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Abstract
Content-based histopathology image retrieval (CBHIR) can assist in the diagnosis of different diseases. The retrieval proce-
dure can be complex and time-consuming if high-dimensional features are required. Thus, hashing techniques are employed 
to address these issues by mapping the feature space into binary values of varying lengths. The performance of deep hash-
ing approaches in image retrieval is often superior to that of traditional hashing methods. Among deep hashing approaches, 
triplet-based models are typically more effective than pairwise ones. Recent studies have demonstrated that incorporating the 
attention mechanism into a deep hashing approach can improve its effectiveness in retrieving images. This paper presents an 
innovative triplet deep hashing strategy based on the attention mechanism for retrieving histopathology images, called histo-
pathology attention triplet deep hashing (HATDH). Three deep attention-based hashing models with identical architectures 
and weights are employed to produce binary values. The proposed attention module can aid the models in extracting features 
more efficiently. Moreover, we introduce an improved triplet loss function considering pair inputs separately in addition to 
triplet inputs for increasing efficiency during the training and retrieval steps. Based on experiments conducted on two public 
histopathology datasets, BreakHis and Kather, HATDH significantly outperforms state-of-the-art hashing algorithms.

Keywords  Attention mechanism · Hashing algorithms · Content-based histopathology image retrieval · Neural networks · 
Triplet models

Introduction

Content-based histopathology image retrieval (CBHIR) is 
a computer vision approach employed in the diagnosis of 
various diseases [1]. Given a query image, a CBHIR system 
ranks the database images in order of decreasing similarity 
based on features extracted from images [2]. An effective 
ranking process may require high-dimensional features, 
making the retrieval procedure complex and time-consuming 
[3]. Therefore, hashing algorithms are used to resolve these 
issues by converting the feature space into binary values of 
varying lengths [1]. Deep hashing models often outperform 

traditional hashing approaches in image retrieval [4]. For 
deep hashing strategies, however, generating binary codes 
using the sign function may be challenging due to the van-
ishing gradient problem [5]. Deep hashing techniques gen-
erally employ a pairwise or triplet scheme. Pairwise-based 
approaches utilize similar and dissimilar pairs to train, while 
triplet-based methods employ a triplet structure of images, 
where two images are similar to each other, but distinct from 
the third [6]. Recent studies have demonstrated that triplet 
deep hashing models perform better than pairwise-based 
techniques in image retrieval tasks [7, 8]. Nevertheless, the 
performance of these models may need to be enhanced to 
provide high accuracy when retrieving medical images [7].

A number of studies have shown that convolutional neu-
ral networks (CNNs) are incredibly powerful for analyz-
ing histopathology images [9]. Several pre-trained CNNs, 
including VGGNet [10], ResNet [11], and MobileNet [12], 
have been applied to classify and retrieve histopathological 
images [3, 9]. Research findings indicate that the effective-
ness of CNNs does not significantly increase as they become 
more complex, leading to the introduction of the attention 
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mechanism [13]. As human eyes function, the attention 
mechanism assists CNNs in concentrating on crucial details 
and information relevant to the defined purpose. Through 
this mechanism, we can concentrate on key features and 
exclude irrelevant ones [14]. Hence, the effectiveness of 
an image retrieval process can be significantly improved by 
incorporating the attention mechanism into a deep hashing 
structure [15].

Although histopathology and other images are usually 
retrieved using a similar process, there are some nuanced 
differences. Histopathology datasets sometimes contain 
unequal distributions of samples within classes, which can 
adversely affect retrieval efficiency [16]. Histopathology 
images provide a microscopic view of tissues and differ in 
nature from other medical images, making them challeng-
ing to provide and utilize for deep hashing models [17]. In 
addition, histopathology images can be large and need to be 
converted into small patches, which complicates a CBHIR 
model and makes precise retrieval challenging [18]. Moreo-
ver, as a CBHIR system can be employed to detect a variety 
of diseases, it must be capable of retrieving histology images 
quickly and accurately [3].

Although several CBHIR systems have been developed in 
recent years, they are not necessarily accurate, especially for 
histopathology databases with many classes [3]. Our find-
ings indicate that there is a lack of research on evaluating the 
performance of the attention mechanism incorporated into a 
deep hashing model for retrieving histopathology images. In 
addition, while several attention mechanism modules have 
been introduced over the past few years, designing a sim-
ple and practical module remains challenging [13]. Moreo-
ver, the implementation of a triplet deep hashing method, 
which is superior to the current hashing-based approaches, 
is crucial to the retrieval of histopathology images. We thus 
propose an effective method for retrieving histopathology 
images using a novel triplet deep hashing model based on 
the attention mechanism, called histopathology attention 
triplet deep hashing (HATDH). As part of the proposed 
model, we consider pair inputs separately in addition to tri-
plet inputs for improved retrieval performance, especially in 
multi-class histopathology databases. The designed atten-
tion module is also helpful in focusing more on details in a 
histopathology image to extract features efficiently. Also, an 
effective hash layer is suggested to overcome the vanishing 
gradient issue while producing high-precision binary codes. 
As a result, HATDH performs better than current state-of-
the-art hashing-based methods for retrieving histopathology 
images.

The major contributions of this work are as follows:

•	 To the best of our knowledge, an effective triplet deep 
hashing model is proposed to retrieve histopathology 
images for the first time.

