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Abstract—Melanoma is one of the deadliest types of skin
cancer with increasing incidence. The most definitive diag-
nosis method is the histopathological examination of the
tissue sample. In this paper, a melanoma detection algo-
rithm is proposed based on decision-level fusion and a
Hidden Markov Model (HMM), whose parameters are op-
timized using Expectation Maximization (EM) and asym-
metric analysis. The texture heterogeneity of the samples
is determined using asymmetric analysis. A fusion-based
HMM classifier trained using EM is introduced. For this
purpose, a novel texture feature is extracted based on two
local binary patterns, namely local difference pattern (LDP)
and statistical histogram features of the microscopic im-
age. Extensive experiments demonstrate that the proposed
melanoma detection algorithm yields a total error of less
than 0.04%.

Index Terms—Melanoma, Local Binary Pattern, Hidden
Markov Model-based EM, Decision-level fusion.

I. INTRODUCTION

SKIN MELANOMA is considered to be the most aggressive
type of skin cancer, given its rising occurrence and mortality

in recent decades [1]. Skin is the largest organ, consisting of
two main layers. The upper layer near the surface of the skin is
called “epidermis,” while the layer under the epidermis near the
skin’s fat tissue is called “dermis.” The epidermis consists of
melanin-producing cells known as melanocytes, which remain
in the epidermis under normal conditions. The movement of
melanocytes to lower layers of the skin indicates a nevus or
melanoma [2].
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Histopathological examination is the most definitive tech-
nique to distinguish between nevi and melanomas. To diagnose
melanoma, pathologists investigate numerous features such as
mitosis, melanocyte locations, nucleus size, and morphology [3].
The distance between the epidermis and the deepest melanocytes
permeated into the dermis determines the disease’s Breslow
depth [4]. Investigating microscopic images is time-consuming.
Furthermore, the multiplicity of features, Breslow staging, and
incomplete biopsies make the process more challenging [5].
Individual experience dependency and disagreement among
pathologists on some samples are the main reasons for using
CAD systems to classify microscopic images [6]–[9]. Numerous
studies evaluate microscopic images to assist in melanoma diag-
nosis [10]–[22]. These studies can be generally divided into two
major groups: (1) those aiming to detect cells or identify regions
of interest in microscopic images [10]–[13], and (2) those aiming
to distinguish between nevi and melanomas.

The halo around the melanocytes is used in most studies to
distinguish melanocytes from other keratinocytes [13]–[15]. The
algorithms in the first group of studies contain two main steps.
All cells in the image are identified, and then melanocytes are
recognized from the detected nucleus. In [10], a bank of general-
ized Laplacian of Gaussian kernels is proposed for detecting all
cells in the image. In addition, adaptive thresholding [12], mean-
shift [12], and multi-pass adaptive voting are applied to detect all
cells in the image[16]. In these studies, special gradient intensity
and shape information [10], radial line scanning [13], template
matching [12], special descriptor [11], and multi-scale radial
line scanning [13] are proposed to differentiate melanocytes
from other keratinocytes, based on the halo region. In the second
group of studies, various methods are proposed for pathologists
to distinguish between nevi and melanomas [15]–[22]. Most of
these methods include three main steps: segmentation, feature
extraction, and classification. For example, Otsu’s thresholding
method and k-means are proposed for epidermis segmentation
[14], [15], [17].

Feature extraction is the most crucial component of a
melanoma detection algorithm [14], [15]. Histograms [17], Gray
Level Co-occurrence Matrix (GLCM) [15], [17], morphological
operation [14], [15], color features [18], [19] and statistical
parameters [14], [15] are used to extract features from pathology
images. In the current literature, various methods are proposed
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Fig. 1. Block diagram of the proposed melanoma detection (SMTD-
LDP-HMM) approach.

to distinguish between nevi and melanomas. These include clas-
sification and regression trees (CART) [17], minimum distance,
and support vector machine (SVM) [14], [15]. Deep learning
techniques have also been used. For instance, in [20], a Fully
Convolutional Network is proposed for melanoma detection. In
[21], an epidermis segmentation technique is proposed based
on a Convolutional Neural Network (CNN). CNNs are utilized
for comparison of deep learning with the classification results
for randomly cropped images, with the ground truth determined
by 11 practicing histopathologists [22]. Finally, a sparse Con-
volutional Autoencoder is proposed for nucleus detection in
histopathology tissue images in [23]. It should be noted that
deep learning is also used for automatic nuclei segmentation in
microscopic images of various organs [24]–[26]. For example,
in [24], [26], the authors propose a convolutional neural net-
work for nuclei segmentation. Despite their promising results in
recent studies, however, deep learning techniques require large
amounts of data to achieve sufficient accuracy [27].

The abovementioned studies mainly aim to detect
melanocytes or classify images into normal and abnormal
groups. However, tumor location determination in microscopic
images is also vital in Breslow staging and choosing an
appropriate treatment. For this purpose, we propose a melanoma
detection algorithm based on decision level fusion using a
Hidden Markov Model (HMM). In the proposed algorithm,
called skin melanoma tumor detection using local difference
pattern (LDP) and HMM (SMTD-LDP-HMM(, microscopic
images are examined based on blocks or sub-images,
and novel texture features are defined based on the local
binary pattern (LBP) descriptor. For each sub-image, the
probability of malignancy is computed based on the extracted
features and using an HMM approach that is trained by
expectation maximization (EM). Finally, cancerous blocks and,
consequently, melanoma tumor locations are determined.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the proposed skin melanoma tumor detection
(SMTD-LDP-HMM), providing details about feature extraction,
primitive decision, and decision-level fusion-based classifica-
tion using HMM. The experimental results are presented in
Section 3. Finally, Section 4 concludes the paper.

