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Abstract. A comprehensive survey of 48 filters for impulsive noise
removal from color images is presented. The filters are formulated
using a uniform notation and categorized into 8 families. The perfor-
mance of these filters is compared on a large set of images that
cover a variety of domains using three effectiveness and one effi-
ciency criteria. In order to ensure a fair efficiency comparison, a fast
and accurate approximation for the inverse cosine function is intro-
duced. In addition, commonly used distance measures (Minkowski,
angular, and directional-distance) are analyzed and evaluated. Fi-
nally, suggestions are provided on how to choose a filter given cer-
tain requirements. © 2007 SPIE and IS&T. [DOIl: 10.1117/1.2772639]

1 Introduction

The growing use of color images in diverse applications
such as medical image analysis, content-based image re-
trieval, remote sensing, and visual quality inspection has
led to an increasing interest in color image processing.
These applications involve many of the same tasks as their
gray-scale counterparts, such as edge detection, segmenta-
tion, and feature extraction. However, color images are
often contaminated with noise, which not only lowers their
visual quality, but also complicates automated processing.
Therefore, the removal of such noise is often a necessary
preprocessing step for color image processing
applications.

Image noise can come from many sources and can be
introduced into an image during either acquisition or trans-
mission through sensors or communication channels,
respectively.3 “Impulsive noise” is noise of low duration
and high energy that can be caused either by faulty sensors
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or by electrical disturbances such as lightning and the op-
eration of high-voltage machinery corrupting the transmis-
sion signal.4 The introduction of such noise into an image is
often detrimental to its future usage. If the image is meant
for human consumption, the presence of noise lowers its
perceptual quality. On the other hand, if it is to be pro-
cessed further, the noise can make complex tasks such edge
detection and segmentation even more difficult.

Numerous filters have been proposed in the literature for
impulsive noise removal from color images. Among these,
nonlinear filters have proved successful in the preservation
of edges and fine image details while removing the noise.’
The early approaches to nonlinear filtering of color images
often involved the application of a scalar filter to each color
channel independently. However, since separate processing
ignores the inherent correlation between the color channels,
these methods often introduce color artifacts to which the
human visual system is very sensitive.® Therefore, vector
filtering techniques that treat the color image as a vector
field and process color pixels as vectors are more
appropriate.” An important class of nonlinear vector filters
is the one based on robust order statistics, with the vector
median filter (VMF)® being the most widel(;/ known ex-
ample. These filters involve reduced ordering 10 of a set of
input vectors within a window to compute the output vec-
tor. Recent applications of these include enhancement of
cDNA microarray images,”’12 virtual restoration of
artwork,"*'* and video ﬁltering.ls_18

The motivation of this study is twofold. First, a large
number of nonlinear vector filters have been proposed in
the literature since 1990. Therefore, a study that categorizes
and presents these filters in a unified notation is desirable.
Second, to the best of the authors’ knowledge, no study to
date has objectively compared the performance of these
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filters on a large and diverse set of images. A similar
study19 presents a detailed survey of the nonlinear vector
filters, noise models, filtering performance criteria, and ap-
plications; however, it does not provide an experimental
comparison of these filters.

In this study, 48 impulsive noise removal filters are pre-
sented in a systematic fashion and categorized into 8 fami-
lies. Furthermore, the performance of these filters in terms
of both effectiveness and efficiency are compared on a set
of 100 images that cover a multitude of domains. In order
to ensure fairness in the efficiency comparisons, a fast and
accurate approximation for the inverse cosine function
(used in many of the filters) is introduced. In addition, the
relative merits of commonly used distance measures
(Minkowski, angular, and directional-distance) are ana-
lyzed and compared. Finally, suggestions are provided on
how to choose a filter given certain requirements.

The rest of the paper is organized as follows. Section 2
introduces the notation and categorizes the filters. Section 3
describes the image set, the noise models, and the filtering
performance criteria. Finally, Section 4 discusses the ex-
perimental results and gives the conclusions.

2 Categorization of the Filters

In this section, the 48 impulsive noise removal filters are
categorized into 8 groups as follows:

. Basic vector filters

. Adaptive fuzzy vector filters

. Hybrid vector filters

. Adaptive center-weighted vector filters
Entropy vector filters

. Peer group vector filters

. Vector sigma filters

. Miscellaneous vector filters

The notation used in the descriptions of these filters is
shown in Table 1. Note that the author-recommended pa-
rameter values for each filter are indicated in the descrip-
tions.

2.1 Basic Vector Filters

These are the earliest impulsive noise removal filters pro-
posed in the literature. The subsequent, more advanced fil-
ters are more or less based on these basic filters. Table 2
shows the mathematical expressions for these filters.

2.1.1 Vector median filter

The vector median filter (VMF)® and its extensions>>?! fol-
low directly from the concept of the nonlinear order statis-
tics in that the output of the filter is the lowest-ranked vec-
tor in the window. The VMF orders the color input vectors
according to their relative magnitude differences using the
Minkowski metric as a distance measure. The two most
widely used such measures are the L1- (Manhattan dis-
tance) and the L2- (Euclidean distance) norms.?

2.1.2 Alpha-trimmed vector median filter

The alpha-trimmed vector median filter (ATVMF)'® selects
the lowest-ranked 1+« vectors as input to an averaging
filter. The trimming operation guarantees good performance
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in the presence of impulsive noise. In addition, the averag-
ing operation helps the filter cope with Gaussian noise. The
parameter « is set to [n/2].

2.1.3 Basic vector directional filter

Another method for detecting the outliers in a window is to
rank the color vectors based on the orientation difference
between them. In other words, vectors with atypical direc-
tions are considered to be outliers. The basic vector direc-
tional filter (BVDF)23 uses this concept in a manner similar
to the VMF, by using the angle between two color vectors
as the distance criterion. Since a vector’s direction corre-
sponds to its chromaticity,24 this filter preserves the chro-
maticity of the input vectors better than the VMF.

2.1.4 Generalized vector directional filter

The generalized vector directional filter (GVDF)* is a gen-
eralization of the BVDF in that its output is a superset of
the single BVDF output. After the vectors are ranked ac-
cording to the angular distance criterion, a set of low-rank
vectors is selected as input to an additional filter to produce
a single output vector. In the second step, only the magni-
tudes of the vectors are considered. Thus, any grayscale
filter® such as the arithmetic mean filter (AMF), the mul-
tistage median filter, and various morphological filters can
be used. In this study, the AMF is used for magnitude pro-
cessing.

2.1.5 Directional distance filter

The directional distance filter (DDF)26’27 is a combination
of the VMF and the BVDF derived by the simultaneous
minimization of their defining functions (see Table 2). The
motivation behind this is to incorporate information about
both a vector’s magnitude (brightness) and its direction
(chromaticity) in the calculation of the distance metric. The
parameter 7 in this case controls the relative importance of
each component. This parameter is set to 0.5, which implies
an equal consideration for both measures.

2.1.6 Content-based ranked filter

The content-based ranked filter (CBRF),?® like the DDF,
ranks the vectors according to a distance metric that incor-
porates more information about the vector as a whole than
the criteria used by the VMF and the BVDFE. The similarity
between two vectors in this case can be expressed as the
ratio of some function of what they share (commonality) to
what they comprise (totality).29 The numerator (commonal-
ity) and the denominator (totality) correspond to the vector
difference and the vector sum, respectively.

2.2 Adaptive Fuzzy Vector Filters

These filters utilize data-delzl)endent coefficients to adapt to
. c e 113031

local image characteristics. The general form of an

adaptive fuzzy vector filter is given as a nonlinear transfor-

mation of a fuzzy weighted average of the input vectors

within a window W:
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Table 1 Notations used in the study.

Notation Meaning
N Number of pixels in an image
w Filtering window
n Number of pixels in W
X; ith pixel in W
xf kth component of x; (k=1: red, k=2: green, k=3:
blue)
X Pixel with the ith ranking according to a particular

ordering scheme

X¢ Qutput of a particular filter ‘f within W
C=(n+1)/2 Index of the center pixel in W
[Ix|= (! - X!+ 52 X8+ x3) 12 Euclidean norm of x;
1 n Mean vector within W. Also, the output of the
X= Xan = _2 X arithmetic mean filter (AMF)
n =1
(Xi, X)p=X] X}*'X:Z ,-+X7?"X,3 Inner product between x; and x;
D(x;, x)) Distance between x; and x; according to a particular
measure
3 1p Minkowski distance between x; and x;
LX) = %= x]lp= | 20 |- x°
k=1

Cumulative Minkowski distance associated with x;

1) = 1,() = 5 Ly(x,%)

=1
(X, X) Angular distance between x; and x;
A(x,x) =cos™ (—;
" [l - [l

Cumulative angular distance associated with x;

a(i) = >, A(x; x)
=1

Cumulative directional distance associated with x;

n y n 1-y
ali) = (2 A(X;»(;)) : (2 Lp(xi,x,>>
=1 =1

n each input vector. The weights provide the degree to which
> Wix; an input vector contributes to the filter output and are de-
i=1 termined by fuzzy transformations of the cumulative dis-

Yafof =8| " ’ (1) tances associated with each input vector.

=l 2.2.1 Fuzzy-weighted average filters

where x4, is the filter output, g(.) is a nonlinear function, In the fuzzy-weighted average filters (FWAFs), the function
and w;=0sx; are the fuzzy weights that correspond to g(.) is the identity function:
Journal of Electronic Imaging 033008-3 Jul-Sep 2007/Vol. 16(3)
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Table 2 Basic vector filters.

