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bstract. A comprehensive survey of 48 filters for impulsive noise
emoval from color images is presented. The filters are formulated
sing a uniform notation and categorized into 8 families. The perfor-
ance of these filters is compared on a large set of images that

over a variety of domains using three effectiveness and one effi-
iency criteria. In order to ensure a fair efficiency comparison, a fast
nd accurate approximation for the inverse cosine function is intro-
uced. In addition, commonly used distance measures (Minkowski,
ngular, and directional-distance) are analyzed and evaluated. Fi-
ally, suggestions are provided on how to choose a filter given cer-

ain requirements. © 2007 SPIE and IS&T. �DOI: 10.1117/1.2772639�

Introduction
he growing use of color images in diverse applications
uch as medical image analysis, content-based image re-
rieval, remote sensing, and visual quality inspection has
ed to an increasing interest in color image processing.
hese applications involve many of the same tasks as their
ray-scale counterparts, such as edge detection, segmenta-
ion, and feature extraction.1 However, color images are
ften contaminated with noise, which not only lowers their
isual quality, but also complicates automated processing.
herefore, the removal of such noise is often a necessary
reprocessing step for color image processing
pplications.2

Image noise can come from many sources and can be
ntroduced into an image during either acquisition or trans-
ission through sensors or communication channels,

espectively.3 “Impulsive noise” is noise of low duration
nd high energy that can be caused either by faulty sensors
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or by electrical disturbances such as lightning and the op-
eration of high-voltage machinery corrupting the transmis-
sion signal.4 The introduction of such noise into an image is
often detrimental to its future usage. If the image is meant
for human consumption, the presence of noise lowers its
perceptual quality. On the other hand, if it is to be pro-
cessed further, the noise can make complex tasks such edge
detection and segmentation even more difficult.

Numerous filters have been proposed in the literature for
impulsive noise removal from color images. Among these,
nonlinear filters have proved successful in the preservation
of edges and fine image details while removing the noise.5

The early approaches to nonlinear filtering of color images
often involved the application of a scalar filter to each color
channel independently. However, since separate processing
ignores the inherent correlation between the color channels,
these methods often introduce color artifacts to which the
human visual system is very sensitive.6 Therefore, vector
filtering techniques that treat the color image as a vector
field and process color pixels as vectors are more
appropriate.7 An important class of nonlinear vector filters
is the one based on robust order statistics, with the vector
median filter �VMF�8 being the most widely known ex-
ample. These filters involve reduced ordering9,10 of a set of
input vectors within a window to compute the output vec-
tor. Recent applications of these include enhancement of
cDNA microarray images,11,12 virtual restoration of
artwork,13,14 and video filtering.15–18

The motivation of this study is twofold. First, a large
number of nonlinear vector filters have been proposed in
the literature since 1990. Therefore, a study that categorizes
and presents these filters in a unified notation is desirable.
Second, to the best of the authors’ knowledge, no study to

date has objectively compared the performance of these
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lters on a large and diverse set of images. A similar
tudy19 presents a detailed survey of the nonlinear vector
lters, noise models, filtering performance criteria, and ap-
lications; however, it does not provide an experimental
omparison of these filters.

In this study, 48 impulsive noise removal filters are pre-
ented in a systematic fashion and categorized into 8 fami-
ies. Furthermore, the performance of these filters in terms
f both effectiveness and efficiency are compared on a set
f 100 images that cover a multitude of domains. In order
o ensure fairness in the efficiency comparisons, a fast and
ccurate approximation for the inverse cosine function
used in many of the filters� is introduced. In addition, the
elative merits of commonly used distance measures
Minkowski, angular, and directional-distance� are ana-
yzed and compared. Finally, suggestions are provided on
ow to choose a filter given certain requirements.

The rest of the paper is organized as follows. Section 2
ntroduces the notation and categorizes the filters. Section 3
escribes the image set, the noise models, and the filtering
erformance criteria. Finally, Section 4 discusses the ex-
erimental results and gives the conclusions.

Categorization of the Filters
n this section, the 48 impulsive noise removal filters are
ategorized into 8 groups as follows:

1. Basic vector filters
2. Adaptive fuzzy vector filters
3. Hybrid vector filters
4. Adaptive center-weighted vector filters
5. Entropy vector filters
6. Peer group vector filters
7. Vector sigma filters
8. Miscellaneous vector filters

he notation used in the descriptions of these filters is
hown in Table 1. Note that the author-recommended pa-
ameter values for each filter are indicated in the descrip-
ions.

.1 Basic Vector Filters
hese are the earliest impulsive noise removal filters pro-
osed in the literature. The subsequent, more advanced fil-
ers are more or less based on these basic filters. Table 2
hows the mathematical expressions for these filters.

.1.1 Vector median filter
he vector median filter �VMF�8 and its extensions20,21 fol-

ow directly from the concept of the nonlinear order statis-
ics in that the output of the filter is the lowest-ranked vec-
or in the window. The VMF orders the color input vectors
ccording to their relative magnitude differences using the
inkowski metric as a distance measure. The two most
idely used such measures are the L1- �Manhattan dis-

ance� and the L2- �Euclidean distance� norms.22

.1.2 Alpha-trimmed vector median filter
he alpha-trimmed vector median filter �ATVMF�18 selects

he lowest-ranked 1+� vectors as input to an averaging

lter. The trimming operation guarantees good performance

ournal of Electronic Imaging 033008-
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in the presence of impulsive noise. In addition, the averag-
ing operation helps the filter cope with Gaussian noise. The
parameter � is set to �n /2�.

2.1.3 Basic vector directional filter

Another method for detecting the outliers in a window is to
rank the color vectors based on the orientation difference
between them. In other words, vectors with atypical direc-
tions are considered to be outliers. The basic vector direc-
tional filter �BVDF�23 uses this concept in a manner similar
to the VMF, by using the angle between two color vectors
as the distance criterion. Since a vector’s direction corre-
sponds to its chromaticity,24 this filter preserves the chro-
maticity of the input vectors better than the VMF.

2.1.4 Generalized vector directional filter

The generalized vector directional filter �GVDF�24 is a gen-
eralization of the BVDF in that its output is a superset of
the single BVDF output. After the vectors are ranked ac-
cording to the angular distance criterion, a set of low-rank
vectors is selected as input to an additional filter to produce
a single output vector. In the second step, only the magni-
tudes of the vectors are considered. Thus, any grayscale
filter25 such as the arithmetic mean filter �AMF�, the mul-
tistage median filter, and various morphological filters can
be used. In this study, the AMF is used for magnitude pro-
cessing.

2.1.5 Directional distance filter

The directional distance filter �DDF�26,27 is a combination
of the VMF and the BVDF derived by the simultaneous
minimization of their defining functions �see Table 2�. The
motivation behind this is to incorporate information about
both a vector’s magnitude �brightness� and its direction
�chromaticity� in the calculation of the distance metric. The
parameter � in this case controls the relative importance of
each component. This parameter is set to 0.5, which implies
an equal consideration for both measures.

2.1.6 Content-based ranked filter

The content-based ranked filter �CBRF�,28 like the DDF,
ranks the vectors according to a distance metric that incor-
porates more information about the vector as a whole than
the criteria used by the VMF and the BVDF. The similarity
between two vectors in this case can be expressed as the
ratio of some function of what they share �commonality� to
what they comprise �totality�.29 The numerator �commonal-
ity� and the denominator �totality� correspond to the vector
difference and the vector sum, respectively.

2.2 Adaptive Fuzzy Vector Filters

These filters utilize data-dependent coefficients to adapt to
local image characteristics.11,30,31 The general form of an
adaptive fuzzy vector filter is given as a nonlinear transfor-
mation of a fuzzy weighted average of the input vectors

within a window W:
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afvf = g��
i=1

n

wixi

�
i=1

n

wi
� , �1�

here xafvf is the filter output, g�.� is a nonlinear function,

Table 1 Notatio

Notation

N

W

n

xi

xi
k

x�i�

xf

C= �n+1� /2

��xi � �= �xi
1 ·xi

1+xi
2 ·xi

2+xi
3 ·xi

3�1/2

x̄ = xAMF =
1

n�
i=1

n

xi

�xi ,xj�=xi
1 ·xj

1+xi
2 ·xj

2+xi
3 ·xj

3

D�xi ,xj�

Lp�xi,xj� = ��xi − xj��p =	�
k=1

3

�xi
k − xj

k�p
1/p

l�i� = lp�i� =�
j=1

n

Lp�xi,xj�

A�xi,xj� = cos−1	 �xi,xj�
��xi�� · ��xj��




a�i� =�
j=1

n

A�xi,xj�

d�i� =	�
j=1

n

A�xi,xj�
�

·	�
j=1

n

Lp�xi,xj�
1−�
nd wi�0⇔xi are the fuzzy weights that correspond to
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each input vector. The weights provide the degree to which
an input vector contributes to the filter output and are de-
termined by fuzzy transformations of the cumulative dis-
tances associated with each input vector.

2.2.1 Fuzzy-weighted average filters
In the fuzzy-weighted average filters �FWAFs�, the function

d in the study.