II. THE PROPOSED MELANOMA DETECTION ALGORITHM

Fig. 1 shows the block diagram of the proposed SMTD-
LDP-HMM. As the microscopic images are too large, each
image is divided into several sub-images. This increases both

Fig. 2. Microscopic images, (a) Melanoma case, (b) Normal case.

classification accuracy and processing speed. These sub-images
have the same size: 600× 1, 300 pixels. Since the full sizes of
the microscopic images vary, different numbers of sub-images
are extracted from each microscopic image. All sub-images that
exist in each microscopic image are extracted and often chosen
without overlaps. The proposed LDP-based texture features,
as well as some statistical features, are extracted from each
sub-image. The other parts of the proposed SMTD-LDP-HMM
algorithm involve asymmetric analysis to identify homogeneous
textures as well as an EM-based HMM to categorize images
based on fusion.

Microscopic images of a melanoma biopsy and a healthy skin
sample are shown in Fig. 2(a) and Fig. 2(b), respectively. The
increase in pigmentation, mitosis, and cell size create heteroge-
neous images. Pigmentation is seen as brown spots, and black
points are mitosis or large nuclei. Our proposed approach utilizes
graylevel microscopic images. Thus, all images are converted to
graylevel using the Rec. 709 formula [28]:

gray scale = 0.21R+ 0.71G+ 0.07B (1)

where R, G, and B represent the values of the red, green, and
blue bands of the input color image, respectively.

A. Feature Extraction

Feature extraction is the most important component of CAD
systems. By extracting numerous features from a microscopic
image, we aim to identify characteristics such as mitosis, large
nuclei, nuclear-cytoplasmic ratio, and nuclei count. For extract-
ing these characteristics, which may indicate the presence of a
tumor, two different types of features are extracted, as described
below.

1) Textural Features: Texture feature extraction from mi-
croscopic images has proven to be effective for classification
purposes [14], [15], [17]. The present study uses three effective
techniques to extract texture features from microscopic images.
Additionally, some modifications are proposed to improve the
performance of these tools, as discussed in detail below.

� Local graylevel difference pattern (LDP)
Introduced in 2002 by Ojala et al. [30], the LBP is a popular

texture descriptor. A specific neighborhood is considered for
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Fig. 3. Extracted features based on the proposed LDP.

each pixel, and the center pixel is specified as the index in
each neighborhood in the LBP operator. Based on the following
equation, a binary pattern is obtained from each neighborhood.

LBPP,R =

P−1∑
p=0

s (gp − gc) 2
p s (x) =

{
0, x < 0
1, x ≥ 0

(2)

where gc is the graylevel of the central pixel, gpis the graylevel
of one of its neighbors, P is the number of neighbors, R is
the neighborhood radius, and s(.) is the standard binary output
function [31].

In texture classification, LBP spectrum histograms are used
for training a classifier and then classifying textures. However,
the LBP model in equation 2 is not rotation-invariant, and its
spectrum is also high-dimensional. Direct use of LBP does not
usually yield a good texture classification performance. Hence,
researchers have been working to improve LBP for texture
classification [31]–[33]. For instance, in [31], using median
sampling, four descriptors are used to encode a pixel (central
gradient, radial gradient, magnitude gradient, and tangent gra-
dient) to generate the initial gradient LBP pattern.

In this study, we introduce a novel method based on the LBP,
which is more effective on microscopic images than the original
LBP formulation. A novel method with a special focus on image
edge and graylevel variations is proposed for extracting texture
features from microscopic images. High-frequency features or
image edges exist in normal as well as cancerous microscopic
images. Therefore, the graylevel differences in neighbor pixels
should be explored more rigorously. The edges in normal images
only have slight gray level differences whereas in the cancerous
cases, the edges often exhibit significant gray level changes. In
the primary LBP descriptor, if a pixel in a neighborhood exceeds
its index (even by a margin of 1), the corresponding binary
number of that pixel will be 1 (as shown in Fig. 4). However,
this approach is not effective for extracting texture features from
microscopic images because the differences in the graylevels of
the pixels in a neighborhood are not determined with sufficient
accuracy.

Therefore, in our proposed algorithm, we consider the differ-
ence of each pixel relative to the central pixel in a neighborhood.
As such, a local graylevel difference pattern (LDP) is extracted
from each neighborhood, as opposed to an LBP.

Fig. 3 shows the extracted features based on the proposed
LDP. As shown, the sub-image is first partitioned into 3× 3
non-overlapping blocks. Let B1,1 to Bn,m represent the blocks
in a sub-image. The LDP is then computed for each block as
shown in Fig. 4. Two local features, namely LDPe (edge LDP)
and LDPc (color LDP), are extracted from the LDP of each
block. Some global features such as histogram of the LDPc
(HLDPc), histogram of the LDPe (HLDPe), LDPcavg (average
of LDPcs), LDPeavg (avrage of LDPes), and MLDPe (most
frequent LDPe) are defined based on the LDP of all blocks in
the sub-image (see Fig. 3). Each block has to go through two
steps to determine the values of LDP1,1 to LDP3,3. The LDP
is determined for each block of the sub-image, as follow, (3)
shown at bottom of next page.