•	 As part of our deep hashing approach, we design an 
enhanced attention module, named hybrid coordinate 
attention module (HCAM), outperforming its alternatives 
in feature extraction. Although the developed module can 
be integrated into various CNN architectures to improve 
both medical and non-medical image retrieval, this study 
utilizes it to enhance the effectiveness of a histopathology 
image retrieval process.

•	 An effective hash layer is suggested to produce binary 
values of varying lengths with high accuracy, resulting 
in speeding up the training and retrieval phases as well 
as addressing the vanishing gradient issue.

•	 A novel triplet loss function is introduced that takes into 
account pair inputs separately in addition to triplet inputs 
for improving the performance of both the training and 
retrieval phases.

•	 The presented loss function can also decrease the error 
between generated hash codes and real ones.

•	 Our approach enables a better feature extraction stage by 
concentrating on details in histopathology images thanks 
to the designed attention module.

•	 The presented triplet model also improves the perfor-
mance of an image retrieval system for various histo-
pathological datasets.

•	 Based on experiments conducted on two public histopa-
thology datasets, HATDH is superior to current cutting-
edge hashing-based approaches.

The paper continues as follows. “Related Work” Section 
provides an overview of recent studies on hashing algo-
rithms, CBHIR systems, and attention mechanism modules. 
The suggested method is thoroughly explained in the “Meth-
ods” Section. “Experimental Results” Section outlines and 
discusses the results of our study. Finally, a summary of the 
paper and recommendations for future research are presented 
in the “Conclusion” Section.

Related Work

Hashing Techniques

Hashing techniques are used to produce binary values that 
facilitate image retrieval while requiring less storage space 
[1]. The two main types of hashing approaches are classical 
and deep learning-based methods [19]. The most popular 
classical hashing algorithms are locality-sensitive hashing 
(LSH) [20], iterative quantization (ITQ) [21], and super-
vised discrete hashing (SDH) [22]. LSH uses random hash 
functions to encode the feature domain in a data-independ-
ent manner. ITQ reduces the quantization gap between the 
produced binary values and feature space. SDH trains hash 
codes via a regression-based methodology.
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Deep hashing approaches often outperform classical 
hashing techniques in image retrieval [5]. A deep hash 
model employs CNNs for feature extraction, followed by a 
hash layer to create binary values [19]. In the past few years, 
a variety of deep hashing models have been developed to 
retrieve images. Deep pairwise-supervised hashing (DPSH), 
presented by Li et al. [4], uses two similar CNNs to gener-
ate hash codes. An advanced loss function is implemented 
to learn two hash values based on their similarity, leading 
to promising results for image retrieval on benchmarking 
datasets. Deep supervised hashing (DSH) is another frame-
work that trains binary codes using a form of contrastive 
loss function [23]. Deep triplet supervised hashing (DTSH), 
a triplet version of DPSH, intends to maximize triplet label 
likelihoods [24]. To deal with the vanishing gradient chal-
lenge, HashNet generates hash codes using a scaled tanh 
function [5]. However, the model may face difficulties 
when generating highly accurate binary codes. In order to 
achieve high accuracy in image retrieval tasks, deep triplet 
quantization (DTQ) utilizes a triplet architecture to learn 
condensed binary information [8]. Improved deep hashing 
network (IDHN), proposed by Zhang et al. [25], boosts the 
performance of image retrieval in multi-class databases. 
The model compares pair hash codes utilizing a quantitative 
similarity to yield acceptable results. Attention-based triplet 
hashing (ATH) leverages the attention mechanism within a 
triplet hashing scheme to retrieve medical images efficiently 
[7]. Opponent class adaptive margin (OCAM) suggests a 
more effective triplet hashing approach for retrieving medi-
cal images [26]. The model adaptively selects a margin value 
according to the dataset. Deng et al. [27] present a triplet-
based deep hashing (TDH) model for cross-modal retrieval. 
They also propose a graph regularization to maintain the 
initial conceptual similarity between binary values.

Attention Mechanisms

Motivated by the human vision system, several works 
employed attention mechanisms to boost the effectiveness of 
CNNs in the feature extraction phase for image retrieval and 
classification [14, 15]. Using attention strategies, CNN mod-
els can be trained to concentrate on what (channel attention) 
and where (spatial attention) are relevant to the intended 
aim [28]. The channel and spatial attention mechanisms may 
be considered separately or in combination when designing 
CNN models.

In recent years, many attention modules have been devel-
oped for improving the performance of CNNs during the 
feature extraction stage. Woo et al. [14] presented a convo-
lutional block attention module (CBAM) using a sequential 
combination of channel and spatial attention mechanisms. 
Experiments have proven that applying CBAM to differ-
ent CNN models can enhance classification and retrieval 

accuracy. An efficient channel attention (ECA) module was 
proposed in [29], focused on improving the performance of 
CNNs in image analysis with less complexity. A new atten-
tion strategy, known as coordinate attention, was introduced 
to enhance the functionality of MobileNet models in [30]. 
The authors demonstrated that separately investigating infor-
mation in two spatial axes can improve CNN performance 
in image classification and segmentation. Li et  al. [13] 
developed a hybrid attention module (HAM) with a similar 
design to CBAM. The channel attention phase followed the 
ECA framework. On the other hand, the spatial attention was 
implemented similarly to CBAM but with the addition of a 
channel separation step to improve the overall efficiency.