Meaning

er of pixels in an image

ing window

er of pixels in W

xel in W

omponent of xi �k=1: red, k=2: green, k=3:

with the ith ranking according to a particular
ing scheme

ut of a particular filter ‘f ’ within W

of the center pixel in W

dean norm of xi

vector within W. Also, the output of the
etic mean filter �AMF�

product between xi and xj

nce between xi and xj according to a particular
ure

wski distance between xi and xj

lative Minkowski distance associated with xi

lar distance between xi and xj

lative angular distance associated with xi

lative directional distance associated with xi
ns use

Numb

Filter

Numb

ith pi

kth c
blue�

Pixel
order

Outp

Index

Eucli

Mean
arithm

Inner

Dista
meas

Minko

Cumu

Angu

Cumu

Cumu
g�.� is the identity function:
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fwaf =

�
i=1

n

wixi

�
i=1

n

wi

. �2�

Because of the averaging operation, the filter output
fwaf is generally not included in the input vector set
x1 ,x2 , . . . ,xn�. This allows better performance in the pres-
nce of Gaussian noise when compared to pure order
tatistics-based filters that select the output vector from the
et of input vectors. Note that depending on the distance
riterion and the corresponding fuzzy transformation, vari-
us fuzzy filters can be derived from Eq. �2�.

uzzy vector median filter. In the fuzzy vector median
lter �FVMF�,30–32 the Minkowski metric is used as the
istance function and the fuzzy membership function has
n exponential form. In this case the fuzzy weights are
iven by

i = exp�− l��i�/�� for i = 1,2, . . . ,n , �3�

here � and � are parameters that control the amount of
uzziness in the weights.33 The following values are used
or these parameters: �=0.5 and �=1.0.

uzzy vector directional filter. In the fuzzy vector direc-
ional filter �FVDF�,30,31 the vector angle metric is used as
he distance function and the fuzzy membership function
as a sigmoidal form. In this case the fuzzy weights are
iven by

i =
�

�1 + exp�a�i���� for i = 1,2, . . . ,n , �4�

here � is a parameter that can be used to adjust the

Table 2 Ba

Filter

VMF

ATVMF

BVDF

DDF

CBRF
eighting effect of the membership function and � is a
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weight-scale threshold. The following values are used for
these parameters: �=1.0 and �=2.0.

Adaptive nearest-neighbor filter. In the adaptive
nearest-neighbor filter �ANNF�,34 the fuzzy weights are de-
termined as follows:

wi =
a�n� − a�i�

a�n� − a�1�
for i = 1,2, . . . ,n , �5�

where a�n� and a�1� are the maximum and minimum cumu-
lative angular distances, respectively. It should be noted
that other distance measures such as the Minkowski and
directional-distance functions can also be used in Eq. �5�.

Adaptive nearest-neighbor multichannel filter. The
adaptive nearest-neighbor multichannel filter �ANNMF�35

is a modification of the ANNF that uses a composite dis-
tance function rather than an angular one:

D�xi,xj� = 1 − 	 �xi,xj�

xi
 · 
xj



	1 −
�
xi
 − 
xj
�

max�
xi
,
xj
�

 . �6�

2.2.2 Fuzzy ordered vector filters

The fuzzy ordered vector filters FOVF31,36 are a fuzzy gen-
eralization of the alpha-trimmed filters in which the input
vectors are ordered according to their fuzzy membership
strengths and only those vectors with the largest fuzzy

ctor filters.

Formulation

xVMF=argminxi�W�l�i��

xATVMF =
1

1 + ��
i=1

1+�

x�i�, � � �0,n − 1�

xBVDF=argminxi�W�a�i��

xDDF=argminxi�W�d�i��

xCBRF = argminxi�W�
j=1

n

G�xi,xj�

G�xi,xj� = 	 
xi
2 + 
xj
2 − 2
xi

xj
cos���

xi
2 + 
xj
2 + 2
xi

xj
cos���


1/2
sic ve
weights contribute to the output vector:
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FOVF =

�
i=1

k

w�i�x�i�

�
i=1

k

w�i�

, k � �1,n� , �7�

here x�k��x�k−1�� ¯ �x�1�, are the vectors with the k
argest weights w�k��w�k−1�� ¯ �w�1� respectively.

The number of vectors �k� can be determined adaptively
y considering only those input vectors with fuzzy weights
reater than 1/n.30 Note that any fuzzy membership func-
ion such as �3�, �4�, or �5� can be used to determine the
eights in �7�. In this study, only the fuzzy ordered vector
edian filter �FOVMF� �Eqs. �3� and �7�� and the fuzzy

rdered vector directional filter �FOVDF� �Eqs. �4� and �7��

Table 3 Hy

ilter

XVMF
xEXVMF =�xAMF if l�xAM

xVMF otherw

DF

xHDF = �xVMF


xVMF


xBVDF


· xBVDF

HDF

xAHDF = �xVMF if xVMF =

xout1 if l�xout1

xout2 otherw

xout1 =

xVMF


xBVDF


· xBVDF, x

MRHF
xVMRHF = xCWVMF +

�1 · xV

�

VMRHF
xFVMRHF = xFCWVMF +

�1 · x

VDRHF
xFVDRHF = xFCWVDF +

�1 · x

DDRHF xFDDRHF = xFCWDDF

+
�1 · xFDD

�1 + �2 · �A��x

VMF xKVMF = ��
xC − xVMF
� · xC

��d� = exp�− d/h�, h � 	
re considered.
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2.3 Hybrid Vector Filters
These filters utilize a number of subfilters of different types
�hence the term “hybrid”� and define the output as a linear
or nonlinear combination of the input vectors.37 Conse-
quently, the output is often not included in the input set.
Table 3 shows the mathematical expressions for these fil-
ters.

2.3.1 Extended vector median filter
The extended vector median filter �EXVMF�8 combines the
VMF with linear filtering to compensate for the deficiency
of the VMF in dealing with Gaussian noise. Near edges this
filter behaves like the VMF and preserves the details, while
in smooth areas it behaves like the AMF, resulting in im-

ctor filters.

Formulation

VMF�

F = xBVDF

ise

ut2�

xAMF


BVDF

· xBVDF

· xCWVMF + �3 · xVMF2


xVMF1
− xVMF2




�
i=1

3

�i = 0

�2 · xFCWVMF + �3 · xFVMF2

2 · 
xFVMF1
− xFVMF2




�2 · xFCWVDF + �3 · xFVDF2

2 · A�xFVDF1
,xFVDF2

�

· xFCWDDF + �3 · xFDDF2

FDDF2
� · 
xFDDF1

− xFDDF2

1−��

��
xC − xVMF
�� · xVMF

�

xi − x̄
/8N2
1/2
brid ve

F� � l�x
ise

if xVM

otherw

xBVDF

� � l�xo

ise

out2 =



x

MF1
+ �2

1 + �2 ·

FVMF1
+

�1 + �

FVDF1
+

�1 + �

F1
+ �2

FDDF1
,x

+ �1 −

�i=1

N
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.3.2 Hybrid directional filter
he hybrid directional filter �HDF�38 is also based on the
oncept of independent vectorial attribute processing intro-
uced in the DDF. It can be thought of as a nonlinear com-
ination of the VMF and the BVDF filters.

.3.3 Adaptive hybrid directional filter
he adaptive hybrid directional filter �AHDF�38 is an exten-
ion of the HDF that utilizes the AMF in the filter structure.
his is so the magnitude of the output vector will be that of

he mean vector in smooth regions and that of the median
perator near edges. Note that the criterion for the selection
f the output vector in this filter is similar to the one used in
he EXVMF.

.3.4 Vector median-rational hybrid filter
he vector median-rational hybrid filter �VMRHF�39–41 is a
ultichannel extension of the median-rational hybrid filter

hat combines the output of three subfilters �two vector me-
ian filters and a center weighted vector median filter*� in a
ational function. It differs from a linear low-pass filter
ainly due to the scaling, which is essentially an edge-

ensing term characterized by the Euclidean distance be-
ween the two VMF outputs. The coefficient vector �
��1�2�3� in the numerator is chosen a priori and serves to
eight the outputs of the three subfilters. The parameters
1 and �2 in the denominator are positive constants. The

ormer ensures numerical stability while the latter regulates
he nonlinearity. The masks utilized by each subfilter are as
ollows:

MF1:�0 1 0

1 1 1

0 1 0
�, CWVMF:�1 1 1

1 3 1

1 1 1
� , �8�

MF2:�1 0 1

0 1 0

1 0 1
� .

ote that only those pixels with nonzero coefficients are
onsidered in each of these masks. The parameter values
re chosen as follows: �1=1.0, �2=−2.0, �3=1.0, �1=3.0,
nd �2=3.0.

.3.5 Fuzzy rational hybrid filters
he fuzzy rational hybrid filters36,42,43 are a family of adap-

ive hybrid filters that are derived from the VMRHF. In the
uzzy vector median-rational hybrid filter �FVMRHF�, one
f the subfilters is a fuzzy center-weighted vector median
lter �FCWVMF� and the other two are fuzzy vector me-
ian filters �FVMF�. The fuzzy weights for these subfilters
re given by

i =
2

1 + exp�l��i��
for i = 1,2, . . . ,n . �9�
See Section 2.4.
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The fuzzy vector directional-rational hybrid filter
�FVDRHF� and the fuzzy directional distance-rational hy-
brid filter �FDDRHF� are the angular and the directional-
distance counterparts of the FVMRHF, respectively. The
smoothing parameter � is set to 1.0, and for the remaining
parameters the VMRHF values are used.

2.3.6 Kernel vector median filter
The kernel vector median filter �KVMF�44–48 outputs a vec-
tor that lies somewhere between the center pixel and the
VMF output. In other words, the output vector is a linear
combination of the two vectors. The weights are deter-
mined by the kernel � for which several choices such as
Laplacian, Gaussian, Cauchy, Epanechnikov, etc. are avail-
able. Table 3 gives the filter formulation for the Laplacian
kernel with the normalization factor � and the kernel width
h. The value of � depends on the kernel of choice ��
=0.5 for the Laplacian kernel�. The parameter h can be
estimated from the entire image as shown in Table 3.

The operation of this filter represents a compromise be-
tween the VMF and the identity operation. The kernel is a
function of the distance between the center pixel and the
VMF output; if the center pixel is not noisy, then the kernel
function is close to 1, and the output will be close to the
original value of the center pixel. Otherwise, the output will
be close to the VMF output.