In Fig. 4, we introduce our eight categories and illustrate how
to determine the LDP for each block in two steps. The measure-
ment differences are divided into eight categories covering the
graylevel range of 0 to 256. As shown, the absolute value of the
difference between each pixel and the central pixel is placed in
a new matrix. Each new pixel is then assigned to the smallest
category whose value exceeds the pixel’s graylevel. For instance,
pixel 50 in the new matrix belongs to category 6, since it is the
first category with a value greater than 50. Likewise, pixel 25
corresponds to category 5 because 32 is the first number that is
greater than 25. After determining the LDP values, we can now
compute the LDPc and LDPe.

As stated in Eq. (4), the maximum difference between the
LDP values in a block is called the local graylevel difference
pattern-edge (LDPe). The LDPe extracts high-frequency image
information in each block. As shown in Fig. 4, the maximum
and minimum values of the LDP in that block are 6 and 1,
respectively. Therefore, based on Eq. (4), the LDPe for this block
equals 5.

Low-frequency image information in each block, on the other
hand, is extracted based on the local graylevel difference pattern-
color (LDPc). The LDPc value is determined based on the LDP
value and the eight categories introduced earlier. As shown in
Fig. 4, the LDP1,1 is 3, thus the corresponding LDPc is 8. The
LDPe and LDPc are computed for each block of the sub-image
as follows:

LDPe = MAX (LDP )−MIN (LDP ) (4)

LDPc =
∑
i,j

2LDP i,j (5)

where i, j represent the indices of the eight LDPs shown in
Fig. 3. Thus, the LDPe and LDPc are computed for each block of
the sub-image. The values of the LDPe and LDPc can range from
0 to 7 and 16 to 2048, respectively. After determining the LDPe
and LDPc, the histograms of these two features are computed.
In this study, the LDPc and LDPe histograms are abbreviated
as the HLDPc and HLDPe, respectively. The number of HLDPe
bins is 8, as the range of the LDPe is 0 to 7. LDPc values range
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Fig. 4. Illustration of the LDPe and LDPc computations.

from 16 to 2048. To construct the HLDPc, we divide the whole
range of LDPc values into 254 bins (from 1 to 254), where each
bin includes successive values of LDPc. For example, bin “1”
includes the LDPc values between 16 to 23. LDPc between 24
and 31 are counted and shown in the second HLDPc element
(bin “2”). In the same manner, intervals of 8 are considered so
that the histogram range can be mapped to the range of 1 to
254. Therefore, the HLDPc has 254 bins. Based on the HLDPe
and HLDPc, we propose two effective texture features. The
LDPeavg is computed based on the HLDPe using the following
equation, which shows the average of LDPe for each sub-image,
numerically:

LDPeavg =
7∑

k=0

HLDPe (k) · k (6)

where k = 0, 1, 2, . . . , 7 represents the index of an HLDPe bin
in the sub-image. TheLDPcavg , on the other hand, is computed
in each sub-image using the following equation:

LDPc avg =

254∑
l=1

HLDPc (l) . (l) (7)

where l is the the index of an HLDPc bin in the sub-image. The
MLDPe is formulated to detect the most frequent LDPe in each
sub-image. MLDpe is defined based on the histogram peak of
LDPe, that is, the most frequent element of the HLDPe:

MLDPe = argmaxk (HLDPe) (8)

where k is the index of an HLDPe bin, as before.
� Tamura and GLCM as texture features

The GLCM is a tabulation of the different combinations
of pixel brightness values occurring in an image. It is a two-
dimensional array representing second-order statistics based on
neighboring pixels [34]. GLCM considers the specific position
of a pixel relative to the other pixels. This 8× 8 matrix is
constructed at a distance of d = 1 for various directions given as
0◦, 45◦, 90◦, 180◦. Contrast, Correlation, Entropy, Energy, and
Homogeneity are the five features related to the GLCM matrix
in this paper [35]. As the pixels of the normal sub-image are

similar to each other, and the same is true for the pixels in the
cancer sub-image, correlation is high in both normal and cancer
sub-images. As shown in algorithm 1, Contrast and correlation
are merged, and G1 is the result of the feature-based fusion of
these two textural features.

As described in Algorithm 1 (ContCorr Merge), if the contrast
is less than t1, the image is normal; if the contrast exceeds t2,
the image is classified as cancerous regardless of the amount
of correlation. If the contrast value of an image falls between t1
and t2, it is necessary to check the correlation value. In this case,
if the correlation is smaller than the T threshold, the image is
normal, otherwise the image is cancerous. t1, t2 and T are three
thresholds determined using the training database. Thus, contrast
and correlation are applied to each image simultaneously in order
to minimize correlation errors. Therefore, G1, G2, and G3 are the
three features based on GLCM, of which G2 and G3 represent
homogeneity and energy, respectively.

Tamura [36] proposed six textural features and gave de-
scriptions common over all the texture patterns in Brodatz’s
photographic images. These texture features include Coarse-
ness, Contrast, Directionality, Line-Likeness, Regularity, and
Roughness.