Filter Formulation
VMF XymF=argmin . wl (D))
ATVMF 1 T+a
XATVMF = m; Xy, ae[0,n-1]
BVDF XBVDF=argminx,g wla(i)
DDF Xppr=argminy . y(d(1)
CBRF n

Xogpe=argmin, . w2y G(x,x)

j=1
llxil? + Il - 2HXA|||X/HCOS(6’)>”2
lIxil + Il + 2llx{llxflcos(6)

G(x;, x) = (

n
2 WiXi
i=1
Xpwaf = " - (2)

E wi
i=1

Because of the averaging operation, the filter output
Xpyer 18 generally not included in the input vector set
{x/,x5,...,x,}. This allows better performance in the pres-
ence of Gaussian noise when compared to pure order
statistics-based filters that select the output vector from the
set of input vectors. Note that depending on the distance
criterion and the corresponding fuzzy transformation, vari-
ous fuzzy filters can be derived from Eq. (2).

Fuzzy vector median filter. In the fuzzy vector median
filter (FVMF),*>*? the Minkowski metric is used as the
distance function and the fuzzy membership function has
an exponential form. In this case the fuzzy weights are
given by

w;=exp(-=["())/B) fori=1,2,...,n, (3)

where y and B are parameters that control the amount of
fuzziness in the weights.33 The following values are used
for these parameters: y=0.5 and 8=1.0.

Fuzzy vector directional filter. In the fuzzy vector direc-
tional filter (FVDF),***! the vector angle metric is used as
the distance function and the fuzzy membership function
has a sigmoidal form. In this case the fuzzy weights are
given by

po— B
" (I+exp(a())?

where vy is a parameter that can be used to adjust the
weighting effect of the membership function and S is a

fori=1,2,...,n, (4)
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weight-scale threshold. The following values are used for
these parameters: y=1.0 and 8=2.0.

Adaptive nearest-neighbor filter. In the adaptive
nearest-neighbor filter (ANNF),* the fuzzy weights are de-
termined as follows:

ag) — ag
wi:M fori=1,2,...,n, (5)
Ay~ a)

where a(,) and a(,) are the maximum and minimum cumu-
lative angular distances, respectively. It should be noted
that other distance measures such as the Minkowski and
directional-distance functions can also be used in Eq. (5).

Adaptive nearest-neighbor multichannel filter. The
adaptive nearest-neighbor multichannel filter (ANNMF)™
is a modification of the ANNF that uses a composite dis-
tance function rather than an angular one:

= (L) bl

el I max (|, o)

bl

2.2.2 Fuzzy ordered vector filters

The fuzzy ordered vector filters FOVF'® are a fuzzy gen-
eralization of the alpha-trimmed filters in which the input
vectors are ordered according to their fuzzy membership
strengths and only those vectors with the largest fuzzy
weights contribute to the output vector:
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Table 3 Hybrid vector filters.

Filter Formulation
EXVMF X ] XavE if (Xamp) = IXywme)
EXWME™ | xome Otherwise
HDF XvMF if Xymr = Xavor
Xupr =1 [
wor = | Xl Xeyor  Otherwise
Ixavorl
AHDF Xume  if XymE= XavoF
XaHDF = | Xoutt if (Xout1) = I(Xou2)
Xout2 otherwise
Xl [IXamel
Xout1 = . . Xoutz= - X;
out1 ||XBVDFH BVDF out2 HXB\/DF” BVDF
VMRHF ay - Xymr, + @2 - Xowvmr + @3 ° XymF,
XVMRHF = XcwvmF +
B1+ Ba - [Xumr, = Xumr, |
FVMRHF Q- Xpymr, + @2 Xecwvmr + @3 * XFumF,
XFVMRHF = XFCWVMF +
B+ Bz IXevme, = Xewwe, |
3
E ;=0
FVDRHF ay - XpvpF, + @2 - Xrowvpr + @3 * XFyDF, =1
XFVDRHF = XFowvDF +
Bi+ Bz - AlXevor, s XevoF,)
FDDRHF XFDDRHF = XFCWDDF
a1 * XrppF, + @2 * XFcwpDF + @3 * XFDDF,
+
B1+ Bz - [A"(Xepor, Xeoor,) - [IXeooF, = Xeoor,|' 7]
KVMF Xiewmr = (Xc = Xumel) - X + (1 = pull|xc = xumel) - Xumr
B
wld)=exp(-dih), h=—g———
(= Ix-s8ne)
k 2.3 Hybrid Vector Filters
2 Wiy These filters utilize a number of subfilters of different types
i=1 “« . 100 :
Xrovp= ————, kel[ln], (7) (hence the term “hybrid”) and define the output as a linear

> W)
i=1

where X =xy_;)=---=x(;), are the vectors with the k
largest weights wgy =wg_;)= -+ =w( respectively.

The number of vectors (k) can be determined adaptively
by considering on%y those input vectors with fuzzy weights
greater than 1/ n.*’ Note that any fuzzy membership func-
tion such as (3), (4), or (5) can be used to determine the
weights in (7). In this study, only the fuzzy ordered vector
median filter (FOVMF) [Egs. (3) and (7)] and the fuzzy
ordered vector directional filter (FOVDF) [Egs. (4) and (7)]
are considered.
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or nonlinear combination of the input vectors.”” Conse-
quently, the output is often not included in the input set.
Table 3 shows the mathematical expressions for these fil-
ters.

2.3.1 Extended vector median filter

The extended vector median filter (EXVMF)® combines the
VMF with linear filtering to compensate for the deficiency
of the VMF in dealing with Gaussian noise. Near edges this
filter behaves like the VMF and preserves the details, while
in smooth areas it behaves like the AMF, resulting in im-
proved noise attenuation.

Jul-Sep 2007/Vol. 16(3)
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2.3.2 Hybrid directional filter

The hybrid directional filter (HDF)® is also based on the
concept of independent vectorial attribute processing intro-
duced in the DDF. It can be thought of as a nonlinear com-
bination of the VMF and the BVDF filters.

2.3.3 Adaptive hybrid directional filter

The adaptive hybrid directional filter (AHDF)® is an exten-
sion of the HDF that utilizes the AMF in the filter structure.
This is so the magnitude of the output vector will be that of
the mean vector in smooth regions and that of the median
operator near edges. Note that the criterion for the selection
of the output vector in this filter is similar to the one used in
the EXVMFE.

2.3.4 Vector median-rational hybrid filter

The vector median-rational hybrid filter (VMRHF)***!is a
multichannel extension of the median-rational hybrid filter
that combines the output of three subfilters (two vector me-
dian filters and a center weighted vector median filter™) in a
rational function. It differs from a linear low-pass filter
mainly due to the scaling, which is essentially an edge-
sensing term characterized by the Euclidean distance be-
tween the two VMF outputs. The coefficient vector «
=[a; aya3] in the numerator is chosen a priori and serves to
weight the outputs of the three subfilters. The parameters
By and B, in the denominator are positive constants. The
former ensures numerical stability while the latter regulates
the nonlinearity. The masks utilized by each subfilter are as
follows:

(01 0] 111
VMF;{1 1 1|, cwvMmE|[1 3 1], ®)
01 0] 111
0
VMF,0 1 0|,
_O_

Note that only those pixels with nonzero coefficients are
considered in each of these masks. The parameter values
are chosen as follows: a;=1.0, a,=-2.0, a5=1.0, B,=3.0,
and ,=3.0.

2.3.5 Fuzzy rational hybrid filters

The fuzzy rational hybrid filters®®*** are a family of adap-

tive hybrid filters that are derived from the VMRHE. In the
fuzzy vector median-rational hybrid filter (FVMRHF), one
of the subfilters is a fuzzy center-weighted vector median
filter (FCWVMF) and the other two are fuzzy vector me-
dian filters (FVMF). The fuzzy weights for these subfilters
are given by

2

=——— fori=1,2,...,n. 9
Y T rep) O " ©)

*See Section 2.4.

Journal of Electronic Imaging

033008-6

The fuzzy vector directional-rational hybrid filter
(FVDRHF) and the fuzzy directional distance-rational hy-
brid filter (FDDRHF) are the angular and the directional-
distance counterparts of the FVMRHE, respectively. The
smoothing parameter vy is set to 1.0, and for the remaining
parameters the VMRHF values are used.

2.3.6 Kernel vector median filter

The kernel vector median filter (KVMF)*~# outputs a vec-
tor that lies somewhere between the center pixel and the
VMF output. In other words, the output vector is a linear
combination of the two vectors. The weights are deter-
mined by the kernel u for which several choices such as
Laplacian, Gaussian, Cauchy, Epanechnikov, etc. are avail-
able. Table 3 gives the filter formulation for the Laplacian
kernel with the normalization factor 3 and the kernel width
h. The value of B depends on the kernel of choice (8
=0.5 for the Laplacian kernel). The parameter & can be
estimated from the entire image as shown in Table 3.

The operation of this filter represents a compromise be-
tween the VMF and the identity operation. The kernel is a
function of the distance between the center pixel and the
VMF output; if the center pixel is not noisy, then the kernel
function is close to 1, and the output will be close to the
original value of the center pixel. Otherwise, the output will
be close to the VMF output.