2.4 Adaptive Center-Weighted Vector Filters
The vector median filter can be generalized by associating
with each pixel xi a nonnegative integer-valued weight18,49:

xWVMF = argmin
xi�W

	�
j=1

n

wj
xi − xj

 . �10�

This filter is called the weighted vector median filter
�WVMF�. Note that by replacing the distance function in
�10� with the angular or directional-distance functions, one
can obtain the analogous weighted vector directional filter
�WVDF� or weighted directional-distance filter �WDDF�,
respectively.50,51

The flexible form of the weighted vector filters allows
one to design an optimal filter for a particular domain by
adjusting the weights. The weights are often determined by
an optimization procedure using a number of training
images.50,52–54 If only the center weight is varied while the
others are fixed, the WVMF simplifies to the center-
weighted vector median filter �CWVMF�55,56:

xCWVMFk = argmin
xi�W

	�
j=1

n

wj�k� · 
xi − xj

 ,

wj�k� = �n − 2k + 2 for j = C ,

1 otherwise,
, k � �1,C� . �11�

When the smoothing parameter k=1, the CWVMF is
equivalent to the identity filter and thus no smoothing is
performed. As the value of k is increased, the smoothing
capability of the filter increases. Finally, when k attains its
maximum value C, the filter becomes equivalent to the

VMF, and the maximum amount of smoothing is per-
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Table 4 Adaptive center-weighted vector filters.

ilter Formulation

CWVMF
xMCWVMF =�xVMF if l�xVMF� � w · l�C�,

xC otherwise,
w � �0,1�

CWVMF

xACWVMF =�xVMF if �
k=	

	+2


xCWVMFk − xC
 
 T,

xC otherwise,

	 � �1,C − 1�

CWVDF

xACWVDF =�xBVDF if �
k=	

	+2

A�xCWVDFk,xC� 
 T,

xC otherwise,

	 � �1,C − 1�

CWDDF

xACWDDF =�xDDF if �
k=	

	+2

A��xCWDDFk,xC� · 
xCWDDFk − xC
1−� 
 T,

xC otherwise

	 � �1,C − 1�
Table 5 Entropy vector filters.

Filter Formulation

EVMF
xEVMF =�xVMF if PC 
 TC

xC otherwise

Pi =

xi − x̄


�
j=1

n


xj − x̄


, Ti =
− Pi log Pi

−�
j=1

n

Pj log Pj

EBVDF
xEBVDF =�xBVDF if PC 
 TC

xC otherwise

Pi =
A�xi,x̄�

�
j=1

n

A�xj,x̄�

, Ti =
− Pi log Pi

−�
j=1

n

Pj log Pj

EDDF
xEDDF =�xDDF if PC 
 TC

xC otherwise

Pi =
A�xi,x̄��
xi − x̄
1−�

�
j=1

n

A�xj,x̄��
xj − x̄
1−�

, Ti =
− Pi log Pi

−�
j=1

n

Pj log Pj
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ormed. Similar formulations can be derived for the angular
nd directional-distance functions.

.4.1 Adaptive center-weighted vector filters
he adaptive center-weighted vector filters,55,57 i.e.,
CWVMF, ACWVDF, and ACWDDF, employ a user-

pecified threshold to determine whether the center pixel is
oisy or not. If the center pixel is noisy, it is replaced by the
utput of one of the three basic vector order statistics fil-
ers, the VMF, the BVDF, or the DDF. Otherwise, it re-
ains unchanged. The mathematical expressions for these
lters are given in Table 4. The thresholds are set to 80,
.19, and 10.8 for the ACWVMF, ACWVDF, and
CWDDF, respectively. The 	 parameter is set to 2.
An alternative design for the adaptive center-weighted

lters is proposed in Ref. 58. Extensions of these filters for
mage sequence processing and efficient hardware imple-
entations can be found in Refs. 15 and 17.

.4.2 Modified center-weighted vector median filter
he modified center-weighted vector median filter

MCWVMF�59,60 is a modification of the CWVMF in
hich only the cumulative distance associated with the cen-

er pixel is weighted. In contrast, in the CWVMF the center
eight contributes to all of the cumulative distance values

xcept for that associated with the center pixel. This allows
he MCWVMF to be faster than the CWVMF since fewer
ultiplications are involved in the former. Table 4 shows

he mathematical expression of the MCWVMF. Note that
he center weight w in the MCWVMF is a real number
etween 0 and 1, whereas the one in the CWVMF is a
onnegative integer. The w parameter is set to 0.5.

.5 Entropy Vector Filters
ntropy vector filters61,62 are a family of adaptive switching
lters that are multichannel extensions of the grayscale lo-
al contrast entropy filter.63 For the grayscale case, the con-
rast of a pixel xi within a window W can be expressed as

i =
�xi − x̄�

x̄
=

�i

x̄
, �12�

Table 6 Peer

Filter

PGF

FPGF
ournal of Electronic Imaging 033008-
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where x̄ denotes the mean gray level. The local contrast
probability Pi and local contrast entropy Hi associated with
pixel xi are given by

Pi =
�i

� j=1

n
� j

,

�13�
Hi = − Pi log Pi.

Noisy pixels heavily contribute to the total local contrast
entropy, which is given by

H = �
i=1

n

Hi. �14�

Extensions of this formulation for the multichannel case
are given in Table 5. These filters, i.e., EVMF, EBVDF, and
EDDF, employ an adaptive threshold �the fraction of local
contrast entropy contributed by the center pixel� to deter-
mine whether the center pixel is noisy or not. If the center
pixel is noisy, it is replaced by the output of one of the three
basic vector filters, the VMF, the BVDF, or the DDF. Oth-
erwise, it remains unchanged. An extension of the entropy
filters for color video sequence enhancement can be found
in Ref. 64.

2.6 Peer Group Vector Filters
These are adaptive switching filters based on the peer group
concept.65 Essentially, the peer group of a pixel in a given
window represents the set of neighboring pixels that are
sufficiently similar to it according to a particular measure.
Table 6 shows the mathematical expressions for these fil-
ters.

2.6.1 Peer group filter
In the peer group filter �PGF�,65 the pixels in the window
are sorted in ascending order according to their distances to
the center pixel. The peer group of the center pixel is then
determined as the m= ��n+1� /2 pixels that rank the lowest
in this sorted sequence. Next, in order to remove the effect
of the impulsive noise, the first-order differences ��i� are
calculated. Finally, the center pixel is considered noisy if

vector filters.

Formulation

= 
xC − xi
 for i = 1,2, . . . ,n

= c�i+1� − c�i� for i = 1,2, . . . ,m = ��n + 1�/2

F =�xVMF if ∃ i � �1,m� s . t . ��i� 
 T

xC otherwise

GF =�xVMF if ��xi�C � W s . t . 
xC − xi
 � T�� � m

xC otherwise
group

c�i�

��i�

xPG

xFP
one of these difference values is greater than a user-

Jul–Sep 2007/Vol. 16(3)8
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Table 7 Vector sigma filters.

Filter Formulation

SVMF_mean
xSVMF_mean =�xVMF if l�C� � �1 + 	/n� · l�x̄�

xC otherwise

SVMF_rank
xSVMF_rank =�xVMF if l�C� � �1 + 	/�n − 1�� · l�xVMF�

xC otherwise

SBVDF_mean
xSBVDF_mean =�xBVDF if a�C� � �1 + 	/n� · a�x̄�

xC otherwise

SBVDF_rank
xSBVDF_rank =�xBVDF if a�C� � �1 + 	/�n − 1�� · a�xBVDF�

xC otherwise

SDDF_mean
xSDDF_mean =�xDDF if d�C� � �1 + 	/n� · d�x̄�

xC otherwise

SDDF_rank
xSDDF_rank =�xDDF if d�C� � �1 + 	/�n − 1�� · d�xDDF�

xC otherwise

ASVMF_mean
xASVMF_mean =�xVMF if 
xC − x̄
 � 


xC otherwise


2 =
1

n�
i=1

n


xi − x̄
2

ASVMF_rank
xASVMF_rank =�xVMF if 
xC − xVMF
 � 


xC otherwise


2 =
1

n − 1�
i=1

n


xi − xVMF
2

ASBVDF_mean
xASBVDF_mean =�xBVDF if A�xC,x̄� � 


xC otherwise


2 =
1

n�
i=1

n

A2�xi,x̄�

ASBVDF_rank
xASBVDF_rank =�xBVDF if A�xC,xBVDF� � 


xC otherwise


2 =
1

n − 1�
i=1

n

A2�xi,xBVDF�

ASDDF_mean
xASDDF_mean =�xDDF if A��xC,x̄� · 
xC − x̄
1−� � 


xC otherwise


2 =	1

n�
i=1

n

A2�xi,x̄�
�	1

n�
i=1

n


xi − x̄
2
1−�

ASDDF_rank
xASDDF_rank =�xDDF if A��xC,xDDF�
xC − xDDF
1−� � 


xC otherwise


2 =	 1

n − 1�
i=1

n

A2�xi,xDDF�
�	 1

n − 1�
i=1

n


xi − xDDF
2
1−�
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pecified threshold. In this case, the center pixel is replaced
ith the VMF output; otherwise it remains unchanged. The

hreshold T is set to 45.

.6.2 Fast peer group filter
he fast peer group filter �FPGF�4 is a fast modification of

he PGF in which the center pixel is considered to be noise-
ree as soon as m pixels in the window are determined to be
ufficiently similar to it. If m is low, and the amount of
oise in the image is not very high, the number of distance
omputations that need to be performed can be dramatically
educed. The parameters m and T are set to 3 and 45, re-
pectively.

.7 Vector Sigma Filters
ector sigma filters66–70 are a family of adaptive switching
lters that are multichannel extensions of the gray scale
igma filter.71 These filters utilize approximations of the
ultivariate variance within a window to determine
hether the center pixel is noisy or not. If the center pixel

s noisy, it is replaced by the output of one of the three
asic vector filters, the VMF, the BVDF, or the DDF. Oth-
rwise, it remains unchanged.