Coarseness is an effective feature for the purpose of the
present study. Coarseness called T is the last texture feature.
Coarseness is related to the distance in graylevels of spatial
variations, which is implicitly related to the size of the prim-
itive elements forming the texture. It directly depends on scale
and repetition rates, and most fundamental texture features.
An image contains repeated texture patterns at different scales.
Coarseness aims to identify the largest size of repeated texture
patterns [37].

At each pixel, p(x, y), six averages are computed for the win-
dows of size k = 0, 1, 2, . . . , 5 around the pixel, as displayed
in Fig. 5(a). Then, the absolute difference is determined for each
pixel at each scale, i.e., Ek(x, y), as shown in Fig. 5(b) and the
following equations:

Ek,a (P ) =
∣∣A1

k −A2
k

∣∣ (9)

Ek,b (P ) =
∣∣A3

k −A4
k

∣∣ (10)

LDP = [LDP1,1, LDP1,2, LDP1,3, LDP2,1, LDP2,3, LDP3,1, LDP3,2, LDP3,3] (3)
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Fig. 5. Coarseness computation, (a) different window size, (b) E(x,y)
computation between non- overlapping pairs on opposite sides.

Algorithm 1: ContCorr Merge (contrast, correlation, T,
t1,t2).

1: initialize status← θ.
2: if contrast <t1
3: status←“normal”
4: end if
5: if t1 <contrast<t2
6: if correlation<T
7: Status←“normal”
8: else
9: Status←“melanoma”

10: end if
11: end if
12: if contrast ≥t2,
13: Status←“melanoma”
14: end if
15: return Status.

The window with size k that maximizes Ek(x, y) in either
direction is identified such that it determines the largest variation
between k existing scales for each pixel. The best pixel window
size, which produces the largest variation in each scale (k), is
S(best) , which equals 2k. Finally, coarseness is computed by
averaging S(best) over the entire image.

2) Statistical Features: Nuclear-cytoplasmic ratio (NC), nu-
cleus size, and cytoplasm volume are significant features inves-
tigated in pathology science for disease detection. Pathologists
check these features at multiple magnifications to determine
nucleus size and NC. However, we extracted the above features
from microscopic images with a single magnification. As men-
tioned earlier, microscopic images are divided into sub-images
in order to maximize classification accuracy. Nucleus size, NC,
and cytoplasm volume are determined in each sub-image. The
nucleus becomes larger and darker during mitosis and cell divi-
sion [8]. A normal cell nucleus is very small and insignificant
[36]. Therefore, prominent mitosis feature showing cancer in
pathological images is darker than the small and pale nucleus in
normal cells. Increasing nucleus size or mitosis will maximize
NC ratio. Various studies [24], [25], [37], focus on nucleus
segmentation in pathology images. However, in this paper, we
propose the use of graylevel features and histogram statistical

moments to detect nucleus size, NC, and mitosis presence in
each sub-image.

The nucleus and cytoplasm pixels are counted separately in
each sub-image. To determine graylevel features, the cytoplasm
and nucleus areas are identified in training samples with the
help of an expert. The nuclei colors of the training images are
identified and the range of color changes was used as a color
feature to detect the nuclei. Therefore, the pixels of each sub-
image whose graylevel was below 55 were counted in order to
determine the number of nuclei and the presence of mitoses. The
presence of mitoses enlarges the nucleus, resulting in an increase
in the number of dark pixels in the image. Furthermore, the
presence of pigments in melanoma images leads to an increase
in the number of dark pixels in these images. Moreover, the
numerical range of 200 to 255 is identified based on cytoplasm
color in the training images. Thus, to determine the amount of
cytoplasm in each sub-image, pixels with a graylevel exceeding
200 were counted. The NC criterion is calculated by dividing
the number of dark pixels with a graylevel of less than 55 by the
number of pixels in the sub-image with a graylevel of more than
200. Thus, the NC ratio is computed based on the proportion of
nucleus pixels to cytoplasm pixels:

NC =
Nuc

Cyt
(11)

where Nuc and Cyt represent the number of the nucleus and
cytoplasm pixels, respectively.

In addition, histogram entropy and its peak are computed
to determine the distribution of pixels of each sub-image be-
tween the nucleus and cytoplasm. For this purpose, histogram
entropy of each sub-image is merged with its histogram peak
as feature-level fusion. Shannon entropy is computed from a
suitably normalized histogram as follows:

E =
∑
−pi log pi (12)

B. Feature-Based Primitive Decision

Using a classifier, each of the extracted features can be used
to determine whether the images are cancerous or normal. How-
ever, this decision is not reliable as it is made using only one fea-
ture of the image. Each feature is evaluated before entering the
classification stage, using a simple classifier, as well as training
samples. Our Decision-level, Fusion-based classification merges
all the features and makes the best decision for each sub-image,
as described in the next section. As such, a primitive linear
decision boundary is determined for each feature, called (Ti),
where i is the number corresponding to each feature. Initially,
sub-images are divided into testing and training datasets to
select a primitive linear decision boundary for each feature. The
success and error rates of each feature in the training dataset are
specified using primitive linear boundary classification. There-
fore, the number of normal samples predicted as normal (TN),
the number of samples wrongly detected as cancerous (FP), the
number of cancer cases diagnosed as cancerous (TP), and the
number of cancerous cases incorrectly detected as normal (FN)
are determined by each feature and its corresponding primitive
boundary (Ti). Each extracted feature from the sub-image is
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compared to its corresponding primitive decision boundary, and
each feature represents a normal or cancerous decision for that
sub-image based on its primitive decision boundary. Next, this
feature vector, all of whose elements can be normal, cancerous,
or a combination of normal and cancerous, is ready for fusion and
classification, based on our Decision-level Fusion-based HMM
Classification.