Histopathology Image Retrieval

A variety of CBHIR approaches have been developed with 
or without hashing in recent years. Based on hand-crafted 
features, Ma et al. [2] introduced an unsupervised approach 
to retrieve histology images for breast cancer detection. 
Their system utilized the LSH algorithm for the optimization 
of the search procedure. Shi et al. [1] designed a pairwise-
based deep hashing model for classifying and retrieving 
histopathology images. The model employed an innova-
tive objective function to optimize the training procedure. 
In [3], another deep hashing approach was introduced for 
retrieving images of histopathology focused on breast can-
cer recognition. The authors applied VGG16 for the feature 
extraction step, which was then attached to a hash layer for 
generating binary values. Yang et al. [31] proposed a deep 
metric learning strategy to retrieve histopathological images. 
The model performance was enhanced by implementing an 
attention mechanism. A novel feature learning methodol-
ogy was suggested for whole-slide histopathology image 
retrieval in [18]. An attention-based CBHIR system focus-
ing on key regions in whole-slide images was developed 
by Hashimoto et al. [32], achieving promising results. Our 
previous work, called histopathology Siamese deep hashing 
(HSDH), presented a novel deep hashing method based on a 
Siamese structure for retrieving histopathology images [33]. 
The approach employed a new hash layer to overcome the 
vanishing gradient problem. Furthermore, we developed an 
improved loss function to enhance retrieval performance. 
Although HSDH could show promising results, the designed 
hash layer may increase the complexity. Furthermore, pair-
wise structures may not be as effective as triplet ones for 
separating samples, especially in multi-class datasets [7]. 
As a result, it is necessary to develop a triplet deep hashing 
model for retrieval of histopathology images. In this paper, 
we develop a novel triplet structure that takes into account 
pair inputs separately in addition to triplet inputs. Addition-
ally, the presented loss function allows for high-accuracy and 
efficient binary code generation and training. The proposed 
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attention mechanism module can also improve the feature 
extraction process. These contributions aim to increase the 
retrieval accuracy of histopathology images compared with 
the existing approaches.

Since a comparison between HSDH and HATDH can 
assist future researchers in selecting the most effective 
approach, presenting both models is necessary and impor-
tant. In comparison with HSDH, HATDH offers several 
innovations and improvements, as follows:

•	 Developing a triplet deep hashing scheme to retrieve 
histology images from various datasets, which is more 
effective than a pairwise scheme.

•	 Presenting an efficient hashing layer with reduced com-
plexity to deal with the vanishing gradient problem.

•	 Improved accuracy in generating and learning binary 
codes.

•	 HSDH involves training the distance between binary 
codes, while HATDH directly accesses binary codes, 
allowing for more flexibility in retrieval.

•	 Designing an effective and novel attention module to 
improve the feature extraction process.

•	 The separation technique used in designing our module 
helps to focus better on specific regions and select the 
best features.

•	 Proposing an improved triplet loss function consider-
ing pair inputs separately in addition to triplet inputs for 
increasing efficiency during the training and retrieval 
phases.

•	 The possibility of decreasing the error between generated 
hash codes and real ones, which may not be possible in 
HSDH easily.

•	 Enhancing the retrieval results on the datasets employed 
compared with HSDH.

As can be seen, HATDH can offer 9 novelties and 
improvements over HSDH. The mentioned novelties are 
so specific and different in detail. It should be noted that 
some of the innovations mentioned, such as the design of 
the attention module and hash layer, could each be the sub-
ject of an individual paper [5, 13]. However, in this work, 
we present them together in the context of improving the 
process of retrieving histopathology images. While HSDH 
and HATDH appear similar at first glance, they differ sub-
stantially in many details, as discussed earlier. HATDH aims 
to address the challenges and issues associated with HSDH 
while also improving retrieval performance. Introducing 
different histopathology image retrieval models can assist 
researchers in selecting the most suitable approach by under-
standing the pros and cons of each method for their future 
research. In light of the numerous similar works to HATDH 
published in various applications, presenting our method 
may prove useful in future studies related to histopathology 

analysis. Furthermore, it should be mentioned that various 
innovations and advancements incorporated in the design of 
HATDH are being introduced for the first time within this 
particular field.

Methods

As illustrated in Fig. 1, HATDH includes three identical 
deep hashing models with three inputs, namely anchor, 
positive, and negative. Anchor and positive have the same 
class label, while negative has a different one. These triplet 
images are randomly selected using the procedure outlined 
in [7]. Our first objective is to encode each image xl employ-
ing a simple L-bit binary value 〈l ∈ {−1, 1}L . Our deep hash-
ing models are composed of a feature extraction stage and 
a hash layer. A novel attention module is included in the 
architecture of CNNs to improve the performance of the 
feature extraction process. The final goal is to learn hash 
codes via the proposed loss function so that the anchor and 
positive codes are less distant than the anchor and negative 
codes. This section describes the structure and development 
of deep hashing models, the learning process, and how the 
retrieval process is carried out.

Deep Hashing Model Structure

MobileNet is chosen as the base model because it is easy 
to implement and effective in analyzing histopathology 
images [9]. Moreover, several studies have shown that 
integrating attention modules into the architecture of this 
network assists in improving an image analysis process 
[14, 30]. MobileNet also appears to be less sensitive to 
the number of training samples than other CNN models, 
such as the VGGNet, ResNet, leading to less complex-
ity [12]. An attention module is developed to enhance 
the feature extraction procedure. Then, a hash layer is 
designed for converting the feature space to binary codes. 
We first explain the proposed attention module, followed 
by a detailed description of the overall deep hashing 
structure.