The concept of variance can be extended to the multi-
ariate case using the covariance matrix. Scalar measures
or multivariate variance can be calculated from this matrix
s the sum or product of the eigenvalues.72 However, com-
uting the variance within each window in this manner is
omputationally very expensive. Therefore, vector sigma
lters employ approximations of the multivariate variance
ased on either the mean vector or the lowest-ranked vec-
or.

The members of the vector sigma filter family are given
n Table 7. The nonadaptive vector sigma filters �SVMF,
BVDF, and SDDF� require a tuning parameter 	 to deter-
ine the switching threshold, while the adaptive vector

igma filters �ASVMF, ASBVDF, and ASDDF� determine
his threshold adaptively. The parameter 	 is set to 4.0.

.8 Miscellaneous Vector Filters
his section contains the filters that do not fit into any of

he categories described earlier. Table 8 shows the math-
matical expressions for these filters. Some of these have
ommonalities with certain filters in other categories. For
xample, the adaptive multichannel nonparametric filters
esemble the KVMF in that they are based on similarity
ather than dissimilarity �distance�. However, they are not
ncluded in the hybrid vector filters category since they do
ot utilize multiple subfilters of different types.

.8.1 Vector signal-dependent rank order mean
filter

he vector signal-dependent rank order mean filter
VSDROMF�73 is an extension of the grayscale SDROM
lter.74 In this filter, the pixels in the window are first sorted
ccording to their cumulative distances to all other pixels.
he distances between the center pixel and each of the

owest-ranked 4 �for the general case �n /2�� pixels are then
ompared against increasing thresholds. If any of these dis-
ances exceeds its respective threshold, the center pixel is

onsidered to be noisy and is replaced by the lowest-ranked

ournal of Electronic Imaging 033008-1
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pixel, i.e., the VMF output. Otherwise, the center pixel re-
mains unchanged. The thresholds are set to 35, 40, 45,
and 50.

2.8.2 Adaptive multichannel nonparametric filters
The adaptive multichannel nonparametric filters
�AMNFs�75,76 approach the filtering problem from an esti-
mation theoretic perspective. Specifically, these filters are
based on nonparametric kernel density estimation.77 The
general form of the AMNFs is given in Table 8. Two pos-
sible choices for the kernel function are the multivariate
exponential K�z�=e−�z� �AMNFE� and the multivariate

Gaussian K�z�=e−0.5zTz �AMNFG� functions. The k param-
eter in the kernel width calculation is set to 0.33.

2.8.3 Fast modified vector median filter
In the fast modified vector median filter �FMVMF�,78,79 the
center pixel is replaced with the window pixel that mini-
mizes the cumulative distance to all others �excluding the
center pixel�, provided that the difference between the cu-
mulative distance associated with the center pixel and the
minimum cumulative distance is greater than a threshold.
Otherwise, the center pixel remains unchanged. Note that
this scheme privileges the center pixel since its cumulative
distance calculations involve n−1 terms, whereas the cal-
culations associated with the other pixels involve n−2
terms. The distance threshold parameter is set to 0.75.

2.8.4 Adaptive vector median filter and adaptive
basic vector directional filter

In the adaptive vector median filter �AVMF�,80 the center
pixel is considered to be noisy if the distance between itself
and the mean of the lowest-ranked k vectors is greater than
a threshold. In this case, the center pixel is replaced by the
VMF output. Otherwise, it remains unchanged.

The adaptive basic vector directional filter �ABVDF�81

Fig. 1 Representative images from the image set. �a� flowerbee; �b�
cat; �c� Austria; �d� Scotland; �e� Capilano Suspension Bridge; �f�
Native American; �g� sweetgum; �h� dermoscopy; �i� fractal.
is the angular counterpart of the AVMF. The thresholds are

Jul–Sep 2007/Vol. 16(3)0
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et to 100 and 0.16 for the AVMF and ABVDF, respec-
ively. The k parameters in these filters are both set to �n /2�.
.8.5 Fast fuzzy noise reduction filter
n the fast fuzzy noise reduction filter �FFNRF�,82,83 the

Table 8 Miscel

ilter

SDROMF

MNF

MVMF

VMF

BVDF

FNRF
enter pixel is replaced with the window pixel that maxi-

ournal of Electronic Imaging 033008-1
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mizes the cumulative similarity to all others excluding the
center pixel. Note that this center exclusion scheme is the
same as in the FMVMF. The similarity between two pixels
is determined using a special fuzzy metric84 �see Table 8�.
An interesting property of this metric is that the value of

s vector filters.

Formulation

xVSDROMF =�xVMF if ∃ i � �1,2,3,4� s . t . 
xC − x�i�
 
 Ti

xC otherwise

T1�T2�T3�T4

xAMNF =�
i=1

n

xi� hi
−cK	xC − xi

hi



�
j=1

n

hj
−cK	xC − xj

hj

�

hi = n−k/c�
j=1

n


xi − xj
1

xFMVMF =�xk*
if ��i=1

n


xC − xi
− �
i=1

i�C

n


xk* − xi
�
 T

xC otherwise
�

xk* = argmin
xk�W

�
i=1

i�C

n


xk − xi


xAVMF =�xVMF if �xC −
1

k�
i=1

k

x�i��
 T

xC otherwise




xABVDF =�xBVDF if A	xC,
1

k�
i=1

k

x�i�

 T

xC otherwise
�

xFFNRF =�xk*
if �

i=1

n

M�xC,xi� � �
i=1

i�C

n

M�xk*,xi�

xC otherwise

xk* = argmax
xk�W

�
i=1

i�C

n

M�xk,xi�, M��xi,xj� =�
k=1

3 	min�xi
k,xj

k� + K

max�xi
k,xj

k� + K

�
laneou
each term in the product can be precomputed as
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��a,b� = 	 min�a,b� + K

max�a,b� + K

�

. �15�

sing the precomputed values, the fuzzy similarity between
wo pixels xi and xj can be computed as

M��xi,xj� = �
k=1

3

Q��xi,xj� . �16�

t’s empirically demonstrated that the computation of the
uzzy metric M using the precomputed values is even faster
han that of the L1-norm. The K and � parameters are set to
024 and 3.5, respectively.

Experimental Setup
n this section, the image set that will be used in the ex-
eriments is first described. The impulsive noise models
hat are used to artificially corrupt the images for evaluation
urposes are then presented. Finally, the filtering perfor-
ance criteria that will be considered in the comparisons

re detailed.

.1 Image Set Description
n order to compare the performance of the filters on a wide
ariety of images, a set of 100 high-quality RGB images
as collected from the Internet. These included images of
eople, animals, plants, buildings, aerial maps, manmade
bjects, natural scenery, paintings, and sketches, as well
cientific, biomedical, and synthetic images and test images
ommonly used in the color image processing literature.
igure 1 shows representative images from this set.

.2 Noise Models
arious simplified color image noise models have been pro-
osed in the literature.3,5,18 In this study, the following two
mpulsive noise models are considered:

1. Uncorrelated impulsive noise

xk =�rk with probability � ,

ok with probability 1 − � ,

where o= �o1 ,o2 ,o3� and x= �x1 ,x2 ,x3� represent the
original and noisy color vectors, respectively, � de-
notes the channel corruption probability, and r

1 2 3
= �r ,r ,r � is a random vector that represents the im-

ournal of Electronic Imaging 033008-1
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pulsive noise such that rk� �0,10� or rk� �245,255�
with equal probability.

2. Correlated impulsive noise

x =�
o with probability 1 − � ,

�r1,o2,o3� with probability �1 · � ,

�o1,r2,o3� with probability �2 · � ,

�o1,o2,r3� with probability �3 · � ,

�r1,r2,r3� with probability �1 − ��1 + �2 + �3�� · � ,

where � is the sample corruption probability and �1,
�2, and �3 are the channel corruption probabilities. In
this study, the following values are used: �1=�2
=�3=0.25.

In the following discussion, a particular combination of
a noise model and a noise level such as “5% correlated
noise” will be referred to as a “noise configuration”.

3.3 Filtering Performance Criteria
In order to evaluate the performance of the filters, three
effectiveness and one efficiency criteria are employed. The
effectiveness criteria are5:

1. Mean absolute error (MAE)

MAE =
1

3 · M · N
�
i=1

M

�
j=1

N

��R�i, j� − R̂�i, j��

+ �G�i, j� − Ĝ�i, j�� + �B�i, j� − B̂�i, j��� , �17�

where M and N represent the image dimensions,

�R�i , j� ,G�i , j� ,B�i , j�� and �R̂�i , j� , Ĝ�i , j� , B̂�i , j�� are
the RGB coordinates of the pixel �i , j� in the original
and the filtered images, respectively. MAE is a mea-
sure of the detail preservation capability of a filter.

2. Mean squared error (MSE)

MSE =
1

3 · M · N
�
i=1

M

�
j=1

N

��R�i, j� − R̂�i, j��2 + �G�i, j�

− Ĝ�i, j��2 + �B�i, j� − B̂�i, j��2� , �18�

MSE is a measure of the noise suppression capability
of a filter.
3. Normalized Color Distance (NCD)
NCD =
�i=1

M � j=1

N ���Lab
* �i, j� − L̂ab

* �i, j��2 + �a*�i, j� − â*�i, j��2 + �b*�i, j� − b̂*�i, j��2�

�i=1

M � j=1

N �Lab
* 2�i, j� + a*2�i, j� + b*2�i, j�

, �19�
where �Lab
* �i , j� ,a*�i , j� ,b*�i , j�� and

�L̂ab
* �i , j� , â*�i , j� , b̂*�i , j�� are the CIE L*a*b* coordi-

nates of the pixel �i , j� in the original and the filtered
images, respectively. NCD is a perceptually oriented
metric that measures the color preservation capability
of a filter.
Jul–Sep 2007/Vol. 16(3)2
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Table 9 Comparison of the filters based on the MAE measure �AR: average ranking�.