C. Decision-Level Fusion-Based Classification Using
HMM

Pathologists investigate heterogeneous portions of a sample
with higher accuracy because heterogeneity and asymmetry in
a sample texture increase malignancy probability. Hence, an
HMM approach is proposed, which considers both homogeneity
and similarity between each sub-image and their neighborhoods,
and the features extracted from each sub-image. In [38], an
HMM-based approach is proposed for Decision-level Fusion-
based classification with a simpler scenario. While in this study,
a more comprehensive and modified version, called DFC-EM, is
proposed to perform Decision-level Fusion-based classification
(DFC), using an HMM trained using EM.

HMM is defined by state probabilities, transition probabili-
ties, emission probabilities (Bh and Bm matrices), and initial
probabilities [39]. In our model, transition and emission proba-
bilities are trained based on asymmetric analysis and expectation
maximization, respectively, while transition probabilities in [38]
are kept constant, and the emission probabilities are not trained.
Thus, the advantages of DFC_EM over simple HMM are as
follows:

� Sub-images are compared to their neighborhoods based
on asymmetric analysis, and the transition matrix is devel-
oped for each sub-image. Thus, homogeneous segments
are identified for each microscopic image, while the tran-
sition matrix in [38] was ineffective in HMM classifier.

� By training the elements of Bh and Bm using the EM
approach, it is possible to identify more effective features,
which will have a higher impact on the outcome of the
proposed DFC-EM. However, this was not considered
in [38], and all features contributed equally in the final
decision, as evident in the random forest method.

The N states of the model and the M observation symbols
per state are defined by s = {s1, s2, . . . , sN} and V =
{v1, v2, . . . , vM} , respectively. If the observations are continu-
ous, M is infinite. The state transition probability distribution is
A = {aij} , where aij are defined as follows:

aij = p { qt+1 = j| qt = i} , 1 ≤ i, j ≤ N (13)

where qt, denotes the current state and aij represent the prob-
ability that the state is sj at time t+ 1, assuming that at time
t, the state is si. The structure of this stochastic matrix defines
the connection structure of the model. Transition probabilities
should satisfy the normalization constraints:

aij ≥ 0, 1 ≤ i, j ≤ N,

N∑
j = 1

aij = 1, 1 ≤ i ≤ N (14)

Fig. 6. The proposed DFC-EM model.

The observation symbol probability distribution in each state
is shown by B = {bj(k)} , where bj(k) is the probability that
the symbol vk is emitted in the state sj . The proposed DFC-EM
model consists of two normal and melanoma states, as well as a
number of observations, whose count equals that of the extracted
features from the image. Thus, i, which describes the number
of features, is set to 10 in this study. Our proposed DFC-EM
model is shown in Fig.6. The next step involves determining the
relevant parameters.

1) Asymmetric Analysis-Based Transition Matrix: As men-
tioned earlier, asymmetric analysis is used to determine the
transition matrix elements. Each training sample consists of 5
or more sub-images, each of which is compared to its neighbor-
hood using asymmetric analysis. Features of each sub-image
are compared to the corresponding features extracted from the
neighboring sub-image. The similarity of adjacent sub-image
features is determined based on different similarity measures.
While a11 and a22 indicate the number of similar features in
each neighboring sub-image, a12 and a21show the number of
dissimilar features in matrix A. Therefore, the diagonal elements
of matrix A determine homogeneity, and the remaining elements
show heterogeneity.

A =

[
a11 a12
a21 a22

]
(15)

Therefore, inhomogeneous segments of each microscopic
image are identified using the transition matrix. Inhomogeneous
segments of each sample are identified in this step, while com-
pletely homogeneous samples without any changes or marking
will move forward to the next classifier step. The next HMM
classifier determines whether these marking segments are can-
cerous or normal. For instance, a melanoma sample consists of
normal and cancerous sub-images. The location of the tumor
can be approximated using matrix A based on the heterogeneity
and asymmetry of these sub-images.

2) Expectation Maximization-Based Emission Matrix: The
main stage of the proposed DFC is based on emission prob-
ability matrices. A total of 10 extracted features are possible
observations in the proposed DFC-EM. As shown in Fig. 6, there
are two types of observations in the proposed DFC-EM model
called main and hidden observations. Therefore, two emission
probability matrices are introduced. The main observations are
greater than their corresponding primitive decision boundaries,
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Fig. 7. Estimation of the HMM parameters using EM.

but hidden observations are less than or equal to their corre-
sponding primitive decision boundaries. In training images in
[38], the emission probability matrices are set based on the
numbers of FN, FP, TP, TN, for each feature.