Proposed Attention Module

According to CBAM, HCAM incorporates a sequential 
arrangement of channel and spatial attention mechanisms. 
Figure 2 (a) depicts that features are first passed through the 
channel attention part, and the results are then multiplied by 
the input to obtain optimized features in the channel atten-
tion stage. Following that, the optimized features are divided 
into two axes for generating horizontal and vertical spatial 
attention. The following describes the channel and spatial 
attention components in details.
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Channel Attention Component  As can be seen in Fig. 2 (b), 
the max-pooling and average-pooling functions are initially 
employed to gather spatial information on features. The 
functions produce two feature categories,FA

C
 and FM

C
 , rep-

resenting average-pooled and max-pooled features, respec-
tively. In the next step, both categories are summed adap-
tively based on two trainable variables �1 and �2 . Inspired 
by [13], the values of �1 and �2 are chosen between 0 and 1. 
The result is then fed into a convolutional network with two 
1-D layers. Hang et al. [34] suggested utilizing two convo-
lutional layers with different kernels to improve attention 

module performance. Therefore, we develop two 1-D con-
volutional layers with kernels k1 and k2. Inspired by ECA, 
k1 is adaptively calculated based on Eq. (1).

where |r|odd represents the closest odd number to r. The val-
ues of � and � are 2 and 1, respectively. Moreover, k2 is set 
to 7, providing the best experimental results in combination 
with the first 1-D convolutional layer. In general, the channel 
attention function can be described by Eq. (2):

(1)k1 =
||||
log2 (number of channels)

�
+

�

�

||||odd

Fig. 1   A general overview of HATDH. HATDH includes three iden-
tical deep hashing models with the same weights. The designed 
attention module can enhance the performance of the models when 
extracting features. The proposed triplet loss function takes into 

account pair inputs separately (anchor with positive as well as nega-
tive) in addition to triplet inputs to improve the training and retrieval 
stages

where � , C1D,
⨂

 , and 
⨁

 indicate the sigmoid function, 1-D 
convolutional layer with various kernels, element-wise mul-
tiplication, and element-wise addition.

Spatial Attention Component  According to Fig. 2 (c), in 
the first step, the max-pooling function is applied along the 

(2)F
C
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�
C1D

1×k
2

�
C1D

1×k
1

�
�
1

⨂
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A
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⨁
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C

���
s.t.�

1
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2
= 1

channel direction to each set, yielding FM
S
∈ ℝ

1×H×W and 
FM

S
∈ ℝ

1×H×W . The average-pooling operation is then per-
formed separately in the horizontal and vertical directions, 
leading to FC

S
(h)∈ ℝ

1×H×1 and FC
S
(w)∈ ℝ

1×1×W , respectively. 
The results can be expressed as follows:
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The recent step collects spatial correlations along 
one axis while maintaining positional details along the 
other, which can be beneficial for improving the feature 

(3)FC
S
(h) =

1

W

∑
0≤j<W

FM
S
(h, j)

(4)FC
S
(w) =

1

H

∑
0≤i<H

FM
S
(i,w)

extraction process [30]. Finally, two 2-D convolutional 
layers with the same kernel size of 7 × 7 ( C2D7×7 ) are 
employed to generate the spatial attention representa-
tion in two horizontal ( FS(h)∈ ℝ

1×H×1 ) and vertical 
( FS(w)∈ ℝ

1×1×W ) directions. The proposed spatial atten-
tion for a given set can be calculated as follows:

(5)FS(h) = �(C2D7×7(C2D7×7(F
C
S
(h))))

(a)

(b)

(c)

Fig. 2   The overall view of HCAM: a the general structure, b the 
channel attention module, and c the spatial attention module. Our 
module consists of two sequential parts: channel and spatial (in two 
axes). In the channel component, the max-pooling and average-pool-
ing outputs are combined based on two different weights and entered 
into a convolutional network. The results are fed into the sigmoid 

function to produce the channel attention. As for the spatial compo-
nent, the max-pooling operation is applied first in the channel direc-
tion, followed by the average-pooling operation in both horizontal 
and vertical directions. After applying the results into a convolutional 
network, the sigmoid function is used to generate the spatial attention 
in the two axes
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The final enhanced features ( FE∈ ℝ
C×H×W  ) can be 

described according to Eq. (7):

Deep Hashing Architecture

As mentioned, MobileNet is chosen as the base model for fea-
ture extraction. Our attention module is then integrated into the 
model to optimize performance during the feature extraction 
phase (Fig. 1). Lastly, the softmax layer is supplanted by a fully 
connected layer containing L nodes with the tanh activation 
function, where L indicates the hash code length. We employ 
the tanh activation function to approximate the sign function 
when generating binary values to prevent the vanishing gradi-
ent problem in back-propagation learning. As a result, an L-bit 
hash-like value can be created for an image as follows:

(6)FS(w) = �(C2D7×7(C2D7×7(F
C
S
(w))))

(7)FE = FS(h)
⨂

FS(w)
⨂

FC

(8)h = tanh(WF + v)

where W  ∈ ℝL×512 , F ∈ ℝ512×1, and V ∈ ℝL×1 represent a 
weight matrix, the feature extraction stage outcome, and a 
bias vector, respectively.