AE Uncorrelated Noise Correlated Noise

5% 10% 15% 5% 10% 15%

ank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR

acwddf 1.56 acwddf 1.71 acwddf 1.78 acwddf 1.75 acwddf 1.84 acwddf 2.35

pgf 2.29 pgf 3.31 sddf_rank 3.27 pgf 1.96 pgf 2.52 pgf 3.32

mcwvmf 3.31 mcwvmf 5.07 pgf 5.16 mcwvmf 3.30 acwvmf 4.58 sddf_rank 3.95

acwvdf 5.03 sddf_rank 5.08 acwvmf 5.34 acwvmf 4.75 sddf_rank 5.23 acwvmf 3.98

acwvmf 5.06 acwvmf 5.30 sddf_mean 6.82 acwvdf 5.89 mcwvmf 5.25 svmf_rank 6.98

abvdf 7.07 acwvdf 6.21 acwvdf 7.82 avmf 6.75 sddf_mean 8.07 sddf_mean 7.85

sddf_rank 7.66 sddf_mean 7.74 svmf_rank 8.75 sddf_rank 7.68 acwvdf 8.08 ffnrf 8.75

avmf 7.85 abvdf 9.84 asddf_rank 10.34 ffnrf 8.13 ffnrf 8.88 svmf_mean 9.51

ffnrf 8.70 ffnrf 10.32 ffnrf 10.63 abvdf 8.61 svmf_rank 9.66 acwvdf 10.30

sddf_mean 9.50 svmf_rank 11.20 mcwvmf 11.04 sddf_mean 9.63 avmf 9.98 fmvmf 11.23

0 sbvdf_rank 11.65 sbvdf_rank 11.51 svmf_mean 11.49 fpgf 11.72 svmf_mean 11.52 mcwvmf 11.48

1 fpgf 12.12 asddf_rank 11.97 sbvdf_rank 11.83 sbvdf_rank 12.28 abvdf 12.39 avmf 12.13

2 fmvmf 12.91 avmf 12.81 abvdf 12.23 svmf_rank 12.39 fmvmf 12.40 asddf_rank 12.70

3 svmf_rank 13.31 fmvmf 13.15 fmvmf 12.47 fmvmf 12.51 asddf_rank 12.85 fpgf 13.98

4 asddf_rank 13.69 svmf_mean 13.17 asddf_mean 13.15 asddf_rank 13.75 sbvdf_rank 13.36 sbvdf_rank 15.11

5 sbvdf_mean 14.29 asddf_mean 14.20 eddf 14.47 svmf_mean 13.89 fpgf 13.55 evmf 15.14

6 svmf_mean 14.81 fpgf 14.57 fpgf 15.77 sbvdf_mean 15.81 asddf_mean 16.16 abvdf 15.20

7 asddf_mean 15.83 sbvdf_mean 16.32 avmf 16.49 asddf_mean 16.37 eddf 16.85 asvmf_mean 15.43

8 eddf 18.34 eddf 16.34 evmf 16.93 eddf 18.41 asvmf_rank 17.25 asvmf_rank 15.58

9 asbvdf_rank 18.89 asvmf_mean 18.62 asvmf_mean 17.50 asvmf_rank 18.95 evmf 17.58 eddf 15.88

0 asvmf_rank 19.90 evmf 18.79 asvmf_rank 17.63 asbvdf_rank 19.60 asvmf_mean 18.73 asddf_mean 16.71

1 vsdromf 20.43 asbvdf_rank 18.80 sbvdf_mean 18.75 evmf 19.94 sbvdf_mean 19.47 vsdromf 19.05

2 evmf 20.86 asvmf_mean 20.18 asbvdf_rank 19.22 vsdromf 20.22 vsdromf 20.20 asbvdf_rank 21.94

3 ebvdf 21.62 vsdromf 21.16 vsdromf 20.64 asvmf_mean 21.43 asbvdf_rank 20.62 vmrhf 22.27

4 asvmf_mean 22.38 ebvdf 23.31 vmrhf 23.51 ebvdf 23.40 vmrhf 23.85 sbvdf_mean 22.30

5 asbvdf_mean 22.70 asbvdf_mean 23.35 asbvdf_mean 24.03 asbvdf_mean 24.26 asbvdf_mean 25.05 fvmrhf 24.67

6 vmrhf 25.30 vmrhf 24.52 ebvdf 24.84 vmrhf 24.98 ebvdf 25.50 kvmf 24.80

7 kvmf 25.59 kvmf 26.29 fvmrhf 25.64 kvmf 25.52 kvmf 25.73 asbvdf_mean 26.73

8 fvmrhf 26.88 fvmrhf 26.43 kvmf 25.78 fvmrhf 26.64 fvmrhf 25.94 fddrhf 27.60

9 fddrhf 28.77 fddrhf 28.49 fddrhf 28.13 fddrhf 28.64 fddrhf 28.26 ebvdf 27.89

0 vmf 30.97 vmf 30.79 vmf 30.57 vmf 30.82 vmf 30.51 vmf 30.13

1 cbrf 32.31 ddf 32.60 ddf 32.31 cbrf 32.29 exvmf 32.27 ddf 32.01

2 ddf 32.67 exvmf 32.74 exvmf 32.54 exvmf 32.58 ddf 32.55 exvmf 32.12

3 exvmf 32.85 cbrf 32.97 fovmf 32.81 ddf 32.76 cbrf 33.07 fovmf 32.28

4 amnfe 34.02 fovmf 33.80 fvmf 32.91 fovmf 34.37 fovmf 33.46 fvmf 32.28

5 fovmf 34.55 amnfe 34.41 cbrf 33.79 amnfe 34.60 fvmf 33.90 cbrf 34.03

6 ahdf 35.06 fvmf 34.41 amnfe 35.30 ahdf 34.91 ahdf 35.01 ahdf 34.82

7 fvmf 35.57 ahdf 35.27 ahdf 35.45 fvmf 35.40 amnfe 35.52 hdf 35.74

8 hdf 36.19 hdf 36.34 hdf 36.39 hdf 36.12 hdf 36.06 amnfe 36.64

9 amnfg 38.56 amnfg 38.51 amnfg 38.63 amnfg 38.57 amnfg 38.67 atvmf 38.40

0 atvmf 39.83 atvmf 39.58 atvmf 39.28 atvmf 39.73 atvmf 39.22 amnfg 39.04

1 annmf 41.10 annmf 41.70 fovdf 41.56 annmf 41.12 annmf 41.79 fovdf 41.46

2 fovdf 43.15 fovdf 42.27 gvdf 42.07 fovdf 42.80 fovdf 42.15 gvdf 41.64

3 annf 43.86 gvdf 42.82 annmf 42.67 gvdf 43.49 gvdf 42.27 annmf 42.61

4 fvdrhf 43.86 bvdf 44.72 bvdf 44.39 annf 44.14 bvdf 44.30 bvdf 43.66

5 gvdf 44.15 annf 44.83 fvdf 44.71 fvdrhf 44.34 fvdrhf 45.26 fvdf 44.67

6 bvdf 44.87 fvdrhf 44.84 fvdrhf 45.38 bvdf 44.66 annf 45.32 fvdrhf 45.77

7 fvdf 46.13 fvdf 45.64 annf 45.79 fvdf 46.14 fvdf 45.32 annf 45.89
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Table 10 Comparison of the filters based on the MSE measure �AR: average ranking�.

SE Uncorrelated Noise Correlated Noise

5% 10% 15% 5% 10% 15%

ank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR

acwddf 3.26 acwddf 3.96 acwddf 4.29 pgf 2.56 pgf 4.13 acwvmf 4.32

pgf 3.82 sddf_rank 4.37 sddf_rank 5.00 acwddf 3.88 sddf_rank 4.51 fvmrhf 5.76

sddf_rank 5.50 acwvmf 6.86 acwvmf 6.72 sddf_rank 5.38 acwvmf 4.68 sddf_rank 5.88

acwvmf 6.64 pgf 7.43 fvmrhf 6.94 acwvmf 5.48 acwddf 4.89 acwddf 5.99

acwvdf 7.37 sddf_mean 9.15 vmrhf 9.04 mcwvmf 7.12 svmf_rank 6.93 pgf 6.49

mcwvmf 7.76 acwvdf 9.47 fddrhf 9.07 sddf_mean 8.45 fvmrhf 8.98 fddrhf 7.73

sddf_mean 7.95 svmf_rank 9.95 svmf_rank 11.27 svmf_rank 9.04 vmrhf 10.65 vmrhf 7.85

svmf_rank 11.22 fvmrhf 10.50 acwvdf 12.43 svmf_mean 11.03 svmf_mean 10.77 svmf_rank 9.05

abvdf 11.35 vmrhf 12.37 pgf 12.99 acwvdf 12.30 fddrhf 11.20 fpgf 10.65

asddf_rank 12.91 asddf_rank 12.87 fmvmf 13.17 fvmrhf 12.78 sddf_mean 11.41 fmvmf 10.93

0 svmf_mean 13.07 fddrhf 13.33 fpgf 13.85 ffnrf 13.37 fpgf 12.90 ffnrf 12.50

1 sbvdf_rank 13.68 svmf_mean 13.35 sddf_mean 14.24 vmrhf 13.68 ffnrf 13.02 kvmf 14.35

2 fvmrhf 14.35 sbvdf_rank 14.48 asddf_rank 15.60 fpgf 13.88 fmvmf 13.92 svmf_mean 15.46

3 vmrhf 15.31 abvdf 15.13 kvmf 16.34 asddf_rank 15.01 asvmf_mean 16.77 vsdromf 16.11