2.4 Adaptive Center-Weighted Vector Filters

The vector median filter can be generalized by associatin§
with each pixel x; a nonnegative integer-valued Weightlg‘4 :

XWVMF = argmin( > wllx; - xj”) . (10)

X;€ j=1

This filter is called the weighted vector median filter
(WVMF). Note that by replacing the distance function in
(10) with the angular or directional-distance functions, one
can obtain the analogous weighted vector directional filter
(WVDF) or weighted directional-distance filter (WDDF),
respectively.”™

The flexible form of the weighted vector filters allows
one to design an optimal filter for a particular domain by
adjusting the weights. The weights are often determined by
an optimization procedure using a number of training
images.5 0-52-54 1f only the center weight is varied while the
others are fixed, the WVMF simplifies to the center-
weighted vector median filter (CWVMF)>>*¢:

XCWVMFk = argmin(E Wj(k) : ”xi - xj| ) >

X;€ j=1

ke[l1,C]. (11)

n—-2k+2 for j=C,
Wj(k) = .
1 otherwise,

When the smoothing parameter k=1, the CWVMF is
equivalent to the identity filter and thus no smoothing is
performed. As the value of k is increased, the smoothing
capability of the filter increases. Finally, when k& attains its
maximum value C, the filter becomes equivalent to the
VMEF, and the maximum amount of smoothing is per-

Jul-Sep 2007/Vol. 16(3)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/19/2015 Terms of Use: http://spiedl.org/terms



Celebi, Kingravi, and Aslandogan: Nonlinear vector filtering for impulsive noise removal...

Table 4 Adaptive center-weighted vector filters.

Filter Formulation
MCWVMF XyMF if I(XVMF) <w- I(C),
XMCWVMF = h we [0,1]
Xc otherwise,
ACWVMF M2
xme 1F 2 [IXowvmrr—xdl > T,
XACWVMF = % Ne[1,C-1]
L Xc otherwise,
ACWVDF M2
Xgvor  if 2, AlxcwvorsXo) > T,
XAGWVDE = % WVDF rel1,C-1]
Xc otherwise,
ACWDDF ( a2
Xopr it 2, A(Xcwoprk Xo) - [Xewpork— Xg| Y > T,
XACWDDF = Z‘ Ne[1,C-1]
L Xc otherwise
Table 5 Entropy vector filters.
Filter Formulation
EVMF Xour if Po> To
X =
EVME Xc  otherwise
X;— - P;log P;
polx-A . -PigP
2lx-x - Plogh
=1 =1
EBVDF Xavor if Po>Te
X; =
EBVDF Xc otherwise
A(x;, X) - P;log P;
Pi=n(l_)|Ti= nlgl
2 A0 -2 Rlogh
A1 =1
EDDF

Journal of Electronic Imaging

X _ XDDF IfPC>TC
EDDF™ | xo  otherwise

ACGX) M= A

- P;log P;

Pi:

)

> A0l A
=1

n
-2, Plog P
1
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Table 6 Peer group vector filters.

Filter Formulation
PGF el =|lxc-xi| fori=1,2,...,n
i) =cury— €y fori:1,2,...,m:(\571+1)/2
xyme if Jie[1,m]s.t. S()>T
XpGF = ;
Xc  otherwise
FPGF

Xc  otherwise

Xume if {(Xce Ws.t. [Ixe=x||=TH<m
XFPGF =

formed. Similar formulations can be derived for the angular
and directional-distance functions.

2.4.1 Adaptive center-weighted vector filters

The adaptive center-weighted vector ﬁlters,ss’57 i.e.,

ACWVMEF, ACWVDF, and ACWDDE, employ a user-
specified threshold to determine whether the center pixel is
noisy or not. If the center pixel is noisy, it is replaced by the
output of one of the three basic vector order statistics fil-
ters, the VMEF, the BVDF, or the DDFE. Otherwise, it re-
mains unchanged. The mathematical expressions for these
filters are given in Table 4. The thresholds are set to 80,
0.19, and 10.8 for the ACWVMF, ACWVDE, and
ACWDDF, respectively. The N parameter is set to 2.

An alternative design for the adaptive center-weighted
filters is proposed in Ref. 58. Extensions of these filters for
image sequence processing and efficient hardware imple-
mentations can be found in Refs. 15 and 17.

2.4.2 Modified center-weighted vector median filter

The modified center-weighted vector median filter
(MCWVMF)?® is a modification of the CWVMF in
which only the cumulative distance associated with the cen-
ter pixel is weighted. In contrast, in the CWVMEF the center
weight contributes to all of the cumulative distance values
except for that associated with the center pixel. This allows
the MCWVMF to be faster than the CWVMF since fewer
multiplications are involved in the former. Table 4 shows
the mathematical expression of the MCWVME. Note that
the center weight w in the MCWVMF is a real number
between 0 and 1, whereas the one in the CWVMF is a
nonnegative integer. The w parameter is set to 0.5.

2.5 Entropy Vector Filters

Entropy vector filters®" %% are a family of adaptive switching

filters that are multichannel extensions of the grayscale lo-
cal contrast entropy filter.” For the grayscale case, the con-
trast of a pixel x; within a window W can be expressed as

where X denotes the mean gray level. The local contrast
probability P; and local contrast entropy H; associated with
pixel x; are given by

A,
Plzn—’
2j=1Aj
(13)
HiZ—PiIOgPi.

Noisy pixels heavily contribute to the total local contrast
entropy, which is given by

H=2HP (14)

Extensions of this formulation for the multichannel case
are given in Table 5. These filters, i.e., EVMF, EBVDEF, and
EDDF, employ an adaptive threshold (the fraction of local
contrast entropy contributed by the center pixel) to deter-
mine whether the center pixel is noisy or not. If the center
pixel is noisy, it is replaced by the output of one of the three
basic vector filters, the VMF, the BVDF, or the DDF. Oth-
erwise, it remains unchanged. An extension of the entropy
filters for color video sequence enhancement can be found
in Ref. 64.

2.6 Peer Group Vector Filters

These are adaptive switching filters based on the peer group
concept.65 Essentially, the peer group of a pixel in a given
window represents the set of neighboring pixels that are
sufficiently similar to it according to a particular measure.
Table 6 shows the mathematical expressions for these fil-
ters.

2.6.1 Peer group filter

In the peer group filter (PGF),” the pixels in the window
are sorted in ascending order according to their distances to
the center pixel. The peer group of the center pixel is then
determined as the m=(\n+1)/2 pixels that rank the lowest

)65
b

| X — f| A, in this sorted sequence. Next, in order to remove the effect

C= = = ;, (12) of the impulsive noise, the first-order differences (i) are
calculated. Finally, the center pixel is considered noisy if

one of these difference values is greater than a user-
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Table 7 Vector sigma filters.

Filter Formulation

SVMF_mean Xyme if (C)=(1+N/n)-Kx)

XsvMF = :
-meaN T | xo  otherwise

SVMF_rank xyme If (O = (1 +NM(n=1)) - [(Xywe)
XoWE_rank= |y otherwise
SBVDF_mean Xavoe if @(C)=(1+Nn)-a(x)
X =
SBVDF.mean™ |y, otherwise
SBVDF_rank Xgvor if @(C) = (1+M(n-1)) - a(xgypr)
XSBVDFrark = | v otherwise
SDDF_mean Xppr If d(C)=(1+\/n)-dx)
X =
SPDE-mean™ |y, otherwise
SDDF_rank Xppr 1f d(C) = (1+N(n-1)) - dxppr)
XSooFrank= |y otherwise
ASVMF_mean xywe if [xe=X|= o
X =
ASVMF_mean™ | x.  otherwise
1 n
o? == x5
=
ASVMF_rank

xuwe if Xe= Xuwel = o

X = .
ASVMF_rank {XC otherwise

n
1
02=_E 1= xumel®
n-1 =1

ASBVDF_mean Xaypr if AlXg,X) = o

XASBVDF_mean = .
Xc otherwise

o?= 12 A2(x, %)
n =1

ASBVDF_rank Xevor If AXe, Xavor) = &

X, = .
ASBVDF_rank {XC otherwise

n
1
o= nT E A2(x,-, XBVDF)
=1

ASDDF_mean Xoor i Axg, %)X - X7 = o
X =
ASDDF_mean Xc otherwise
1< 1< v
2= (—2 A2<x,-,)a) (—E Xf-ﬂ|2>
n< M
ASDDF_rank Xopr it AY(Xc, XopR)IXe — Xooel' Y= o
X =
ASDDF_rank Xo otherwise
1 < 1 < v
2= —2 AP(X, XopF) E b= Xooel”
n—14 n-1<
1 i=1
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specified threshold. In this case, the center pixel is replaced
with the VMF output; otherwise it remains unchanged. The
threshold 7' is set to 45.

2.6.2 Fast peer group filter

The fast peer group filter (FPGF)" is a fast modification of
the PGF in which the center pixel is considered to be noise-
free as soon as m pixels in the window are determined to be
sufficiently similar to it. If m is low, and the amount of
noise in the image is not very high, the number of distance
computations that need to be performed can be dramatically
reduced. The parameters m and T are set to 3 and 45, re-
spectively.

2.7 \Vector Sigma Filters

Vector sigma filters®"° are a family of adaptive switching

filters that are multichannel extensions of the gray scale
sigma filter.”" These filters utilize approximations of the
multivariate variance within a window to determine
whether the center pixel is noisy or not. If the center pixel
is noisy, it is replaced by the output of one of the three
basic vector filters, the VMF, the BVDE, or the DDF. Oth-
erwise, it remains unchanged.

The concept of variance can be extended to the multi-
variate case using the covariance matrix. Scalar measures
for multivariate variance can be calculated from this matrix
as the sum or product of the eigenvalues.72 However, com-
puting the variance within each window in this manner is
computationally very expensive. Therefore, vector sigma
filters employ approximations of the multivariate variance
based on either the mean vector or the lowest-ranked vec-
tor.