In this paper, Expectation-Maximization (EM) algorithm is
used to learn and determine the parameters of the probability
matrices. The EM algorithm is an iterative method to compute
the maximum-likelihood estimates for model parameters when
the examined data are incomplete, have missing data points,
or include unobserved latent variables. EM works by choosing
an initial guess for the model parameters in order to create a
probability distribution. This is sometimes called the “E-Step”
for the “Expected” distribution. In the maximization step (M-
step), complete data generated after the expectation (E) step are
used to update the parameters. These E- and M-steps are repeated
until convergence.

As previously mentioned, the observation symbol probability
distribution in each state is in matrix B of HMM, known as the
emission probabilities matrix. There are two types of observa-
tions in our proposed HMM and Bh and Bm are introduced as
emission probabilities matrices. The Bh and Bm matrices used
in [38] for the final decision are used here as the initial guess
in our EM-based HMM. As stated, emission probabilities in Bh

andBm matrices are obtained based on the effectiveness of each
feature in the training samples based on the proposed HMM-EM.
Fig. 7 displays the iteration of different steps based on the EM
approach until convergence of the desired parameters.
Bh and Bm contain the emission probabilities of both states

to hidden and main observations, respectively. The first row of
these matrices represent the normal state, and the second shows
the melanoma state. They are specified as:

Bm =

[
bm11

bm21

bm12

bm22

bm13

bm23

. . .

. . .
bm1n

bm2n

]
(16)

Bh =

[
bh11
bh21

bh12
bh22

bh13
bh23

. . .

. . .
bh1n
bh2n

]
(17)

After determining the initial guess for each parameter, the
normal and cancerous probability of observations should be

computed in each iteration based on the EM algorithm. The
following equations describe the process:

P (N |O) =
P (O|N) · P (N)

P (O|N) · P (N) + P (O|C) · P (C)
,

0 ≤ P (N |O) ≤ 1 (18)

P (C|O) =
P (O|C) · P (C)

P (O|C) · P (C) + P (O|N) · P (N)
,

0 ≤ P (C|O) ≤ 1 (19)

whereO,P (C), andP (N) are possible observation, melanoma
probability, and normal probability, respectively. In the first
iteration of the EM algorithm, values of the parameters are
determined by initial guess. Thus, the values ofP (C) andP (N)
are considered based onBh andBm matrices, in the first iteration
of our HMM classifier training through the EM algorithm. The
two main steps of the EM algorithm, i.e., the E and M steps, must
be performed for training the Bh and Bm matrices parameters.
Therefore, k images are randomly selected from the training set
in each iteration, and expectation is computed for each image as
follows:

ENP (N |O) = P (N |O) · n (20)

ECP (C|O) = P (C|O) · c (21)

where n and c represent the number of observations that are
determined to be normal or cancerous based on the primitive
decision among the ten possible observations, respectively. sIn
the M-step, the updated PN and PC are obtained as follows:

PN =

∑k
i=1 EN · P (N |Oi)∑k

i=1 EN · P (N |Oi) +
∑k

i=1 E · P (N |Oi)
(22)

PC =

∑k
i=1 Ec · P (N |Oi)∑k

i=1 EC · P (N |Oi) +
∑k

i=1 EN · P (N |Oi)
(23)

All the steps mentioned above are repeated until probabilities
PN and PC converge, as shown in Fig. 7.

III. EXPERIMENTAL RESULTS

Thirty skin microscopic images obtained from [40] and [41]
were converted to 280 sub-images and then used to test the
proposed melanoma detection algorithm. These microscopic im-
ages are of different sizes, with a minimum size of approximately
9, 500× 12, 000 pixels. Therefore, each microscopic image is
converted to different numbers of sub-images. All samples are
stained using the Hematoxylin-Eosin (H&E) method. It should
be noted that our algorithm can seamlessly separate melanoma
cases from normal ones despite the fact that the microscopic
images are obtained from different sources. Microscopic images
at 20× magnification are investigated in this study. All images
are 8-bit, normalized, and converted to graylevel in the first step
of the algorithm. Since these images are very large, each image
is divided into a number of sub-images of size 600× 1, 300
pixels. The number of sub-images in each microscope image
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TABLE I
COMPARISON OF THE PROPOSED LDP AND LBP FOR TEXTURE FEATURE

EXTRACTION IN MICROSCOPIC IMAGES

TP: true positive, TN: true negative, FP: false positive, FN: false negative, LBP: local
binary pattern, LDPc: proposed local difference pattern-color, LDPe: proposed local
difference pattern-edge
E.o.LBP: the number of error based on LBP, E.o.LDPe: the number of error based on
LBP, E.o.LDPc: the number of error based on LBP

depends on the original image size. Partitioning the microscopic
image to sub-images has increased the accuracy of the sample
examination and decisions, especially in the study of nucleus
size and mitosis detection.

A. Local Graylevel Difference Pattern Result

As mentioned earlier, the differences in the graylevels of
the pixels are not determined with sufficient accuracy using
the primary LBP descriptor. Therefore, the LDP is proposed
to perform local graylevel difference pattern extraction. The
LDPe and LDPc are proposed to extract high and low-frequency
information of each neighborhood, while the edge intensity and
graylevel intensity features are represented by their histograms,
HLDPe and HLDPc. In Table I, the proposed LDPe and LDPc
are compared with the original LBP descriptor. As expected,
the results of the LDPe and LDPc are more accurate than
the LBP since the LDP captures the textural details better.
As shown in Table I, measures of location/dispersion such as
mean, skewness, and standard deviation are computed for this
evaluation.