Model Learning

Consider hA,hP , and hN as the hash codes generated for 
anchor, positive, and negative images, respectively. The 
aim of a typical triplet deep hashing model is to force the 
distance between hA and hN to be greater than that of hA 
and hP by the margin �1 . The loss function can therefore be 
described for a triplet structure i in this way:

where ∥ . ∥2 indicates the L2-norm distance.
According to [35] and [36], the anchor distances between 

positive and negative can also individually affect the per-
formance of triplet-based models. Thus, we present the 
following equation to limit these distances by �2 and �3 , 
respectively:

(9)LT =
∑

i

�
max

����〈Ai
− 〈Pi

���
2

2
−
���〈Ai

− 〈Ni

���
2

2
+ �1, 0

��

(10)LD = LD1
+ LD2

=
∑
i

(max(∥ hAi
− hPi

∥2
2
− �2, 0) +max(�3 − ∥ hAi

− hNi
∥2
2
, 0))

As our deep hash model may not produce strictly binary 
values, we introduce a quantization loss term inspired by 
[4] as follows:

where sign(x) = 1 if x > 0 and − 1 otherwise. Consequently, 
the final loss function is as follows:

(11)
LQ =

∑
i

(∥ sign(hAi
) − hAi

∥2
2

+ ∥ sign(hPi
) − hPi

∥2
2
+ ∥ sign(hNi

) − hNi
∥2
2
)

(12)LG = LT + LD + �LQ

where β is a regulator variable to manage LQ.
The goal of a learning procedure is the minimization of 

a loss function using the back-propagation method. Thus, 
we have to find the derivative of LG to W , F, and V , i.e., 
the parameters of our hash layer. Initially, the gradient of 
LG is computed relative to hAi

 as follows:

where:
(13)

�LG

�hAi

=
�LT

�hAi

+
�LD

�hAi

+ �
�LQ

�hAi

=
�LT
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+
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0, otherwise
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0, otherwise

The chain rule can then be applied to compute the gradi-
ents of LG relative to the target parameters:

(17)
�LQ

�hAi

=
∑
i,j

−2
(
sign(hAi

) − hAi

)

(18)
�LG

�W
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�W
= (
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(19)
�LG

�F
=

�LG

�hAi

�hAi

�F
= (

�LG

�hAi

)(W)(sech2(WF + V))

(20)
�LG

�V
=

�LG

�hAi

�hAi

�V
=

(
�LG

�hAi

)(
sech2(WF + V)

)

Additionally, the above stages can be performed for the 
hash codes generated for positive and negative samples. 
All parameters can then be optimized using the standard 
back-propagation strategy. Algorithm 1 provides a general 
description of the overall HATDH learning procedure.

Input: 

Initial histopathology samples  = { } =   

Output: 

The parameter values of  , , and  

Initialization:  

Initialize  and  

Repeat 

1. Construct triplet structures; 

2. Obtain  using our attention-based model; 

3. Produce hash-like values for images of a triplet structure via (8); 

4. Compute the derivatives as per (13) - (20); 

5. Update the parameters , , and  using the back-propagation learning approach; 

Up to a specified number of times 

 Algorithm 1: The HATDH training procedure.

Searching Stage

Using the forward propagation technique, a query sample 
is compared with the entire training set to identify the most 
similar images in the Hamming space. The sign function can 
be utilized directly at this stage to calculate a binary value 
for an image xt:

Experimental Results

Datasets

We compare our model with currently available hashing 
techniques using two public histopathology datasets, Kather 
[37] and BreakHis [16]. Both datasets employ small patches 
and slides, which may not effectively represent the multi-
scale aspect of digital pathology. Nonetheless, they have 
shown the potential for content-based histopathological 
image retrieval in multiple previous experiments [3, 33].

Kather: This database includes 5000 RGB histology 
images with a pixel size of 150 × 150 for colorectal cancer 

(21)�xt = sign
(
WFxt

+ V
)

detection, categorized into 8 classes containing 625 differ-
ent regions of tissue, comprising simple stroma (including 
homogeneous content, smooth muscle, tumor stroma, and 
extra-tumoral stroma), complex stroma (incorporating sin-
gle tumor cells and few immune cells), tumor epithelium, 
immune cells (having submucosal lymphoid follicles and 
immune-cell conglomerates), normal mucosal, background 
(no tissue), adipose tissue, and debris (comprising hemor-
rhage, mucus, and necrosis).

BreakHis: The dataset comprises 7909 images with a 
size of 700 × 460 pixels, including two classes of benign and 
malignant breast tumors. The images have been collected from 
biopsy slides stained with hematoxylin and eosin. This data-
set has four magnification factors: 40 × (652 benign and 1370 
malignant samples), 100 × (644 benign and 1437 malignant 
samples), 200 × (623 benign and 1390 malignant samples), 
and 400 × (588 benign and 1232 malignant samples). Since the 
purpose of this research is not to diagnose breast cancer at dif-
ferent magnification levels, we utilize the 40 × version, as the 
typical magnification factor in the analysis of histology images.

According to [16, 33, 38], for the two datasets, 70% and 
30% of each class are randomly chosen for training and testing, 
respectively. We report the average results of five experiments.

Based on [39, 40], all images are normalized before enter-
ing our model as part of preprocessing. Furthermore, Kather 
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images do not change in size, but BreakHis samples are 
resized to 224 × 224 to improve the training stage according 
to previous research [33, 41].

Implementation Details

The experiments are carried out on a computer with the 
2.20 GHz Intel(R) Xeon(R) central processing unit (CPU), 
32 GB of RAM, and Tesla T4 graphics processing unit 
(GPU) via the Python deep learning library Keras based on 
the TensorFlow framework. We apply the adaptive moment 
estimation (Adam) optimizer [42] with a learning rate of 
0.001 and batch size of 64.