The members of the vector sigma filter family are given
in Table 7. The nonadaptive vector sigma filters (SVMF,
SBVDF, and SDDF) require a tuning parameter A to deter-
mine the switching threshold, while the adaptive vector
sigma filters (ASVMF, ASBVDF, and ASDDF) determine
this threshold adaptively. The parameter \ is set to 4.0.

2.8 Miscellaneous Vector Filters

This section contains the filters that do not fit into any of
the categories described earlier. Table 8 shows the math-
ematical expressions for these filters. Some of these have
commonalities with certain filters in other categories. For
example, the adaptive multichannel nonparametric filters
resemble the KVMF in that they are based on similarity
rather than dissimilarity (distance). However, they are not
included in the hybrid vector filters category since they do
not utilize multiple subfilters of different types.

2.8.1 Vector signal-dependent rank order mean
filter

The vector s1gna1 dependent rank order mean filter
(VSDROMF) is an extension of the grayscale SDROM
filter.”* In this filter, the pixels in the window are first sorted
according to their cumulative distances to all other pixels.
The distances between the center pixel and each of the
lowest-ranked 4 (for the general case |n/2]) pixels are then
compared against increasing thresholds. If any of these dis-
tances exceeds its respective threshold, the center pixel is
considered to be noisy and is replaced by the lowest-ranked

Journal of Electronic Imaging

033008-10

(h) (i)

Fig. 1 Representative images from the image set. (a) flowerbee; (b)
cat; (c) Austria; (d) Scotland; (e) Capilano Suspension Bridge; (f)
Native American; (g) sweetgum; (h) dermoscopy; (i) fractal.

pixel, i.e., the VMF output. Otherwise, the center pixel re-
mains unchanged. The thresholds are set to 35, 40, 45,
and 50.

2.8.2 Adaptive multichannel nonparametric filters

The ada tlve multichannel  nonparametric ~ filters
(AMNFs)”"’ approach the filtering problem from an esti-
mation theoretic perspective. Specifically, these ﬁlters are
based on nonparametric kernel density estimation.”” The
general form of the AMNFs is given in Table 8. Two pos-
sible choices for the kernel function are the multivariate
exponential K(z)=¢¥ (AMNFE) and the multivariate

Gaussian K(z)=e %% (AMNFG) functions. The k param-
eter in the kernel width calculation is set to 0.33.

2.8.3 Fast modified vector median filter

In the fast modified vector median filter (FMVMF),78’79 the
center pixel is replaced with the window pixel that mini-
mizes the cumulative distance to all others (excluding the
center pixel), provided that the difference between the cu-
mulative distance associated with the center pixel and the
minimum cumulative distance is greater than a threshold.
Otherwise, the center pixel remains unchanged. Note that
this scheme privileges the center pixel since its cumulative
distance calculations involve n—1 terms, whereas the cal-
culations associated with the other pixels involve n—2
terms. The distance threshold parameter is set to 0.75.

2.8.4 Adaptive vector median filter and adaptive
basic vector directional filter

In the adaptive vector median filter (AVMF),* the center
pixel is considered to be noisy if the distance between itself
and the mean of the lowest-ranked k vectors is greater than
a threshold. In this case, the center pixel is replaced by the
VMF output. Otherwise, it remains unchanged.

The adaptive basic vector directional filter (ABVDF)®!
is the angular counterpart of the AVMF. The thresholds are

Jul-Sep 2007/Vol. 16(3)
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Table 8 Miscellaneous vector filters.

Filter Formulation
VSDROMF xume If 3ie{1,2,3,4} s.t. [Ixg—xy|> T,
XVSDROMF = .
Xc  otherwise
Ti=T,=T=T,
AMNF . . K<XC_XI>
XAMNF = EX: I
=1 Xc— X;
T\ S
hy= n"“E I X
=1
FMVMF n n
x| 2 le=xl- 2l =i | > T
XeMVME = = =1
i#C
Xc otherwise
n
xk~=argmin2 [l — x|
Xge W =1
i#C
AVMF k
Xyme i [ Xe—— Ex(,) >T
XAVMF = ,_1
Xc  otherwise
ABVDF ( K
) 1
_ XBVDF if A Xc,T(EX(,) >T
XABVDF = =1
L Xc otherwise
.
FFNRF
o E Mi(xg.x) < E M(x.x)
XFFNRF = =1
#C
(Xc otherwise

xk_argmaxz M(xi, x),  M(x;x) = H

xe W

( min(x%, X9 + K)“
max(xf,x) + K

=1
i#C

set to 100 and 0.16 for the AVMF and ABVDEF, respec-
tively. The k parameters in these filters are both set to [1n/2].

2.8.5 Fast fuzzy noise reduction filter

In the fast fuzzy noise reduction filter (FENRF),%*% the
center pixel is replaced with the window pixel that maxi-
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mizes the cumulative similarity to all others excluding the
center pixel. Note that this center exclusion scheme is the
same as in the FMVMF. The similarity between two pixels
is determined using a special fuzzy metric® (see Table 8).
An interesting property of this metric is that the value of
each term in the product can be precomputed as
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min(a,b)+K)“ (15)

max(a,b) + K

0%a,b) = (

Using the precomputed values, the fuzzy similarity between
two pixels x; and x; can be computed as

3
Ma(xiaxj) = H Qa(xiaxj)~ (16)
k=1

It’s empirically demonstrated that the computation of the
fuzzy metric M using the precomputed values is even faster
than that of the L;-norm. The K and « parameters are set to
1024 and 3.5, respectively.

3 Experimental Setup

In this section, the image set that will be used in the ex-
periments is first described. The impulsive noise models
that are used to artificially corrupt the images for evaluation
purposes are then presented. Finally, the filtering perfor-
mance criteria that will be considered in the comparisons
are detailed.

3.1 Image Set Description

In order to compare the performance of the filters on a wide
variety of images, a set of 100 high-quality RGB images
was collected from the Internet. These included images of
people, animals, plants, buildings, aerial maps, manmade
objects, natural scenery, paintings, and sketches, as well
scientific, biomedical, and synthetic images and test images
commonly used in the color image processing literature.
Figure 1 shows representative images from this set.

3.2 Noise Models

Various simplified color image noise models have been pro-
. R 3,518 . R

posed in the literature. In this study, the following two

impulsive noise models are considered:

1. Uncorrelated impulsive noise

¥ with probability ¢,

k_ . -
X'=7 0% with probability 1 - ¢°
where 0={0',0%,0%} and x={x',x*,x’} represent the
original and noisy color vectors, respectively, ¢ de-
notes the channel corruption probability, and r
={r!,r?,r*} is a random vector that represents the im-

pulsive noise such that * €[0,10] or * €[245,255]
with equal probability.
2. Correlated impulsive noise

0 with probability 1 — ¢,
{r',0%,0%} with probability ¢, - ¢,
x=19 {0".7%,0’}  with probability ¢, ¢,
{0',0%,*}  with probability ¢ - ¢,
¥, 27 with probability (1 - (@, + @, + @3)) - @,

where ¢ is the sample corruption probability and ¢,
¢,, and @5 are the channel corruption probabilities. In
this study, the following values are used: ¢;=¢,
=@3= 0.25.

In the following discussion, a particular combination of
a noise model and a noise level such as “5% correlated
noise” will be referred to as a “noise configuration”.

3.3 Filtering Performance Criteria

In order to evaluate the performance of the filters, three
effectiveness and one efficiency criteria are employed. The
effectiveness criteria are>:

1. Mean absolute error (MAE)

M N
I ,
MAE= —— R(i.j) - R(i.j
3.M'N§j§[l (i.)) = R(i.j)|

+1G(i.)) - Gl + |BG.j) =BG )N, (17)
where M and N represent the image dimensions,
{R(./),G(i,)),B(i,))} and {R(i, ), G(i, ), B(i, )} are
the RGB coordinates of the pixel (i,/) in the original
and the filtered images, respectively. MAE is a mea-

sure of the detail preservation capability of a filter.
2. Mean squared error (MSE)

M N
MSE = ——— 3 3 [(R(i.j) - R0.)* + (G(i.))

3-M-Niy o

~ G(i,))) + (B(i.j) - Bi.))], (18)
MSE is a measure of the noise suppression capability
of a filter.

3. Normalized Color Distance (NCD)

S S L) = i)+ (@ 1) = "))+ (6 (0f) = 6 (0.)))

NCD =

, (19)

S 2 L )+ a o)) + 57 ))

{L:b(ls.])9a*(l’])’b*(l7.’)} and
{L;,(i,)),d*(i,j),b"(i,))} are the CIE L*a*b* coordi-
nates of the pixel (i,) in the original and the filtered

where
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images, respectively. NCD is a perceptually oriented
metric that measures the color preservation capability
of a filter.
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Table 9 Comparison of the filters based on the MAE measure (AR: average ranking).