4 fpgf 15.33 fpgf 15.51 ffnrf 16.68 fddrhf 15.50 evmf 16.89 asvmf_mean 18.10

5 ffnrf 15.59 fmvmf 16.02 abvdf 16.85 avmf 16.11 kvmf 17.73 sddf_mean 18.55

6 asddf_mean 15.71 eddf 16.64 svmf_mean 17.12 fmvmf 16.63 acwvdf 18.41 fvmf 18.64

7 eddf 16.22 ffnrf 16.69 asvmf_mean 17.54 eddf 17.47 asvmf_rank 19.06 amnfe 19.24

8 fddrhf 17.37 asddf_mean 17.63 sbvdf_rank 18.60 sbvdf_rank 17.74 asddf_rank 19.10 evmf 19.61

9 fmvmf 18.11 evmf 18.36 evmf 18.95 evmf 18.12 vsdromf 19.46 fovmf 20.67

0 evmf 20.03 asvmf_mean 18.80 vsdromf 18.99 asvmf_mean 19.40 eddf 20.93 asvmf_rank 20.92

1 avmf 20.40 kvmf 19.54 eddf 20.20 asddf_mean 19.63 avmf 21.33 amnfg 22.74

2 kvmf 21.30 asvmf_rank 21.11 amnfe 21.13 abvdf 19.70 mcwvmf 22.25 avmf 23.09

3 asvmf_mean 21.41 mcwvmf 21.98 asddf_mean 22.21 asvmf_rank 19.96 amnfe 22.33 acwvdf 23.25

4 sbvdf_mean 21.47 vsdromf 22.15 fvmf 22.30 kvmf 20.09 sbvdf_rank 23.37 asddf_rank 24.59

5 asvmf_rank 21.78 amnfe 24.66 asvmf_rank 22.31 vsdromf 22.30 fvmf 23.53 exvmf 25.09

6 asbvdf_rank 23.01 asbvdf_rank 26.11 fovmf 24.26 amnfe 25.94 fovmf 25.31 ahdf 25.57

7 vsdromf 24.10 fvmf 26.51 amnfg 24.36 fvmf 27.85 amnfg 25.65 atvmf 26.14

8 amnfe 27.17 amnfg 27.24 exvmf 28.33 sbvdf_mean 28.30 asddf_mean 26.40 vmf 26.16

9 fvmf 29.35 avmf 27.84 ahdf 28.69 asbvdf_rank 28.35 abvdf 26.57 eddf 26.71

0 amnfg 29.58 fovmf 28.11 vmf 29.76 amnfg 28.47 exvmf 29.07 hdf 28.41

1 asbvdf_mean 30.87 sbvdf_mean 28.27 atvmf 30.11 fovmf 29.51 ahdf 29.72 ddf 28.94

2 ebvdf 30.94 exvmf 31.37 avmf 30.48 exvmf 32.38 atvmf 30.82 abvdf 29.19

3 fovmf 31.06 ahdf 32.18 asbvdf_rank 30.60 ahdf 33.13 vmf 30.87 sbvdf_rank 30.32

4 exvmf 33.86 vmf 33.33 hdf 31.66 vmf 34.71 hdf 32.58 cbrf 30.78

5 ahdf 34.66 atvmf 33.70 ddf 32.95 annmf 35.21 ddf 33.67 asddf_mean 32.34

6 fvdrhf 35.51 hdf 34.99 cbrf 34.24 atvmf 35.44 cbrf 33.85 fovdf 32.39

7 vmf 36.37 fvdrhf 35.58 sbvdf_mean 35.10 fvdrhf 35.57 annmf 34.81 annmf 33.85

8 annmf 36.42 cbrf 36.23 fvdrhf 35.29 hdf 36.02 asbvdf_rank 34.97 fvdf 33.95

9 atvmf 37.11 ddf 36.66 fovdf 35.37 cbrf 36.59 fvdrhf 35.39 gvdf 34.31

0 hdf 37.44 asbvdf_mean 36.90 mcwvmf 35.71 asbvdf_mean 37.93 sbvdf_mean 36.82 fvdrhf 34.32

1 cbrf 37.88 annmf 37.15 fvdf 36.06 ebvdf 37.93 fovdf 37.21 mcwvmf 36.16

2 ddf 39.55 ebvdf 37.94 annmf 37.47 ddf 38.07 fvdf 37.54 annf 38.72

3 annf 40.23 fvdf 39.16 gvdf 38.03 annf 39.84 gvdf 38.56 asbvdf_rank 39.45

4 fvdf 41.66 fovdf 39.50 annf 39.67 fvdf 40.85 annf 39.76 sbvdf_mean 41.49

5 fovdf 42.30 annf 40.26 asbvdf_mean 40.30 fovdf 41.27 asbvdf_mean 41.92 bvdf 41.70

6 gvdf 43.61 gvdf 41.15 ebvdf 41.85 gvdf 42.17 ebvdf 43.13 asbvdf_mean 44.11

7 bvdf 46.41 bvdf 45.51 bvdf 43.88 bvdf 45.86 bvdf 44.23 ebvdf 45.43
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Table 11 Comparison of the filters based on the NCD measure �AR: average ranking�.

CD Uncorrelated Noise Correlated Noise

5% 10% 15% 5% 10% 15%

ank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR

acwddf 1.79 acwddf 2.31 acwddf 2.54 acwddf 1.80 acwddf 2.22 acwddf 2.34

pgf 4.18 sddf_rank 3.29 sddf_rank 3.04 pgf 3.28 sddf_rank 3.62 sddf_rank 3.46

acwvdf 4.41 acwvdf 5.05 acwvdf 5.28 acwvmf 4.25 acwvmf 4.37 acwvmf 4.43

acwvmf 4.60 acwvmf 5.63 acwvmf 6.16 acwvdf 5.03 pgf 5.10 acwvdf 6.07

mcwvmf 5.35 sddf_mean 7.19 fmvmf 7.29 mcwvmf 5.33 acwvdf 5.63 pgf 6.32

sddf_rank 5.69 pgf 7.44 svmf_rank 7.78 sddf_rank 5.94 svmf_rank 7.82 fmvmf 6.58

sddf_mean 8.39 sbvdf_rank 8.10 sbvdf_rank 7.83 ffnrf 8.87 sddf_mean 8.05 svmf_rank 7.33

abvdf 8.48 svmf_rank 8.65 sddf_mean 8.54 abvdf 8.95 fmvmf 8.90 sbvdf_rank 9.52

ffnrf 10.09 fmvmf 9.44 pgf 10.02 sddf_mean 8.96 sbvdf_rank 9.35 sddf_mean 10.09

sbvdf_rank 10.33 abvdf 10.05 abvdf 10.30 fmvmf 10.33 abvdf 10.66 abvdf 10.69

0 fmvmf 10.44 svmf_mean 11.60 svmf_mean 12.03 svmf_rank 10.70 ffnrf 10.73 ffnrf 10.76

1 svmf_rank 11.08 asddf_rank 11.94 fpgf 12.75 sbvdf_rank 11.21 svmf_mean 11.52 fpgf 11.25

2 fpgf 12.23 ffnrf 12.93 asddf_rank 12.89 fpgf 11.80 fpgf 12.71 svmf_mean 12.37

3 asddf_rank 13.33 fpgf 13.64 ffnrf 13.52 svmf_mean 12.90 asddf_rank 12.94 asddf_rank 14.33

4 svmf_mean 13.35 asddf_mean 14.34 eddf 14.47 avmf 13.32 mcwvmf 14.93 vsdromf 14.96

5 sbvdf_mean 15.03 eddf 15.03 asddf_mean 15.16 asddf_rank 13.93 eddf 16.07 eddf 15.98

6 avmf 15.93 mcwvmf 15.19 asvmf_mean 15.57 sbvdf_mean 16.53 asddf_mean 16.09 asvmf_mean 16.04

7 asddf_mean 16.01 sbvdf_mean 17.02 vsdromf 15.88 asddf_mean 16.78 evmf 17.28 evmf 17.12

8 eddf 18.06 evmf 17.24 evmf 16.40 vsdromf 18.44 vsdromf 17.47 vmrhf 17.33

9 vsdromf 18.90 asvmf_mean 17.91 vmrhf 18.15 eddf 18.66 asvmf_mean 17.62 asddf_mean 17.94

0 asvmf_rank 19.11 asbvdf_rank 18.13 asvmf_rank 18.82 asvmf_rank 18.69 asvmf_rank 18.52 asvmf_rank 18.64

1 asbvdf_rank 19.12 vsdromf 18.31 asbvdf_rank 19.09 evmf 19.20 sbvdf_mean 19.66 kvmf 21.07

2 evmf 19.53 asvmf_rank 18.89 sbvdf_mean 20.86 asbvdf_rank 20.01 asbvdf_rank 19.97 asbvdf_rank 21.28

3 asvmf_mean 20.89 vmrhf 22.36 kvmf 21.96 asvmf_mean 20.57 avmf 20.09 fvmrhf 21.92

4 ebvdf 23.48 avmf 23.09 fvmrhf 22.69 vmrhf 24.46 vmrhf 21.99 avmf 23.02

5 asbvdf_mean 23.79 kvmf 24.33 mcwvmf 23.70 ebvdf 24.52 kvmf 23.78 sbvdf_mean 23.65

6 vmrhf 24.67 asbvdf_mean 24.67 fddrhf 26.47 asbvdf_mean 24.81 fvmrhf 25.33 mcwvmf 24.16

7 kvmf 25.22 fvmrhf 25.48 asbvdf_mean 27.11 kvmf 24.83 asbvdf_mean 26.59 fddrhf 26.08