The LDPe histograms (HLDPe) are displayed for the cancer-
ous and normal sub-images in Fig. 8(a). According to Fig. 8,
the more frequent edges for normal and cancerous cases are
related to LDPe(1) and LDPe(4), respectively. This represents
stronger edges in cancer images. Histograms of LDPc (HLDPc)
are shown for a normal and a cancerous sub-image in Fig. 8(b).
The uniform LDPc histogram for cancerous cases explains the
presence of different graylevels in cancerous cases tissue, while
HLDPc has limited graylevels in normal sub-images due to
cytoplasm multiplicity.

B. Histogram-Based Statistical Feature Result

As mentioned earlier, in order to determine the cytoplasm and
number of nuclei in each sub-image, the number of graylevel
pixels between 0 to 50 and 200 to 250 is determined using
the histogram of each sub-image, respectively. The proportion
of pixels with a graylevel of [0–50] to pixels with a graylevel
of [200–250] is considered as the CN criterion. In addition to
counting pixels related to cytoplasm and nucleus, the histogram
peak, along with its entropy, is proposed in this paper. The reason

Fig. 8. Histograms of LDPe and LDPc, (a) HLDPe, (b) HLDPc.

Fig. 9. sub-images and their histogram, (a) normal and (b) melanoma.

for the fusion of histogram and its entropy is displayed in Fig. 9.
Sometimes the histogram peak of a melanoma sample occurs
in the histogram range of 200 to 250, which represents the
cytoplasm abundance (a feature of normal samples), as shown in
Fig. 9(b). Thus, histogram entropy and its peak reduce FN, and
the total number of errors as displayed in Table II. Since reducing
FN errors is more important than FP errors, the simultaneous
use of sub-images histogram peak and their entropy has been
significant for the training sample. Fig. 9(a) shows a normal
sample that has defined melanoma incorrectly through histogram
peak alone.
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TABLE II
RESULTS OF SIMULTANEOUS USE OF SUB-IMAGE HISTOGRAM

AND ITS ENTROPY

TABLE III
RESULTS OF THE PRIMITIVE DECISION BY OUR PROPOSED LDP

TABLE IV
RESULTS OF THE PRIMITIVE DECISION BASED ON GLCM& TAMURA

C. Feature-Based Primitive Decision Result

In this paper, 14 out of 30 microscopic images are used as
training images. 14 training images contain 140 sub-images.
Leave-one-out (LOO) cross-validation is used to evaluate the ac-
curacy of primitive boundary selection. This evaluation scheme
repeatedly divides the training dataset into several parts. In
each iteration, an algorithm is trained on the full dataset, ex-
cluding only one part, and then performs the test on the ex-
cluded part. Each part contains whole sub-images of a training
microscopic image. Therefore, in each iteration, one training
image, which contains several sub-images, participates in the
algorithm test step. LOO is applied on 14 microscopic images
(140 sub-images) of the training dataset to select the primitive
decision boundary for each feature. Tables III, IV and V show
the classification result by each feature and its corresponding
decision boundary on the test and training images.

F1 through F3 in Table III are local graylevel difference
pattern-based texture features that are defined based on the
LDP. Columns F4 to F7 in Table IV correspond to other texture
features described in Section 2.1.1.2. Table V display the result

TABLE V
RESULTS OF THE PRIMITIVE DECISION BY STATISTICAL FEATURES

of histogram-based statistical features, which are the number of
the nucleus, NC, and fused histogram entropy with histogram
peak (F8 to F10).

D. The Overall Result of the Proposed SMTD

As mentioned, there are two decision steps in the proposed
DFC-EM for each sub-image. First, the homogeneity of each
sample is determined based on the transition matrix (A). The
transition matrix describes the similarity of features in each sub-
image and its neighborhood. Therefore, matrix (A) is different
for each sub-image and is obtained without any previous training
for each test sample. In the second step of the proposed DFC,
the emission matrix B is computed iteratively through training to
determine the probability of being normal and cancerous in each
sub-image. The value of k is 10 in each EM iteration. The two
emission matrices (Bh and Bm) are modified after EM training
as follows (24) and (25) shown at bottom of next page.

The EM algorithm applied to our training dataset has two
advantages. Suppose the first observation (or first feature (F1)) is
error-free while the other observations have one or more errors in
one EM iteration for all ten sub-images. Thus, F1 should be given
more importance compared to other observations. This is done in
EM. In addition, the number of correctly predicted observations
is essential for the final decision for each sub-image, which is
considered in the EM training approach. Therefore, the number
of anticipated normal or cancerous observations has influenced
our HMM classifier, and each observation has a different effect,
depending on its performance.

Several criteria, including negative predictive value (NPV),
positive predictive value (PPV), sensitivity (SEN), specificity
(SPC), and Hammoude distance (HM), are used to evaluate the
proposed algorithm. These criteria are defined as follows:

NPV =
TN

TN + FN
(26)

PPV =
TP

TP + FP
(27)

SEN =
TP

TP + FN
(28)

SPC =
TN

TN + FP
(29)
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TABLE VI
DETECTION RESULTS OF OUR DECISION-LEVEL FUSION ALGORITHM BY

MEANS OF HMM

TABLE VII
RESULTS OF THE PROPOSED DFC ALGORITHM ON FIVE SELECTED

IMAGE SAMPLES

C: Cancer, N: Normal, ∗ ∗ p ∗ ∗(N): ∗ ∗ p ∗ ∗(N/O), ∗ ∗ p ∗ ∗(C): ∗ ∗ p ∗ ∗(C/O)

HM =
FN + FP

TN
(30)

In Table VI, the proposed DFC-EM algorithm is compared
with a simple HMM classifier introduced in 2016 [40], based on
TP, TN, FP, FN, TOE, NPV, PPV, SEN, and SPC. As seen, the
errors are reduced in our proposed algorithm by training HMM
parameters using EM.