MAE Uncorrelated Noise Correlated Noise
5% 10% 15% 5% 10% 15%

Rank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR
0 acwddf 1.56 acwddf 1.71 acwddf 1.78 acwddf 1.75 acwddf 1.84 acwddf 2.35
1 pgf 2.29 pgf 3.31 sddf_rank 3.27 pgof 1.96 pgf 2.52 pgf 3.32
2 mecwvmf 3.31 mecwvmf 5.07 pgf 5.16 mewvmf 3.30 acwvmf 4.58 sddf_rank 3.95
3 acwvdf 5.08 sddf_rank 5.08 acwvmf 5.34 acwvmf 4.75 sddf_rank 5.23 acwvmf 3.98
4 acwvmf 5.06 acwvmf 5.30 sddf_mean @ 6.82 acwvdf 5.89 mecwvmf 5.25 svmf_rank 6.98
5 abvdf 7.07 acwvdf 6.21 acwvdf 7.82 avmf 6.75 sddf_mean 8.07 sddf_mean 7.85
6 sddf_rank 7.66 sddf_mean 7.74 svmf_rank 8.75 sddf_rank 7.68 acwvdf 8.08 ffnrf 8.75
7 avmf 7.85 abvdf 9.84 asddf_rank 10.34 ffnrf 8.13 ffnrf 8.88 svmf_mean 9.51
8 ffnrf 8.70 ffnrf 10.32 ffnrf 10.63 abvdf 8.61 svmf_rank 9.66 acwvdf 10.30
9 sddf_mean 9.50 svmf_rank 11.20 mcwvmf 11.04 sddf_mean 9.63 avmf 9.98 fmvmf 11.23
10 sbvdf_rank 11.65 sbvdf_rank 11.51 svmf_mean 11.49 fpof 11.72 svmf_mean 11.52 mecwvmf 11.48
11 fpgf 12.12 asddf_rank 11.97 sbvdf_rank 11.83 sbvdf_rank 12.28 abvdf 12.39 avmf 12.13
12 fmvmf 12.91 avmf 12.81 abvdf 12.23 svmf_rank 12.39 fmvmf 12.40 asddf_rank 12.70
13 svmf_rank  13.31 fmvmf 13.15 fmvmf 12.47 fmvmf 12.51 asddf_rank 12.85 fpgf 13.98
14 asddf_rank 13.69 svmf_mean 13.17 asddf_mean 13.15 asddf_rank 13.75 sbvdf_rank 13.36 sbvdf_rank 15.11
15 sbvdf_mean 14.29 asddf_mean 14.20 eddf 14.47 svmf_mean 13.89 fpgf 13.55 evmf 15.14
16 svmf_mean 14.81 fpgf 14.57 fpgf 15.77 sbvdf_mean 15.81 asddf_mean 16.16 abvdf 15.20
17 asddf_mean 15.83 sbvdf_mean 16.32 avmf 16.49 asddf_mean 16.37 eddf 16.85 asvmf_mean 15.43
18 eddf 18.34 eddf 16.34 evmf 16.93 eddf 18.41 asvmf_rank 17.25 asvmf_rank 15.58
19 asbvdf_rank 18.89 asvmf_mean 18.62 asvmf_mean 17.50 asvmf_rank 18.95 evmf 17.58 eddf 15.88
20 asvmf_rank 19.90 evmf 18.79 asvmf_rank 17.63 asbvdf_rank 19.60 asvmf_mean 18.73 asddf_mean 16.71
21 vsdromf 20.43 asbvdf_rank 18.80 sbvdf_mean 18.75 evmf 19.94 sbvdf_mean 19.47 vsdromf 19.05
22 evmf 20.86 asvmf_mean 20.18 asbvdf_rank 19.22 vsdromf 20.22 vsdromf 20.20 asbvdf_rank 21.94
23 ebvdf 21.62 vsdromf 21.16 vsdromf 20.64 asvmf_mean 21.43 asbvdf_rank 20.62 vmrhf 22.27
24 asvmf_mean 22.38 ebvdf 23.31 vmrhf 23.51 ebvdf 23.40 vmrhf 23.85 sbvdf_mean 22.30
25 asbvdf_mean 22.70 asbvdf_mean 23.35 asbvdf_mean 24.03 asbvdf_mean 24.26 asbvdf_mean 25.05 fvmrhf 24.67
26 vmrhf 25.30 vmrhf 24.52 ebvdf 24.84 vmrhf 24.98 ebvdf 25.50 kvmf 24.80
27 kvmf 25.59 kvmf 26.29 fvmrhf 25.64 kvmf 25.52 kvmf 25.73 asbvdf_mean 26.73
28 fvmrhf 26.88 fvmrhf 26.43 kvmf 25.78 fvmrhf 26.64 fvmrhf 25.94 fddrhf 27.60
29 fddrhf 28.77 fddrhf 28.49 fddrhf 28.13 fddrhf 28.64 fddrhf 28.26 ebvdf 27.89
30 vmf 30.97 vmf 30.79 vmf 30.57 vmf 30.82 vmf 30.51 vmf 30.13
31 cbrf 32.31 ddf 32.60 ddf 32.31 cbrf 32.29 exvmf 32.27 ddf 32.01
32 ddf 32.67 exvmf 32.74 exvmf 32.54 exvmf 32.58 ddf 32.55 exvmf 32.12
33 exvmf 32.85 cbrf 32.97 fovmf 32.81 ddf 32.76 cbrf 33.07 fovmf 32.28
34 amnfe 34.02 fovmf 33.80 fvmf 32.91 fovmf 34.37 fovmf 33.46 fvmf 32.28
35 fovmf 34.55 amnfe 34.41 cbrf 33.79 amnfe 34.60 fvmf 33.90 cbrf 34.03
36 ahdf 35.06 fvmf 34.41 amnfe 35.30 ahdf 34.91 ahdf 35.01 ahdf 34.82
37 fvmf 35.57 ahdf 35.27 ahdf 35.45 fvmf 35.40 amnfe 35.52 hdf 35.74
38 hdf 36.19 hdf 36.34 hdf 36.39 hdf 36.12 hdf 36.06 amnfe 36.64
39 amnfg 38.56 amnfg 38.51 amnfg 38.63 amnfg 38.57 amnfg 38.67 atvmf 38.40
40 atvmf 39.83 atvmf 39.58 atvmf 39.28 atvmf 39.73 atvmf 39.22 amnfg 39.04
41 annmf 41.10 annmf 41.70 fovdf 41.56 annmf 41.12 annmf 41.79 fovdf 41.46
42 fovdf 43.15 fovdf 42.27 gvdf 42.07 fovdf 42.80 fovdf 42.15 gvdf 41.64
43 annf 43.86 gvdf 42.82 annmf 42.67 gvdf 43.49 gvdf 42.27 annmf 42.61
44 fvdrhf 43.86 bvdf 44,72 bvdf 44.39 annf 4414 bvdf 44.30 bvdf 43.66
45 gvdf 4415 annf 44.83 fvdf 44.71 fvdrhf 44.34 fvdrhf 45.26 fvdf 44.67
46 bvdf 44.87 fvdrhf 44.84 fvdrhf 45.38 bvdf 44.66 annf 45.32 fvdrhf 45.77
47 fvdf 46.13 fvdf 45.64 annf 45.79 fvdf 46.14 fvdf 45.32 annf 45.89
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Table 10 Comparison of the filters based on the MSE measure (AR: average ranking).