8 fvmrhf 26.80 ebvdf 25.69 avmf 27.39 fvmrhf 26.57 ebvdf 27.79 fvmf 29.74

9 fddrhf 28.95 fddrhf 28.19 ebvdf 29.29 fddrhf 28.96 fddrhf 28.09 ddf 30.08

0 ddf 31.37 ddf 31.15 ddf 30.12 ddf 31.50 ddf 31.08 vmf 30.24

1 vmf 32.80 fvmf 31.87 fvmf 30.33 vmf 32.77 fvmf 31.69 asbvdf_mean 30.28

2 exvmf 33.08 vmf 32.03 vmf 30.69 exvmf 32.91 vmf 31.74 fovmf 30.43

3 fvmf 33.11 fovmf 32.50 fovmf 30.83 fvmf 33.01 fovmf 32.30 ebvdf 32.06

4 fovmf 33.97 exvmf 33.21 exvmf 32.79 fovmf 33.80 exvmf 32.78 exvmf 32.08

5 cbrf 34.38 cbrf 34.27 ahdf 33.55 ahdf 34.41 ahdf 34.18 ahdf 33.20

6 ahdf 34.48 ahdf 34.40 cbrf 33.64 cbrf 34.47 cbrf 34.47 cbrf 33.84

7 amnfe 34.98 hdf 35.75 hdf 34.98 amnfe 35.28 hdf 35.42 hdf 34.49

8 hdf 35.98 amnfe 36.29 atvmf 37.16 hdf 35.76 amnfe 37.34 atvmf 36.37

9 amnfg 38.23 atvmf 38.69 amnfe 38.01 amnfg 38.43 atvmf 37.84 amnfe 39.05

0 atvmf 39.86 amnfg 39.14 fovdf 39.79 atvmf 39.76 amnfg 39.74 fovdf 39.17

1 fovdf 41.87 fovdf 40.96 amnfg 39.96 fovdf 41.80 fovdf 40.70 gvdf 40.26

2 annmf 42.49 gvdf 41.63 gvdf 40.92 annmf 42.46 gvdf 41.36 amnfg 40.57

3 gvdf 42.78 bvdf 42.42 bvdf 41.27 gvdf 42.56 bvdf 42.03 bvdf 40.71

4 bvdf 43.42 annmf 43.88 fvdf 44.00 bvdf 43.16 annmf 43.95 fvdf 43.85

5 annf 44.11 fvdf 44.79 annmf 44.61 annf 44.35 fvdf 44.37 annmf 44.55

6 fvdrhf 45.91 annf 45.33 annf 45.67 fvdf 45.88 annf 45.53 annf 45.67

7 fvdf 45.95 fvdrhf 46.56 fvdrhf 46.70 fvdrhf 46.06 fvdrhf 46.59 fvdrhf 46.63
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Table 12 Comparison of the filters based on execution time �AR: average ranking�.

IME Uncorrelated Noise Correlated Noise

5% 10% 15% 5% 10% 15%

ank Filter AR Filter AR Filter AR Filter AR Filter AR Filter AR

fpgf 0.08 fpgf 0.20 fpgf 0.50 fpgf 0.06 fpgf 0.27 asvmf_mean 0.47

asvmf_mean 0.92 asvmf_mean 0.81 asvmf_mean 0.54 asvmf_mean 0.94 asvmf_mean 0.75 fpgf 0.54

pgf 2.01 pgf 2.02 pgf 2.11 pgf 2.02 pgf 2.07 pgf 2.26

svmf_mean 3.00 svmf_mean 2.97 svmf_mean 2.86 svmf_mean 2.99 svmf_mean 2.91 svmf_mean 2.73

ffnrf 3.99 ffnrf 4.00 ffnrf 3.99 ffnrf 3.99 ffnrf 4.00 ffnrf 4.00

mcwvmf 5.44 mcwvmf 5.33 mcwvmf 5.10 mcwvmf 5.39 mcwvmf 5.29 mcwvmf 5.16

asbvdf_mean 6.88 asbvdf_mean 6.73 svmf_rank 7.44 asbvdf_mean 7.04 asbvdf_mean 7.09 svmf_rank 7.32

svmf_rank 7.57 svmf_rank 7.66 asbvdf_mean 7.52 fmvmf 7.78 svmf_rank 7.41 asbvdf_mean 7.61

fmvmf 8.06 fmvmf 7.71 fmvmf 7.72 svmf_rank 7.83 fmvmf 7.91 fmvmf 7.73

vmf 8.48 vmf 8.47 vmf 8.15 vmf 8.33 vmf 8.21 vmf 8.02

0 asvmf_rank 9.85 asvmf_rank 9.56 asvmf_rank 9.24 asvmf_rank 9.74 asvmf_rank 9.46 asvmf_rank 9.34

1 asddf_mean 10.23 asddf_mean 10.85 asddf_mean 11.27 asddf_mean 10.33 asddf_mean 10.92 asddf_mean 11.27

2 sbvdf_mean 12.46 exvmf 12.38 exvmf 11.83 exvmf 12.41 exvmf 11.89 exvmf 11.68

3 exvmf 12.60 sbvdf_mean 12.83 sbvdf_mean 13.32 sbvdf_mean 12.78 sbvdf_mean 13.54 kvmf 13.95

4 kvmf 14.53 kvmf 14.78 kvmf 14.80 kvmf 14.52 kvmf 14.68 avmf 14.40

5 avmf 15.05 avmf 14.98 avmf 14.99 avmf 14.86 avmf 14.88 atvmf 14.65

6 atvmf 15.46 atvmf 15.38 atvmf 15.18 atvmf 15.58 atvmf 15.30 sbvdf_mean 15.55

7 vsdromf 17.39 vsdromf 17.17 vsdromf 17.17 vsdromf 17.32 vsdromf 17.30 vsdromf 17.24

8 vmrhf 18.12 vmrhf 17.67 vmrhf 17.68 vmrhf 17.85 vmrhf 17.62 vmrhf 17.55

9 sddf_mean 19.01 acwvmf 19.22 acwvmf 19.01 acwvmf 19.44 acwvmf 19.07 acwvmf 19.02

0 acwvmf 19.72 sddf_mean 20.17 sddf_mean 20.58 sddf_mean 19.87 annmf 20.71 annmf 20.03

1 annmf 21.13 annmf 21.02 annmf 20.91 annmf 21.11 sddf_mean 20.92 amnfe 22.00

2 amnfe 22.18 amnfe 22.36 amnfe 22.30 amnfe 22.19 amnfe 22.37 cbrf 22.21

3 cbrf 23.50 cbrf 23.35 cbrf 23.11 evmf 23.24 cbrf 23.09 evmf 22.84

4 evmf 23.56 evmf 23.54 evmf 23.88 cbrf 23.54 evmf 23.39 sddf_mean 23.73

5 amnfg 24.33 amnfg 24.38 amnfg 24.29 amnfg 24.44 amnfg 24.56 amnfg 24.25

6 bvdf 26.00 bvdf 25.98 bvdf 25.98 bvdf 25.92 bvdf 25.95 bvdf 25.98

7 sbvdf_rank 26.96 sbvdf_rank 26.88 sbvdf_rank 26.89 sbvdf_rank 26.98 sbvdf_rank 26.85 sbvdf_rank 26.83

8 ebvdf 28.50 ebvdf 28.47 ebvdf 28.66 ebvdf 28.61 ebvdf 28.67 ebvdf 28.66

9 asbvdf_rank 29.04 asbvdf_rank 29.00 asbvdf_rank 28.78 asbvdf_rank 28.85 asbvdf_rank 28.81 asbvdf_rank 28.82

0 gvdf 29.47 gvdf 29.51 gvdf 29.56 gvdf 29.59 gvdf 29.52 gvdf 29.51

1 abvdf 31.04 abvdf 31.00 abvdf 30.95 abvdf 31.01 abvdf 31.02 abvdf 30.96

2 eddf 32.46 eddf 32.47 annf 32.68 eddf 32.47 eddf 32.61 annf 32.48

3 annf 32.81 annf 32.80 eddf 32.98 annf 32.88 annf 32.78 eddf 33.13

4 ddf 33.58 ddf 33.65 ddf 33.28 ddf 33.48 ddf 33.49 ddf 33.38

5 sddf_rank 34.98 sddf_rank 35.05 sddf_rank 35.05 sddf_rank 34.93 sddf_rank 34.93 sddf_rank 34.87

6 acwvdf 35.96 acwvdf 35.95 acwvdf 36.05 acwvdf 36.07 acwvdf 36.25 acwvdf 36.34

7 asddf_rank 36.85 asddf_rank 36.88 asddf_rank 36.83 asddf_rank 36.82 asddf_rank 36.72 asddf_rank 36.68

8 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94 hdf 37.94

9 ahdf 39.10 ahdf 39.01 ahdf 38.99 ahdf 39.03 ahdf 38.96 ahdf 38.98

0 acwddf 39.93 acwddf 40.01 acwddf 40.01 acwddf 40.01 acwddf 40.07 acwddf 40.05

1 fvdf 40.93 fvdf 40.95 fvdf 40.96 fvdf 40.92 fvdf 40.92 fvdf 40.94

2 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96 fovdf 41.96

3 fvmrhf 43.01 fvmrhf 43.01 fvmrhf 43.02 fvmrhf 43.01 fvmrhf 43.01 fvmrhf 43.01

4 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96 fvdrhf 43.96

5 fddrhf 45.03 fddrhf 45.03 fddrhf 45.00 fddrhf 45.03 fddrhf 45.02 fddrhf 45.00

6 fvmf 45.97 fvmf 45.97 fvmf 45.99 fvmf 45.97 fvmf 45.97 fvmf 45.98

7 fovmf 46.97 fovmf 46.98 fovmf 46.99 fovmf 46.97 fovmf 46.98 fovmf 46.99
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The efficiency of a filter is measured by the execution
ime in seconds. In order to ensure a fair comparison, all of
he filters were implemented in the same style in the C
anguage and compiled with the gcc v3.4 compiler. The
xperiments were performed on an Intel Pentium D
.66-GHz machine.