Furthermore, the proposed method is more effective for si-
multaneous fusion and classification. According to Tables III,
IV and V, the fewest errors are seen in F6, but the proposed
decision-level fusion reduces the number of errors to five. The
extracted features are merged, and each sub-image is declared
normal or cancerous based on both proposed DFC-EM and
simple HMM [40]. However, as presented in Table VI, decision-
level fusion-based classification using proposed DFC-EM had
just five errors, while the number of errors was nine in [40]. Thus,
training HMM parameters has had significant effects on our
DFC_EM model, leading to more accurate results than untrained
HMM [40]. The total error by the proposed method is reduced
to less than 4%.

The decision based on the proposed DFC algorithm is ob-
tained for five selected samples in Table VII, and the images
of the selected samples are displayed in Fig. 10. The result

TABLE VIII
COMPARISON RESULTS OF OUR DECISION-LEVEL FUSION ALGORITHM BY

MEANS OF HMM

of the proposed DFC-EM and simple HMM [40] are also
specified in Table VII. According to this table, DFC-EM is
more sensitive and accurate than the untrained simple HMM.
Finalizing a decision is difficult for the sub-images in which
the number normal and cancer observations are equal (4.C and
5.N). The proposed DFC-EM has performed better than the
untrained HMM [40] in difficult conditions. According to case
5.N in Table VII, the final decision is correctly declared normal,
based on the proposed DFC-EM, while the untrained HMM [40]
is confused about this difficult case. Therefore, the accuracy
of decision and classification increases by training the HMM
parameters. In Table VIII, the proposed DFC-EM algorithm
and simple HMM classifier [40] are compared with a CNN,
introduced in 2019 [23]. In [23] the accuracy was 68% based
on a CNN for melanoma detection. The first to third columns
of Table VIII, display the result of applying three different
algorithms to our database, namely, simple HMM, CNN, and
the proposed HMM-EM. As specified, the proposed DFC-EM
has more accuracy than the other methods. However, this does
not mean that CNN or the other deep-learning techniques are
ineffective in melanoma detection. Using a much larger database
or an effective data augmentation strategy can increase CNN
accuracy. This study uses a pretrained ResNet50 convolutional
neural network (CNN). The ResNet architecture relies on the
concept of skip connections as a mechanism to prevent loss of
information when the deep network is being trained. Using this
concept, very deep networks can be trained that significantly
improve model performance [23]. Residual connections have
a considerable advantage in ResNet: the knowledge obtained
during the training process is maintained by the connections
and the network has a higher capacity, which leads to faster
training. ResNet50 has a 3-layer bottleneck block. These layers
consist of 1×1, 3×3, and 1×1 convolutions, and the 1×1 layers
first decrease and then increase (restore) the dimensions. As a
result, the 3×3 layer has a bottleneck with smaller input/output
dimensions. Individual learning rates were used for each layer,
which is different from other approaches that apply the same
rate to all layers in the CNN. More specifically, we used slower
learning rates for input-adjacent layers, but increased the rate
for output-adjacent layers [23]. Finally, to classify our test set,
we used 140 sub-images (80 melanomas and 60 normal) to train

Bh =

[
0.84
0.16

0.88
0.12

0.88
0.12

0.08
0.92

0.16
0.84

0.76
0.24

0.28
0.72

0.92
0.08

0.76
0.24

0.08
0.92

]
(24)

Bm =

[
0.14
0.86

0.10
0.90

0.14
0.86

0.86
0.14

0.90
0.10

0.10
0.9

0.86
0.14

0.19
0.81

0.05
0.95

0.77
0.23

]
(25)
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Fig. 10. Image corresponding to Table IV, (a) 1.N, (b) 2.C, (d) 3.N, (e) 4.C, (f) 5.N.

the system. The test set contains 140 sub-images (70 melanomas
and 70 normal) and is disjoint from the training set.

IV. CONCLUSION

This paper presented an automatic technique for melanoma
detection in skin microscopic images. The proposed technique
first extracts texture and statistical histogram features of the
microscopic sub-image and then estimates tumor location based
on asymmetric analysis and the extracted features. The final
decision is made using a fusion-based HMM classifier, which is
trained using the EM method for each sub-image. EM is utilized
to optimize the parameters of the classifier, which merges the
extracted features and makes an optimal decision for each sub-
image simultaneously. According to our findings, melanoma
can be detected using texture features and fusion-based HMM
classifier in each pathology sample. Nuclei graylevel parame-
ters were determined based on a small number of cases. Fu-
ture work includes making these parameters adaptable and the
use of additional cellular features. We also aim to investigate
Long Short-Term Memory (LSTM) networks in microscopic
sub-images to improve feature extraction for more effective
melanoma detection and Breslow staging.
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