We compare our model with classical, such as LSH and 
ITQ, and deep hashing approaches, including DPSH, DSH, 
DTSH, HashNet, DTQ, IDHN, ATH, OCAM, and HSDH. 
DTSH, DTQ, ATH, OCAM, and are triple-based deep hash-
ing methods, while the rest employ a pairwise structure. With 

the aim of providing a fair comparison, this paper follows 
the same strategy as previous similar studies [25]. Thus, both 
classical and deep hashing approaches employ our CNN atten-
tion-based model to extract features. Moreover, we implement 
state-of-the-art approaches based on public source codes. It 
was necessary, however, to modify some parameters of the 
models to achieve better results on the datasets utilized.

Metrics

The following evaluation metrics are employed in this 
research based on similar works [25].

Mean average precision (MAP): measures the mean of the 
average precision (AP) for a query, where AP is calculated in 
the following way:

in this case, Nt indicates the size of the dataset; Np indicates 
the number of pertinent samples; and Nl relates to how many 
pertinent samples appear in the top l results. In addition, Sl is 
1 if the retrieved image matches the query, otherwise it is 0.

Precision@n: The precision of retrieving the first n samples 
matching the query image is expressed as the following:

Results

Kather Retrieval Results

According to Table 1, the HATDH method is superior to 
other existing hash-based approaches in terms of MAP 

(22)AP =
1

Np

∑Nt

l

Nl

l
× Sl

(23)Precision@n =
1

n

∑n

l=1
Sl

Table 1   Results of MAP on Kather for various lengths of binary val-
ues

Methods 32-bits 64-bits 128-bits

HATDH (ours) 0.9718 ± 0.001 0.9846 ± 0.012 0.9890 ± 0.008
HSDH 0.9523 ± 0.012 0.9679 ± 0.006 0.9795 ± 0.009
OCAM 0.8957 ± 0.028 0.9104 ± 0.008 0.9174 ± 0.007
ATH 0.8928 ± 0.024 0.9016 ± 0.014 0.9126 ± 0.013
IDHN 0.8609 ± 0.023 0.8861 ± 0.019 0.9002 ± 0.029
DTQ 0.8750 ± 0.016 0.8835 ± 0.007 0.8917 ± 0.012
HashNet 0.8802 ± 0.030 0.8859 ± 0.026 0.8894 ± 0.025
DTSH 0.8861 ± 0.029 0.8870 ± 0.029 0.8897 ± 0.030
DSH 0.8503 ± 0.031 0.8537 ± 0.027 0.8677 ± 0.021
DPSH 0.8685 ± 0.038 0.8749 ± 0.035 0.8839 ± 0.034
ITQ 0.7231 ± 0.075 0.7418 ± 0.055 0.7592 ± 0.043
LSH 0.7193 ± 0.079 0.7414 ± 0.056 0.7505 ± 0.048

(a) (b) (c)

Fig. 3   A comparison of the precision curves for different numbers of images retrieved on Kather based on various lengths of binary codes (a 
128, b 64, and c 32)
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for various binary code lengths. As compared with IDHN, 
which performs best among pairwise-based methods, our 
model provides an approximately 8% enhancement in 
MAP. HATDH can also raise MAP by roughly 7% in com-
parison with OCAM, the most efficient triplet-based algo-
rithm. Compared to HSDH, our previous work, HATDH 
can increase MAP by approximately 2%. To further evalu-
ate the efficacy of the mentioned methods, we plot the 
precision curves for a variety of numbers of retrieved 
images based on multiple binary code lengths. As illus-
trated in Fig. 3, HATDH achieves outstanding accuracy 
in retrieving histopathology images for the studied binary 
value lengths. Our designed attention module improves the 
feature extraction phase, resulting in increased retrieval 

accuracy. Besides three input binary codes, our developed 
loss function provides better training and retrieval results 
by considering pairs of input binary codes separately. 
Moreover, the quantization loss term can contribute to 
more accurate binary values, enhancing the final result. 
Figure 4 shows a sample of the convergence curves and 
training times for the training process of HATDH on the 
Kather and BreakHis datasets for 30 epochs. Nevertheless, 
some experiments may require more epochs. It should be 
noted that the mentioned training times do not include 
loading images, installing Python packages, etc.

BreakHis Retrieval Results

Table 2 compares HATDH with several state-of-the-art 
hashing techniques on the BreakHis dataset. According 
to the findings, our approach is more effective than other 
hashing-based retrieval strategies for histopathological 
images. Based on a particular comparison, HATDH boosts 
MAP by roughly 5% for various binary value lengths rela-
tive to IDHN. In addition, our method can increase MAP 
by nearly 6% when compared with OCAM. Compared to 
HSDH, our previous work, HATDH can increase MAP 
by approximately 2%. Figure 5 illustrates that HATDH 
provides excellent accuracy for examined binary value 
lengths on this dataset. The BreakHis dataset is not bal-
anced, affecting the efficiency of a retrieval model, but 
HATDH can deal with this issue and achieve outstanding 
results. Figure 4 (b) illustrates an example of the conver-
gence curve and training time for the training procedure 
of our model on BreakHis for 30 epochs.