MSE Uncorrelated Noise Correlated Noise
5% 10% 15% 5% 10% 15%

Rank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR
0 acwddf 3.26 acwddf 3.96 acwddf 4.29 pgf 2.56 pgf 413 acwvmf 4.32
1 pgf 3.82  sddf_rank 4.37  sddf_rank 5.00 acwddf 3.88  sddf_rank 4.51 fvmrhf 5.76
2 sddf_rank 5.50 acwvmf 6.86 acwvmf 6.72  sddf_rank 5.38 acwvmf 4.68 sddf_rank 5.88
3 acwvmf 6.64 pgof 7.43 fvmrhf 6.94 acwvmf 5.48 acwddf 4.89 acwddf 5.99
4 acwvdf 7.37 sddf_mean 9.15 vmrhf 9.04 mcwvmf 712  svmf_rank 6.93 pof 6.49
5 mcwvmf 7.76 acwvdf 9.47 fddrhf 9.07 sddf_mean 8.45 fvmrhf 8.98 fddrhf 7.73
6 sddf_mean 7.95 svmf_rank 9.95 svmf_rank 11.27 svmf_rank 9.04 vmrhf 10.65 vmrhf 7.85
7 svmf_rank  11.22 fvmrhf 10.50 acwvdf 12.43 svmf_mean 11.03 svmf_mean 10.77 svmf_rank 9.05
8 abvdf 11.35 vmrhf 12.37 pgf 12.99 acwvdf 12.30 fddrhf 11.20 fpgf 10.65
9 asddf_rank 12.91 asddf_rank 12.87 fmvmf 13.17 fvmrhf 12.78 sddf_mean 11.41 fmvmf 10.93
10 svmf_mean 13.07 fddrhf 13.33 fpgf 13.85 finrf 13.37 fpgf 12.90 finrf 12.50
11 sbvdf_rank 13.68 svmf_mean 13.35 sddf_mean 14.24 vmrhf 13.68 ffnrf 13.02 kvmf 14.35
12 fvmrhf 14.35 sbvdf_rank 14.48 asddf_rank 15.60 fpof 13.88 fmvmf 13.92 svmf_mean 15.46
13 vmrhf 15.31 abvdf 15.13 kvmf 16.34 asddf_rank 15.01 asvmf_mean 16.77 vsdromf 16.11
14 fpgf 15.33 fpgf 15.51 finrf 16.68 fddrhf 15.50 evmf 16.89 asvmf_mean 18.10
15 ffnrf 15.59 fmvmf 16.02 abvdf 16.85 avmf 16.11 kvmf 17.73 sddf_mean 18.55
16 asddf_mean 15.71 eddf 16.64 svmf_mean 17.12 fmvmf 16.63 acwvdf 18.41 fvmf 18.64
17 eddf 16.22 ffnrf 16.69 asvmf_mean 17.54 eddf 17.47 asvmf_rank 19.06 amnfe 19.24
18 fddrhf 17.37 asddf_mean 17.63 sbvdf_rank 18.60 sbvdf_rank 17.74 asddf_rank 19.10 evmf 19.61
19 fmvmf 18.11 evmf 18.36 evmf 18.95 evmf 18.12 vsdromf 19.46 fovmf 20.67
20 evmf 20.08 asvmf_mean 18.80 vsdromf 18.99 asvmf_mean 19.40 eddf 20.93 asvmf_rank 20.92
21 avmf 20.40 kvmf 19.54 eddf 20.20 asddf_mean 19.63 avmf 21.33 amnfg 22.74
22 kvmf 21.30 asvmf_rank 21.11 amnfe 21.13 abvdf 19.70 mecwvmf 22.25 avmf 23.09
23 asvmf_mean 21.41 mcwvmf 21.98 asddf_mean 22.21 asvmf_rank 19.96 amnfe 22.33 acwvdf 23.25
24 sbvdf_mean 21.47 vsdromf 22.15 fvmf 22.30 kvmf 20.09 sbvdf_rank 23.37 asddf_rank 24.59
25 asvmf_rank 21.78 amnfe 24.66 asvmf_rank 22.31 vsdromf 22.30 fvmf 23.53 exvmf 25.09
26 asbvdf_rank 23.01 asbvdf_rank 26.11 fovmf 24.26 amnfe 25.94 fovmf 25.31 ahdf 25.57
27 vsdromf 24.10 fvmf 26.51 amnfg 24.36 fvmf 27.85 amnfg 25.65 atvmf 26.14
28 amnfe 27.17 amnfg 27.24 exvmf 28.33 sbvdf_mean 28.30 asddf_mean 26.40 vmf 26.16
29 fvmf 29.35 avmf 27.84 ahdf 28.69 asbvdf_rank 28.35 abvdf 26.57 eddf 26.71
30 amnfg 29.58 fovmf 28.11 vmf 29.76 amnfg 28.47 exvmf 29.07 hdf 28.41
31 asbvdf_mean 30.87 sbvdf_mean 28.27 atvmf 30.11 fovmf 29.51 ahdf 29.72 ddf 28.94
32 ebvdf 30.94 exvmf 31.37 avmf 30.48 exvmf 32.38 atvmf 30.82 abvdf 29.19
33 fovmf 31.06 ahdf 32.18 asbvdf_rank 30.60 ahdf 33.13 vmf 30.87 sbvdf_rank 30.32
34 exvmf 33.86 vmf 33.33 hdf 31.66 vmf 34.71 hdf 32.58 cbrf 30.78
35 ahdf 34.66 atvmf 33.70 ddf 32.95 annmf 35.21 ddf 33.67 asddf_mean 32.34
36 fvdrhf 35.51 hdf 34.99 cbrf 34.24 atvmf 35.44 cbrf 33.85 fovdf 32.39
37 vmf 36.37 fvdrhf 35.58 sbvdf_mean 35.10 fvdrhf 35.57 annmf 34.81 annmf 33.85
38 annmf 36.42 cbrf 36.23 fvdrhf 35.29 hdf 36.02 asbvdf_rank 34.97 fvdf 33.95
39 atvmf 37.11 ddf 36.66 fovdf 35.37 cbrf 36.59 fvdrhf 35.39 gvdf 34.31
40 hdf 37.44 asbvdf_mean 36.90 mcwvmf 35.71 asbvdf_mean 37.93 sbvdf_mean 36.82 fvdrhf 34.32
41 cbrf 37.88 annmf 37.15 fvdf 36.06 ebvdf 37.93 fovdf 37.21 mecwvmf 36.16
42 ddf 39.55 ebvdf 37.94 annmf 37.47 ddf 38.07 fvdf 37.54 annf 38.72
43 annf 40.23 fvdf 39.16 gvdf 38.03 annf 39.84 gvdf 38.56 asbvdf_rank 39.45
44 fvdf 41.66 fovdf 39.50 annf 39.67 fvdf 40.85 annf 39.76 sbvdf_mean 41.49
45 fovdf 42.30 annf 40.26 asbvdf_mean 40.30 fovdf 41.27 asbvdf_mean 41.92 bvdf 41.70
46 gvdf 43.61 gvdf 41.15 ebvdf 41.85 gvdf 4217 ebvdf 43.13 asbvdf_mean 44.11
47 bvdf 46.41 bvdf 45.51 bvdf 43.88 bvdf 45.86 bvdf 44.23 ebvdf 45.43
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Table 11 Comparison of the filters based on the NCD measure (AR: average ranking).

NCD Uncorrelated Noise Correlated Noise
5% 10% 15% 5% 10% 15%

Rank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR

0 acwddf 1.79 acwddf 2.31 acwddf 2.54 acwddf 1.80 acwddf 2.22 acwddf 2.34
1 pgf 4.18  sddf_rank 3.29  sddf_rank 3.04 pgf 3.28  sddf_rank 3.62  sddf_rank 3.46
2 acwvdf 4.41 acwvdf 5.05 acwvdf 5.28 acwvmf 4.25 acwvmf 4.37 acwvmf 4.43
3 acwvmf 4.60 acwvmf 5.63 acwvmf 6.16 acwvdf 5.03 pof 5.10 acwvdf 6.07
4 mecwvmf 5.35 sddf_mean @ 7.19 fmvmf 7.29 mecwvmf 5.33 acwvdf 5.63 pgof 6.32
5 sddf_rank 5.69 pgf 7.44  svmf_rank 7.78  sddf_rank 5.94 svmf_rank 7.82 fmvmf 6.58
6 sddf_mean 8.39 sbvdf_rank  8.10 sbvdf_rank 7.83 ffnrf 8.87 sddf_mean 8.05 svmf_rank 7.33
7 abvdf 8.48 svmf_rank 8.65 sddf_mean 8.54 abvdf 8.95 fmvmf 8.90 sbvdf_rank 9.52
8 ffnrf 10.09 fmvmf 9.44 pgf 10.02 sddf_mean 8.96 sbvdf_rank 9.35 sddf_mean 10.09
9 sbvdf_rank 10.33 abvdf 10.05 abvdf 10.30 fmvmf 10.33 abvdf 10.66 abvdf 10.69
10 fmvmf 10.44 svmf_mean 11.60 svmf_mean 12.03 svmf_rank 10.70 ffnrf 10.73 ffnrf 10.76
11 svmf_rank 11.08 asddf_rank 11.94 fpgf 12.75 sbvdf_rank 11.21 svmf_mean 11.52 fpof 11.25
12 fpgf 12.23 finrf 12.93 asddf_rank 12.89 fpgf 11.80 fpgf 12.71  svmf_mean 12.37
13 asddf_rank 13.33 fpgf 13.64 ffnrf 13.52 svmf_mean 12.90 asddf_rank 12.94 asddf_rank 14.33
14 svmf_mean 13.35 asddf_mean 14.34 eddf 14.47 avmf 13.32 mecwvmf 14.93 vsdromf 14.96
15 sbvdf_mean 15.03 eddf 15.03 asddf_mean 15.16 asddf_rank 13.93 eddf 16.07 eddf 15.98
16 avmf 15.93 mecwvmf 15.19 asvmf_mean 15.57 sbvdf_mean 16.53 asddf_mean 16.09 asvmf_mean 16.04
17 asddf_mean 16.01 sbvdf_mean 17.02 vsdromf 15.88 asddf_mean 16.78 evmf 17.28 evmf 17.12
18 eddf 18.06 evmf 17.24 evmf 16.40 vsdromf 18.44 vsdromf 17.47 vmrhf 17.33
19 vsdromf 18.90 asvmf_mean 17.91 vmrhf 18.15 eddf 18.66 asvmf_mean 17.62 asddf_mean 17.94
20 asvmf_rank 19.11 asbvdf_rank 18.13 asvmf_rank 18.82 asvmf_rank 18.69 asvmf_rank 18.52 asvmf_rank 18.64
21 asbvdf_rank 19.12 vsdromf 18.31 asbvdf_rank 19.09 evmf 19.20 sbvdf_mean 19.66 kvmf 21.07
22 evmf 19.53 asvmf_rank 18.89 sbvdf_mean 20.86 asbvdf_rank 20.01 asbvdf_rank 19.97 asbvdf_rank 21.28
23 asvmf_mean 20.89 vmrhf 22.36 kvmf 21.96 asvmf_mean 20.57 avmf 20.09 fvmrhf 21.92
24 ebvdf 23.48 avmf 23.09 fvmrhf 22.69 vmrhf 24.46 vmrhf 21.99 avmf 23.02
25 asbvdf_mean 23.79 kvmf 24.33 mecwvmf 23.70 ebvdf 24.52 kvmf 23.78 sbvdf_mean 23.65
26 vmrhf 24.67 asbvdf_mean 24.67 fddrhf 26.47 asbvdf_mean 24.81 fvmrhf 25.33 mcwvmf 24.16
27 kvmf 25.22 fvmrhf 25.48 asbvdf_mean 27.11 kvmf 24.83 asbvdf_mean 26.59 fddrhf 26.08
28 fvmrhf 26.80 ebvdf 25.69 avmf 27.39 fvmrhf 26.57 ebvdf 27.79 fvmf 29.74
29 fddrhf 28.95 fddrhf 28.19 ebvdf 29.29 fddrhf 28.96 fddrhf 28.09 ddf 30.08
30 ddf 31.37 ddf 31.15 ddf 30.12 ddf 31.50 ddf 31.08 vmf 30.24
31 vmf 32.80 fvmf 31.87 fvmf 30.33 vmf 32.77 fymf 31.69 asbvdf_mean 30.28
32 exvmf 33.08 vmf 32.03 vmf 30.69 exvmf 32.91 vmf 31.74 fovmf 30.43
33 fvmf 33.11 fovmf 32.50 fovmf 30.83 fvmf 33.01 fovmf 32.30 ebvdf 32.06
34 fovmf 33.97 exvmf 33.21 exvmf 32.79 fovmf 33.80 exvmf 32.78 exvmf 32.08
35 cbrf 34.38 cbrf 34.27 ahdf 33.55 ahdf 34.41 ahdf 34.18 ahdf 33.20
36 ahdf 34.48 ahdf 34.40 cbrf 33.64 cbrf 34.47 cbrf 34.47 cbrf 33.84
37 amnfe 34.98 hdf 35.75 hdf 34.98 amnfe 35.28 hdf 35.42 hdf 34.49
38 hdf 35.98 amnfe 36.29 atvmf 37.16 hdf 35.76 amnfe 37.34 atvmf 36.37
39 amnfg 38.23 atvmf 38.69 amnfe 38.01 amnfg 38.43 atvmf 37.84 amnfe 39.05
40 atvmf 39.86 amnfg 39.14 fovdf 39.79 atvmf 39.76 amnfg 39.74 fovdf 39.17
41 fovdf 41.87 fovdf 40.96 amnfg 39.96 fovdf 41.80 fovdf 40.70 gvdf 40.26
42 annmf 42.49 gvdf 41.63 gvdf 40.92 annmf 42.46 gvdf 41.36 amnfg 40.57
43 gvdf 42.78 bvdf 42.42 bvdf 41.27 gvdf 42.56 bvdf 42.03 bvdf 40.71
44 bvdf 43.42 annmf 43.88 fvdf 44.00 bvdf 43.16 annmf 43.95 fvdf 43.85
45 annf 44 11 fvdf 44.79 annmf 44.61 annf 44.35 fvdf 44.37 annmf 44.55
46 fvdrhf 45.91 annf 45.33 annf 45.67 fvdf 45.88 annf 45.53 annf 45.67
47 fvdf 45.95 fvdrhf 46.56 fvdrhf 46.70 fvdrhf 46.06 fvdrhf 46.59 fvdrhf 46.63
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Table 12 Comparison of the filters based on execution time (AR: average ranking).

