collections of public,
clinically validated images are needed to advance the
field of computerized lesion classification, educa-
tion, and clinical decision support. A bigger 2017
ISIC challenge represents a further step in this
direction.25 In addition to providing a larger and
more diversified set of images, including seborrheic
keratoses, the current challenge tailors the perfor-
mance metrics for comparison to the current state of
clinical diagnosis.

In conclusion, in this artificial study setting
without integration of clinical history, state-of-the-
art computer vision systems are comparable to
dermatologist diagnostic accuracy for melanoma
dermoscopy images and, when using fusion algo-
rithms, can exceed dermatologist performance in
classification of some but not all dermatologists.
Although these results are preliminary and should
be viewed with caution, development and compar-
ison of deep learning methods on larger, more
varied datasets is likely to accelerate the potential
use and adoption of computer vision for melanoma
detection. Strategies for including common skin
lesions from which biopsy specimens are not
typically obtained in these datasets are critical for
optimizing the generalizability of computer vision
algorithms.
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SUPPLEMENTARY MATERIALS
Methods

Greedy ensemble fusion is a supervised machine
learning method that can calculate weighted or
unweighted averages of multiple predictors to maxi-
mize a defined metric of performance. A binary SVM
is a supervised machine learning technique that
calculates a ‘‘hyperplane’’ (a multi-dimensional
boundary) to separate a dataset according to sup-
plied binary labels. The dataset is represented in a
multi-dimensional feature space. The output of the
SVM is a classification score, which is a signed
distance from the hyperplane designating class
membership. In comparison to greedy ensemble
selection, an SVM is a more complex model,
providing opportunity to better fit intricate patterns
in data, but at risk to potentially fitting noise in the
data.

For score averaging, all algorithm prediction
scores on individual images are averaged into a
single prediction for that image, with no prior
filtering or selection of models. For voting, all
algorithm predictions are first dichotomized to
values of 0 or 1, using 0.5 as a threshold, and then
subsequently averaged for each image. For greedy
ensemble fusion, a selection process is employed:
algorithm predictions are sorted according to per-
formance, in terms of average precision. An iterative
process ensures, whereby for each iteration n, the
top n performing algorithm predictions are aver-
aged, and the performance of the average is
recorded. The iteration that yields the best overall
performance determines which algorithm predic-
tions are selected to be averaged into a single
prediction score. For SVMs, feature vectors were
created using all participant predictions (sigmoid
normalized). A C value of 1 was employed, and
thresholds were re-learned according to a probabi-
listic approach.17

Results
Agreement among dermatologists. The over-

all kappa for classification andmanagement was 0.53
and 0.47, respectively. Of the 100 lesions, readers
were 100% concordant (8/8 agreement) in disease
classification of 44 lesions; 26 (59%) were true-
positives, 13 (30%) were true-negatives, and 5
(11%) were false-positives. Readers were discordant
in diagnosis of 56 lesions, of which 32 were benign
and 24 malignant. Regarding the proportion of
readers whose disease classification agreed with
the reference-standard diagnosis (i.e., histopatholo-
gy), 8/8 (100%) agreed with the reference-standard
diagnosis on 39 lesions, 7/8 (87.5%) on 15 lesions, 6/
8 (75%) on 10 lesions, 5/8 (62.5%) on 3 lesions, 4/8
(50%) on 8 lesions, 3/8 (37.5%) on 8 lesions, 2/8
(25%) on 5 lesions, 1/8 (12.5%) on 7 lesions, and 0/8
(0%) on 5 lesions.
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