 (a) (b)

Fig. 4   The convergence curves and training times for the training process of HATDH on the datasets used (a Kather; b BreakHis)

Table 2   Results of MAP on BreakHis for various lengths of binary 
values

Methods 32-bits 64-bits 128-bits

HATDH (ours) 0.9853 ± 0.018 0.9967 ± 0.002 0.9975 ± 0.002
HSDH 0.9706 ± 0.025 0.9782 ± 0.016 0.9845 ± 0.008
OCAM 0.9259 ± 0.024 0.9357 ± 0.023 0.9412 ± 0.018
ATH 0.9209 ± 0.015 0.9259 ± 0.015 0.9301 ± 0.017
IDHN 0.9374 ± 0.047 0.9418 ± 0.045 0.9457 ± 0.045
DTQ 0.8951 ± 0.087 0.9047 ± 0.088 0.9230 ± 0.071
HashNet 0.9081 ± 0.066 0.9137 ± 0.061 0.9275 ± 0.051
DTSH 0.9198 ± 0.061 0.9249 ± 0.057 0.9366 ± 0.047
DSH 0.8729 ± 0.034 0.8976 ± 0.018 0.9131 ± 0.020
DPSH 0.8782 ± 0.031 0.8964 ± 0.017 0.9105 ± 0.015
ITQ 0.7303 ± 0.080 0.7491 ± 0.059 0.7664 ± 0.045
LSH 0.7265 ± 0.084 0.7487 ± 0.060 0.7577 ± 0.051
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Analyzing Hyperparameters

The subsection examines the impact of various loss func-
tion hyperparameter values on MAP results. For simplic-
ity, we present only the results of one study on Kather and 
BreakHis for a 128-bit binary code. The hyperparameters 
for our loss function are λ1, λ2, λ3, and β. To begin with, we 
evaluate how λ1 affects the results. A step-by-step examina-
tion is then carried out on the remaining hyperparameters. 
When the other hyperparameters are ignored, MAP reaches 
its highest point around λ1 = 0.3 and 0.4 for Kather and 
BreakHis, respectively (Fig. 6(a) and (d)). As shown in 
Fig. 6 (b) and (e), choosing suitable λ2 and λ3 contributes to 
improving the performance of our model. Moreover, add-
ing the quantization term with an appropriate coefficient 
can further boost the MAP value (Fig. 6(c) and (f)). For the 
Kather dataset, the best MAP is achieved when λ1, λ2, λ3, 
and β are around 0.3, 0.2, 0.2, and 0.01, respectively. On 
the other hand, For the BreakHis dataset, the best MAP is 
achieved when λ1, λ2, λ3, and approximately β are 0.4, 0.3, 
0.4, and 0.1, respectively.

Ablation Study

This subsection examines eleven subtypes of HATDH. 
Tables 3 and 4 present MAP results for HATDH and the 
variants based on several binary code lengths for the two 
datasets used. These tables present the findings of only one 
study across both datasets to simplify analysis. HATDH-V1 
to HATDH-V4 utilize ECA, CBAM, HAM, and coordinate 
attention modules in place of our attention module. As indi-
cated in Tables 3 and 4, applying attention modules to a 
deep hashing structure can improve retrieval accuracy, but 
the complexity may increase slightly. Additionally, modules 
employing both channel and spatial attention mechanisms, 
such as CBAM and HAM, yield better results. HATDH-V5, 
HATDH-V6, and HATDH-V7 extract features using various 
CNN models, including MobileNet, VGG19, and ResNet101, 
respectively. According to the results, although the CNN 
models alone perform well for feature extraction, they are 
not as effective as when the attention modules are incorpo-
rated. Rather than our designed loss function, HATDH-V8, 
HATDH-V9, and HATDH-V10 employ those proposed in 

(a) (b) (c)

Fig. 5   A comparison of the precision curves for different numbers of images retrieved on BreakHis based on various lengths of binary codes (a 
128, b 64, and c 32)

Table 4   A comparison of MAP results for HATDH and related types 
based on different hash code lengths from the BreakHis dataset

Methods 32-bits 64-bits 128-bits

HATDH-V1 0.9173 0.9453 0.9508
HATDH-V2 0.9231 0.9461 0.9521
HATDH-V3 0.9048 0.9303 0.9511
HATDH-V4 0.9182 0.9274 0.9431
HATDH-V5 0.9013 0.9106 0.9301
HATDH-V6 0.8917 0.9001 0.9094
HATDH-V7 0.9178 0.9285 0.9391
HATDH-V8 0.9160 0.9309 0.9416
HATDH-V9 0.8972 0.9260 0.9394
HATDH-V10 0.9149 0.9422 0.9465
HATDH-V11 0.9212 0.9435 0.9543
HATDH 0.9596 0.9938 0.9963

Table 3   A comparison of MAP results for HATDH and related types 
based on different hash code lengths from the Kather dataset

Methods 32-bits 64-bits 128-bits

HATDH-V1 0.9298 0.9397 0.9443
HATDH-V2 0.9391 0.9407 0.9448
HATDH-V3 0.9416 0.9479 0.9490
HATDH-V4 0.9385 0.9432 0.9534
HATDH-V5 0.9281 0.9324 0.9330
HATDH-V6 0.8958 0.9219 0.9224
HATDH-V7 0.9177 0.9333 0.9375
HATDH-V8 0.9345 0.9489 0.9503
HATDH-V9 0.8552 0.8807 0.9052
HATDH-V10 0.8573 0.9016 0.9227
HATDH-V11 0.9374 0.9443 0.9472
HATDH 0.9756 0.9823 0.9842
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[7, 8], and [26]. The performance of these loss functions 
is acceptable when dealing with large hash codes but may 
not be satisfactory for short binary values. In addition, our 
triplet loss function outperforms the mentioned triplet loss 
functions in retrieving histopathology images. In HATDH-
V11, we apply our attention module without separating the 
axes in the spatial component. The findings indicate that the 
separation strategy improves the effectiveness of our atten-
tion module for feature extraction. A detailed description of 
HATDH and its subtypes can be found in Table 5.