TIME Uncorrelated Noise Correlated Noise
5% 10% 15% 5% 10% 15%

Rank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR
0 fpgf 0.08 fpgf 0.20 fpgf 0.50 fpgf 0.06 fpgf 0.27 asvmf_mean 0.47
1 asvmf_mean 0.92 asvmf_mean 0.81 asvmf_mean 0.54 asvmf_mean 0.94 asvmf_mean 0.75 fpof 0.54
2 pgf 2.01 pgf 2.02 pgf 2.1 pgf 2.02 pgf 2.07 pgf 2.26
3 svmf_mean 3.00 svmf_mean 2.97 svmf_mean 2.86 svmf_mean 2.99 svmf_mean 2.91 svmf_mean 2.73
4 ffnrf 3.99 ffnrf 4.00 ffnrf 3.99 ffnrf 3.99 ffnrf 4.00 ffnrf 4.00
5 mcwvmf 5.44 mcwvmf 5.33 mcwvmf 5.10 mcwvmf 5.39 mcwvmf 5.29 mcwvmf 5.16
6 asbvdf_mean 6.88 asbvdf_mean 6.73 svmf_rank 7.44 asbvdf_mean 7.04 asbvdf_mean 7.09 svmf_rank 7.32
7 svmf_rank 7.57 svmf_rank 7.66 asbvdf_mean 7.52 fmvmf 7.78 svmf_rank 7.41 asbvdf_mean 7.61
8 fmvmf 8.06 fmvmf 7.71 fmvmf 7.72 svmf_rank 7.83 fmvmf 7.91 fmvmf 7.73
9 vmf 8.48 vmf 8.47 vmf 8.15 vmf 8.33 vmf 8.21 vmf 8.02
10 asvmf_rank  9.85 asvmf_rank 9.56 asvmf_rank 9.24 asvmf_rank 9.74 asvmf_rank 9.46 asvmf_rank 9.34
11 asddf_mean 10.23 asddf_mean 10.85 asddf_mean 11.27 asddf_mean 10.33 asddf_mean 10.92 asddf_mean 11.27
12 sbvdf_mean 12.46 exvmf 12.38 exvmf 11.83 exvmf 12.41 exvmf 11.89 exvmf 11.68
13 exvmf 12.60 sbvdf_mean 12.83 sbvdf_mean 13.32 sbvdf_mean 12.78 sbvdf_mean 13.54 kvmf 13.95
14 kvmf 14.53 kvmf 14.78 kvmf 14.80 kvmf 14.52 kvmf 14.68 avmf 14.40
15 avmf 15.05 avmf 14.98 avmf 14.99 avmf 14.86 avmf 14.88 atvmf 14.65
16 atvmf 15.46 atvmf 15.38 atvmf 15.18 atvmf 15.58 atvmf 15.30 sbvdf_mean 15.55
17 vsdromf 17.39 vsdromf 17.17 vsdromf 17.17 vsdromf 17.32 vsdromf 17.30 vsdromf 17.24
18 vmrhf 18.12 vmrhf 17.67 vmrhf 17.68 vmrhf 17.85 vmrhf 17.62 vmrhf 17.55
19 sddf_mean 19.01 acwvmf 19.22 acwvmf 19.01 acwvmf 19.44 acwvmf 19.07 acwvmf 19.02
20 acwvmf 19.72 sddf_mean 20.17 sddf_mean 20.58 sddf_mean 19.87 annmf 20.71 annmf 20.03
21 annmf 21.13 annmf 21.02 annmf 20.91 annmf 21.11  sddf_mean 20.92 amnfe 22.00
22 amnfe 22.18 amnfe 22.36 amnfe 22.30 amnfe 22.19 amnfe 22.37 cbrf 22.21
23 cbrf 23.50 cbrf 23.35 cbrf 23.11 evmf 23.24 cbrf 23.09 evmf 22.84
24 evmf 23.56 evmf 23.54 evmf 23.88 cbrf 23.54 evmf 23.39 sddf_mean 23.73
25 amnfg 24.33 amnfg 24.38 amnfg 24.29 amnfg 24.44 amnfg 24.56 amnfg 24.25
26 bvdf 26.00 bvdf 25.98 bvdf 25.98 bvdf 25.92 bvdf 25.95 bvdf 25.98
27 sbvdf_rank 26.96 sbvdf_rank 26.88 sbvdf_rank 26.89 sbvdf_rank 26.98 sbvdf_rank 26.85 sbvdf_rank 26.83
28 ebvdf 28.50 ebvdf 28.47 ebvdf 28.66 ebvdf 28.61 ebvdf 28.67 ebvdf 28.66
29 asbvdf_rank 29.04 asbvdf_rank 29.00 asbvdf_rank 28.78 asbvdf_rank 28.85 asbvdf_rank 28.81 asbvdf_rank 28.82
30 gvdf 29.47 gvdf 29.51 gvdf 29.56 gvdf 29.59 gvdf 29.52 gvdf 29.51
31 abvdf 31.04 abvdf 31.00 abvdf 30.95 abvdf 31.01 abvdf 31.02 abvdf 30.96
32 eddf 32.46 eddf 32.47 annf 32.68 eddf 32.47 eddf 32.61 annf 32.48
33 annf 32.81 annf 32.80 eddf 32.98 annf 32.88 annf 32.78 eddf 33.13
34 ddf 33.58 ddf 33.65 ddf 33.28 ddf 33.48 ddf 33.49 ddf 33.38
35 sddf_rank 34.98 sddf_rank 35.05 sddf_rank 35.05 sddf_rank 34.93 sddf_rank 34.93 sddf_rank 34.87
36 acwvdf 35.96 acwvdf 35.95 acwvdf 36.05 acwvdf 36.07 acwvdf 36.25 acwvdf 36.34
37 asddf_rank 36.85 asddf_rank 36.88 asddf_rank 36.83 asddf_rank 36.82 asddf_rank 36.72 asddf_rank 36.68
38 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94
39 ahdf 39.10 ahdf 39.01 ahdf 38.99 ahdf 39.03 ahdf 38.96 ahdf 38.98
40 acwddf 39.93 acwddf 40.01 acwddf 40.01 acwddf 40.01 acwddf 40.07 acwddf 40.05
41 fvdf 40.93 fvdf 40.95 fvdf 40.96 fvdf 40.92 fvdf 40.92 fvdf 40.94
42 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96
43 fvmrhf 43.01 fvmrhf 43.01 fvmrhf 43.02 fvmrhf 43.01 fvmrhf 43.01 fvmrhf 43.01
44 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96
45 fddrhf 45.03 fddrhf 45.03 fddrhf 45.00 fddrhf 45.03 fddrhf 45.02 fddrhf 45.00
46 fvmf 45.97 fvmf 45.97 fvmf 45.99 fvmf 45.97 fvmf 45.97 fvmf 45.98
a7 fovmf 46.97 fovmf 46.98 fovmf 46.99 fovmf 46.97 fovmf 46.98 fovmf 46.99
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The efficiency of a filter is measured by the execution
time in seconds. In order to ensure a fair comparison, all of
the filters were implemented in the same style in the C
language and compiled with the gcc v3.4 compiler. The
experiments were performed on an Intel Pentium D
2.66-GHz machine.