An issue in the comparison of the execution times is the
ost of the inverse cosine �acos� function that is utilized in
he angular and directional-distance filters. Standard library
mplementations of this function are computationally very
xpensive, causing angular distance computations to be
uch slower than the Minkowski distance computations.
or example, on a typical 512�512 image, the VMF takes
bout 0.36 s, while the BVDF takes approximately 10.0 s.

solution to mitigate this problem is to use an approxima-
ion for the acos function over the interval �0, 1�. However,
his is not easy because of the singularity of this function at
rguments very close to 1. This can be circumvented by
sing the following numerically more stable identity for x
0.585:

cos�x� = 2 · asin���1 − x�/2� . �20�

In Eq. �20�, the inverse sine �asin� function receives its
rguments from the interval �0, 0.5�. Fortunately, this func-
ion is almost linear in this interval and can be accurately
pproximated using a third-degree minimax polynomial86:

sin�x� � − 0.67921302e − 4 + �1.003729762

+ �− 0.309031329e − 1

+ .2356774247 · x� · x� · x. �21�

he approximation error is �=0.00006792131489. Simi-
arly, the acos function is almost linear in the interval �0,
.5� and can be approximated by

cos�x� � 1.570864248 + �− 1.003729768

+ �0.309031763e − 1 − .2356774861 · x� · x� · x.

�22�

he approximation error is �=0.00006792158693. This
iecewise approximation of the acos function gives virtu-
lly the same numerical results, i.e., MAE, MSE, and NCD,
s the standard acos function when used in the implemen-
ation of an angular or a directional-distance filter. This is
ecause the error propagation is not very significant con-
idering the small size of a filter window �only 9 pixels in a
�3 window�.

In order to demonstrate the effect of the approximation
n the running time of an actual filter, the BVDF imple-
entation that uses the standard acos function and the one

hat uses the approximation were both executed on the en-
ire image set �100 images�. The standard implementation
ook 1428 s, while the approximate one took 102 s. Similar
ains in the execution times ��13–14X� were observed for
he other angular and directional-distance filters as well.
ote that methods used to speed up the VMF operation

87,88
tself are beyond the scope of this study.
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4 Discussion and Conclusions
This section discusses the experimental results and presents
the conclusions. First, the filters are compared based on the
previously described measures of effectiveness and effi-
ciency. Second, the filters that achieve a good compromise
between effectiveness and efficiency are identified. Finally,
the three commonly used distance measures are compared.

4.1 Discussion
Tables 9–12 show the rankings† of the filters based on the
following criteria: MAE, MSE, NCD, and execution time,
respectively. The results‡ are presented for the two noise
models �uncorrelated and correlated impulsive noise� and
three noise levels �5%, 10%, and 15%�. The average rank-
ings are obtained by averaging the individual filter rankings
over the entire image set.

In order to determine the most effective filters at each
noise level, we select the 10 best filters with respect to each
effectiveness measure �MAE, MSE, NCD� for each noise
model. Based on this selection, at each noise level, the
filters that perform well regardless of the noise model and
the effectiveness measure are determined �see Table 13�. It
can be observed that two filter families are particularly
prominent in effectiveness: the adaptive center-weighted
vector filters and the vector sigma filters. This can be at-
tributed to the effectiveness of the noise detection criteria
used in these families. By varying the smoothing param-
eter, the adaptive center-weighted vector filters employ a
computationally expensive but robust iterative scheme to
determine whether the center pixel is noisy or not. On the
other hand, the vector sigma filters utilize approximations
of the multivariate variance within a window in their noise
detection criteria. Interestingly, in general, the nonadaptive
vector sigma filters perform better than their adaptive coun-
terparts.

The filters that are effective under any circumstances are
those that appear in every row of Table 13. These are the
ACWDDF, PGF, SDDF_rank, and ACWVMF. Among
these filters, the ACWDDF consistently ranks the highest
under different noise configurations. The PGF and
ACWVMF have relatively stable rankings, whereas the
SDDF_rank exhibits somewhat fluctuating behavior. Fig-
ures 2 and 3 show the results of these filters on two images
corrupted by 10% and 15% correlated noise, respectively.

†Note that the rankings start from 0 rather than 1.
‡For comparison purposes, the window size for each filter is set to 3�3 and the

Table 13 Most effective filters at each noise level.

Noise Level Most Effective Filters

5% noise ACWDDF, PGF, SDDF_rank,
ACWVMF, ACWVDF, MCWVMF,
SDDF_mean

10% noise ACWDDF, PGF, SDDF_rank,
ACWVMF, SDDF_mean, SVMF_rank

15% noise ACWDDF, PGF, SDDF_rank,
ACWVMF, SVMF_rank
L2-norm is used whenever the Minkowski distance is involved.
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The execution time is also a very important factor that
etermines the practicality of a noise removal filter. As
able 12 shows, the ordering of the filters with respect to
xecution time remains almost unchanged across different
oise configurations. The 10 most efficient filters are FPGF,
SVMF_mean, PGF, SVMF_mean, FFNRF, MCWVMF,
SBVDF_mean, SVMF_rank, FMVMF, and VMF. The

ollowing observations are in order:

• Except for the VMF, every filter in the list is based on
the concept of switching �alternating between the
identity and the filter operations�.

• The FPGF is clearly the most efficient filter.
• The PGF is the only filter that ranks very high in terms

of both effectiveness and efficiency. This is signifi-
cant, considering the most effective filter, i.e.,
ACWDDF, is actually among the slowest.

t should be emphasized that some filters that appear in the
0 most efficient filters list but not in Table 13 still achieve

ig. 2 Sample filtering results for the baboon image. �a� Original; �b�
0% correlated noise; MAE: 6.058; MSE: 893.707; NCD: 0.101; �c�
CWDDF: MAE: 1.902; MSE: 76.956; NCD: 0.012; �d� ACWVDF:
AE: 2.182; MSE: 102.892; NCD: 0.014; �e� PGF: MAE: 2.293;
SE: 98.825; NCD: 0.015; �f� SDDF_mean: MAE: 3.017; MSE:
24.358; NCD: 0.019; �g� SDDF_rank: MAE: 3.031; MSE: 123.020;
CD: 0.019; �h� ACWVMF: MAE: 3.726; MSE: 171.007; NCD:
.023.
good compromise between effectiveness and efficiency.
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These include MCWVMF, FMVMF, FFNRF, SVMF_rank,
SVMF_mean, and FPGF.

An examination of the distance measures �Minkowski,
angular, directional-distance� with respect to effectiveness
and efficiency shows that no distance measure completely
outperforms the other two. However, it is interesting to note
that among the 4 most effective filters, 2 are based on
directional-distance �ACWDDF, SDDF_rank�. Considering
that only 8 of the 48 filters are based on directional-
distance, the idea of combining the Minkowski and angular
distance functions proves to be quite advantageous. On the
other hand, as explained in Section 3.3, the filters based on
the Minkowski distance are inherently more efficient than
their angular and directional-distance counterparts. In fact,
it can be seen from Table 12 that, except for the FFNRF
and ASBVDF_mean, the 10 most efficient filters are all
based on the Minkowski distance. In contrast, the most ef-
ficient angular filter �ASBVDF_mean� appears at the 7th
rank, whereas the most efficient directional-distance filter
�ASDDF_mean� ranks 12th. This shows that if execution
time is of prime importance, filters based on the Minkowski
distance are the most obvious choice.

The unsatisfactory performance of the hybrid and adap-
tive fuzzy filters can be attributed to the fact that these
filters introduce color artifacts by determining the output in

Fig. 3 Sample filtering results for the Native American image. �a�
Original; �b� 15% correlated noise; MAE: 9.600; MSE: 1558.290;
NCD: 0.182; �c� ACWDDF: MAE: 1.453; MSE: 49.316; NCD: 0.015;
�d� PGF: MAE: 1.593; MSE: 54.189; NCD: 0.021; �e� SDDF_rank:
MAE: 1.594; MSE: 50.284; NCD: 0.016; �f� ACWVMF: MAE: 1.643;
MSE: 53.992; NCD: 0.019; �g� SDDF_mean: MAE: 1.776; MSE:
74.073; NCD: 0.021; �h� ACWVDF: MAE: 2.030; MSE: 109.360;
NCD: 0.018.
a window as a linear or nonlinear combination of the input
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ectors. However, it should be noted that these filters are
nown to be more effective in the presence of Gaussian
oise due to their averaging nature.

The reader should note that due to time constraints some
lters in the literature were omitted from this study. No-

able examples include the fast adaptive similarity-based
oise reduction filter �FANRF�,89, the fuzzy inference-
ased vector filter �FIVF�,90 and the vector rank M-type
-nearest neighbor �VRMKNNF�.16 The FANRF is based
n the notion of similarity rather than distance. The simi-
arity between two pixels can be calculated using various
ernel functions, which allows for more flexibility when
esigning filters tailored for particular applications. The
IVF employs a novel fuzzy inference system for noise
etection and involves switching between the identity op-
ration and the L-filter, whose coefficients are determined
sing a fast constrained least-mean-squares approach. The
RMKNNF is based on combined RM-estimators with dif-

erent influence functions. It employs an adaptive nonpara-
etric approach that determines the functional form of the

robability density of the noise to improve the filtering per-
ormance.

.2 Conclusions
his study presented a systematic survey of 48 impulsive
oise removal filters using a unified notation. The filters
ere categorized into families and compared on a large

mage set in order to ensure an objective appraisal of their
ffectiveness and efficiency. A fast approximation for the
nverse cosine function was introduced to allow for a more
ven comparison of efficiency. Furthermore, commonly
sed distance measures were compared and contrasted. Fi-
ally, recommendations for selecting filters that meet cer-
ain criteria were provided.

The implementations of the filters described in this ar-
icle have been made publicly available as part of the Fou-
ier image processing and analysis library, which can be
ownloaded from http://sourceforge.net/projects/fourier-
pal.
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