An issue in the comparison of the execution times is the
cost of the inverse cosine (acos) function that is utilized in
the angular and directional-distance filters. Standard library
implementations of this function are computationally very
expensive, causing angular distance computations to be
much slower than the Minkowski distance computations.
For example, on a typical 512 X 512 image, the VMF takes
about 0.36 s, while the BVDF takes approximately 10.0 s.
A solution to mitigate this problem is to use an approxima-
tion for the acos function over the interval [0, 1]. However,
this is not easy because of the singularity of this function at
arguments very close to 1. This can be circumvented by
usi(;lgggghe following numerically more stable identity for x
= .

acos(x) =2 - asin(\(1 —x)/2). (20)

In Eq. (20), the inverse sine (asin) function receives its
arguments from the interval [0, 0.5]. Fortunately, this func-
tion is almost linear in this interval and can be accurately
approximated using a third-degree minimax polynomial%:

asin(x) = — 0.67921302e — 4 + (1.003729762
+(=0.309031329¢ — 1
+.2356774247 - X) - X) - X. (21)

The approximation error is £=0.00006792131489. Simi-
larly, the acos function is almost linear in the interval [0,
0.5] and can be approximated by

acos(x) = 1.570864248 + (— 1.003729768

+(0.309031763¢ — 1 — 2356774861 - x) - x) - X.
(22)

The approximation error is £=0.00006792158693. This
piecewise approximation of the acos function gives virtu-
ally the same numerical results, i.e., MAE, MSE, and NCD,
as the standard acos function when used in the implemen-
tation of an angular or a directional-distance filter. This is
because the error propagation is not very significant con-
sidering the small size of a filter window (only 9 pixels in a
3X 3 window).

In order to demonstrate the effect of the approximation
on the running time of an actual filter, the BVDF imple-
mentation that uses the standard acos function and the one
that uses the approximation were both executed on the en-
tire image set (100 images). The standard implementation
took 1428 s, while the approximate one took 102 s. Similar
gains in the execution times (=13-14X) were observed for
the other angular and directional-distance filters as well.
Note that methods used to speed up the VMF operation
itself*® are beyond the scope of this study.
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Table 13 Most effective filters at each noise level.

Noise Level Most Effective Filters

5% noise ACWDDF, PGF, SDDF _rank,
ACWVMF, ACWVDF, MCWVMF,
SDDF_mean

10% noise ACWDDF, PGF, SDDF _rank,
ACWVMF, SDDF_mean, SVMF _rank

15% noise ACWDDF, PGF, SDDF _rank,

ACWVMF, SVMF _rank

4 Discussion and Conclusions

This section discusses the experimental results and presents
the conclusions. First, the filters are compared based on the
previously described measures of effectiveness and effi-
ciency. Second, the filters that achieve a good compromise
between effectiveness and efficiency are identified. Finally,
the three commonly used distance measures are compared.

41 Discussion

Tables 9-12 show the rankings' of the filters based on the
following criteria: MAE, MSE, NCD, and execution time,
respectively. The results® are presented for the two noise
models (uncorrelated and correlated impulsive noise) and
three noise levels (5%, 10%, and 15%). The average rank-
ings are obtained by averaging the individual filter rankings
over the entire image set.

In order to determine the most effective filters at each
noise level, we select the 10 best filters with respect to each
effectiveness measure (MAE, MSE, NCD) for each noise
model. Based on this selection, at each noise level, the
filters that perform well regardless of the noise model and
the effectiveness measure are determined (see Table 13). It
can be observed that two filter families are particularly
prominent in effectiveness: the adaptive center-weighted
vector filters and the vector sigma filters. This can be at-
tributed to the effectiveness of the noise detection criteria
used in these families. By varying the smoothing param-
eter, the adaptive center-weighted vector filters employ a
computationally expensive but robust iterative scheme to
determine whether the center pixel is noisy or not. On the
other hand, the vector sigma filters utilize approximations
of the multivariate variance within a window in their noise
detection criteria. Interestingly, in general, the nonadaptive
vector sigma filters perform better than their adaptive coun-
terparts.

The filters that are effective under any circumstances are
those that appear in every row of Table 13. These are the
ACWDDEF, PGF, SDDF_rank, and ACWVMEF. Among
these filters, the ACWDDF consistently ranks the highest
under different noise configurations. The PGF and
ACWVMF have relatively stable rankings, whereas the
SDDF _rank exhibits somewhat fluctuating behavior. Fig-
ures 2 and 3 show the results of these filters on two images
corrupted by 10% and 15% correlated noise, respectively.

"Note that the rankings start from 0 rather than 1.
*For comparison purposes, the window size for each filter is set to 3 X3 and the
L2-norm is used whenever the Minkowski distance is involved.
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Fig. 2 Sample filtering results for the baboon image. (a) Original; (b)
10% correlated noise; MAE: 6.058; MSE: 893.707; NCD: 0.101; (c)
ACWDDF: MAE: 1.902; MSE: 76.956; NCD: 0.012; (d) ACWVDF:
MAE: 2.182; MSE: 102.892; NCD: 0.014; (e) PGF: MAE: 2.293;
MSE: 98.825; NCD: 0.015; (f) SDDF_mean: MAE: 3.017; MSE:
124.358; NCD: 0.019; (g) SDDF _rank: MAE: 3.031; MSE: 123.020;
NCD: 0.019; (h) ACWVMF: MAE: 3.726; MSE: 171.007; NCD:
0.023.

The execution time is also a very important factor that
determines the practicality of a noise removal filter. As
Table 12 shows, the ordering of the filters with respect to
execution time remains almost unchanged across different
noise configurations. The 10 most efficient filters are FPGF,
ASVMF_mean, PGF, SVMF_mean, FFNRF, MCWVME,
ASBVDF_mean, SVMF_rank, FMVMF, and VME. The
following observations are in order:

» Except for the VMEF, every filter in the list is based on
the concept of switching (alternating between the
identity and the filter operations).

* The FPGF is clearly the most efficient filter.

e The PGF is the only filter that ranks very high in terms
of both effectiveness and efficiency. This is signifi-
cant, considering the most effective filter, i.e.,
ACWDDF, is actually among the slowest.

It should be emphasized that some filters that appear in the
10 most efficient filters list but not in Table 13 still achieve
a good compromise between effectiveness and efficiency.
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Fig. 3 Sample filtering results for the Native American image. (a)
Original; (b) 15% correlated noise; MAE: 9.600; MSE: 1558.290;
NCD: 0.182; (c) ACWDDF: MAE: 1.453; MSE: 49.316; NCD: 0.015;
(d) PGF: MAE: 1.593; MSE: 54.189; NCD: 0.021; (e) SDDF _rank:
MAE: 1.594; MSE: 50.284; NCD: 0.016; (f) ACWVMF: MAE: 1.643;
MSE: 53.992; NCD: 0.019; (g) SDDF_mean: MAE: 1.776; MSE:
74.073; NCD: 0.021; (h) ACWVDF: MAE: 2.030; MSE: 109.360;
NCD: 0.018.

These include MCWVMEF, FMVMEF, FFENRF, SVMF _rank,
SVMF_mean, and FPGF.

An examination of the distance measures (Minkowski,
angular, directional-distance) with respect to effectiveness
and efficiency shows that no distance measure completely
outperforms the other two. However, it is interesting to note
that among the 4 most effective filters, 2 are based on
directional-distance (ACWDDF, SDDF_rank). Considering
that only 8 of the 48 filters are based on directional-
distance, the idea of combining the Minkowski and angular
distance functions proves to be quite advantageous. On the
other hand, as explained in Section 3.3, the filters based on
the Minkowski distance are inherently more efficient than
their angular and directional-distance counterparts. In fact,
it can be seen from Table 12 that, except for the FFNRF
and ASBVDF _mean, the 10 most efficient filters are all
based on the Minkowski distance. In contrast, the most ef-
ficient angular filter (ASBVDF_mean) appears at the 7th
rank, whereas the most efficient directional-distance filter
(ASDDF_mean) ranks 12th. This shows that if execution
time is of prime importance, filters based on the Minkowski
distance are the most obvious choice.

The unsatisfactory performance of the hybrid and adap-
tive fuzzy filters can be attributed to the fact that these
filters introduce color artifacts by determining the output in
a window as a linear or nonlinear combination of the input
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vectors. However, it should be noted that these filters are
known to be more effective in the presence of Gaussian
noise due to their averaging nature.

The reader should note that due to time constraints some
filters in the literature were omitted from this study. No-
table examples include the fast adaptive similarity-based
noise reduction filter (FANRF),”, the fuzzy inference-
based vector filter (FIVF),” and the vector rank M-type
K-nearest neighbor (VRMKNNF).16 The FANRF is based
on the notion of similarity rather than distance. The simi-
larity between two pixels can be calculated using various
kernel functions, which allows for more flexibility when
designing filters tailored for particular applications. The
FIVF employs a novel fuzzy inference system for noise
detection and involves switching between the identity op-
eration and the L-filter, whose coefficients are determined
using a fast constrained least-mean-squares approach. The
VRMKNNF is based on combined RM-estimators with dif-
ferent influence functions. It employs an adaptive nonpara-
metric approach that determines the functional form of the
probability density of the noise to improve the filtering per-
formance.

4.2 Conclusions

This study presented a systematic survey of 48 impulsive
noise removal filters using a unified notation. The filters
were categorized into families and compared on a large
image set in order to ensure an objective appraisal of their
effectiveness and efficiency. A fast approximation for the
inverse cosine function was introduced to allow for a more
even comparison of efficiency. Furthermore, commonly
used distance measures were compared and contrasted. Fi-
nally, recommendations for selecting filters that meet cer-
tain criteria were provided.

The implementations of the filters described in this ar-
ticle have been made publicly available as part of the Fou-
rier image processing and analysis library, which can be
downloaded from http://sourceforge.net/projects/fourier-
ipal.
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