In summary, the reported results reveal that using the 
attention modules can improve the performance of our 
model in the feature extraction phase, leading to increased 
image retrieval accuracy. Also, the designed attention mod-
ule outperforms the others. Further investigation reveals that 
the introduced loss function can increase MAP by approxi-
mately 3–12% and 5–7% over the other types of triplet loss 
functions for the Kather and BreakHis datasets, respectively. 
Additionally, the results indicate that the separation of axes 
in the spatial component enhances MAP by around 2–5%.

(a) (b)       (c)

(d)  (e)         (f)

Fig. 6   Investigating how different hyperparameters of the proposed loss function affect retrieval performance (high row: Kather; low row: 
BreakHis)

Table 5   A detailed description 
of HATDH and its subtypes

Methods CNN model Attention module Loss function The best MAP

HATDH-V1 MobileNet ECA Ours 0.9508
HATDH-V2 MobileNet CBAM Ours 0.9521
HATDH-V3 MobileNet HAM Ours 0.9511
HATDH-V4 MobileNet Coordinate Ours 0.9534
HATDH-V5 MobileNet - Ours 0.9330
HATDH-V6 VGG19 - Ours 0.9224
HATDH-V7 ResNet101 - Ours 0.9391
HATDH-V8 MobileNet Ours proposed in [7] 0.9503
HATDH-V9 MobileNet Ours proposed in [8] 0.9394
HATDH-V10 MobileNet Ours proposed in [26] 0.9465
HATDH-V11 MobileNet Ours (without the separation technique) Ours 0.9543
HATDH MobileNet Ours (with the separation technique) Ours 0.9963
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Effects of Our Triplet Loss Function on the Results

Compared with prior triplet loss functions, such as [7, 8], and 
[26], the suggested triplet loss function takes into account 
pair inputs separately (anchor with positive and negative) 
in addition to triplet inputs, which can improve retrieval 
performance in various histopathology databases. Figure 6 
(b) shows that having the hyperparameters λ2 (for anchor 
and positive pairs) and λ3 (for anchor and negative pairs) 
improves MAP by approximately 1.2% when compared with 
the conventional triplet loss function with only one hyperpa-
rameter (λ1). Moreover, the quantization term can assist in 
the generation of binary codes with a high level of accuracy 
utilizing β, resulting in an increase of around 1.6% in MAP 
(Fig. 6(c)). On the other hand, based on the experimental 
results of HATDH-V8, HATDH-V9, and HATDH-V10 
(Tables 3 and 4), the designed triplet loss function, employ-
ing different hyperparameters (λ1, λ2, λ3, and β), outperforms 
the recently proposed triplet loss functions, including [7, 8], 
and [26], for the used histopathological datasets.

Effects of Our Attention Module on the Results

While our novel attention module follows a similar structure 
to CBAM, it differs in a few ways. One of the main differences 
is that the spatial attention component uses the separation in 
two axes technique. The technique captures direction-aware 
and position-sensitive information, enabling us to focus on 
the main objective in complicated images [30]. HATDH and 
HATDH-V2 results in Tables 3 and 4 demonstrate that utiliz-
ing our attention module instead of CBAM increases MAP by 
3.92% and 4.28% for Kather and BreakHis, respectively, on 
average. Additionally, the proposed module provides superior 
performance in feature extraction for histopathological images 
when compared to other attention modules, such as ECA, 
HAM, and coordinate. Further, based on the experimental 
results of HATDH and HATDH-V11, the applying separation 
strategy to the model can improve its performance in feature 
extraction, leading to an increase in MAP of 3.8–5.03%. This 
strategy captures spatial correlations along one axis while 
retaining positional details along the other, facilitating the fea-
ture extraction process by accurately locating a desired target 
in histopathology images (Table 5).

Discussion

Histopathological databases may include asymmetrical dis-
tributions of samples within classes, which can negatively 
impact retrieval efficiency [16]. Histopathological images 
present a microscopic view of tissues and differ from other 
kinds of medical images, which poses challenges in col-
lecting and employing them for deep hashing models [17]. 

Furthermore, histopathological images might be large 
and have to be divided into small patches, complicating a 
CBHIR model and making precise retrieval challenging 
[18]. In addition, since a CBHIR system can be used to diag-
nose various types of diseases, it must be able to retrieve 
samples rapidly and reliably [3]. Choosing and focusing on 
optimum features is critical while studying histopathology 
images [33]. To assess image similarity, a CBHIR model 
compares extracted features of samples using distance 
metrics, including Hamming and Euclidean [1]. One fac-
tor that can reduce the accuracy of a CBHIR system is the 
feature extraction stage [43]. Since low-level features may 
not properly describe a histopathological image, deep learn-
ing approaches are frequently utilized for automated fea-
ture extraction [44]. However, these strategies need a large 
number of training datasets to function effectively [33]. On 
the other hand, an effective retrieval process may require 
high-dimensional features, making a CBHIR model complex 
and slow [1]. The vanishing gradient problem in deep hash-
ing models can also cause difficulties in generating precise 
binary codes during a retrieval process [5]. In summary, the 
errors during a histopathology image retrieval process can be 
caused by issues with datasets, the feature extraction stage, 
vanishing gradient, etc.

A histopathology image retrieval process often requires 
high-dimensional features, making a CBHIR model complex 
and time-consuming [1]. On the other hand, histopathology 
databases may be unbalanced and include several classes 
with limited samples, which can have a negative impact on 
retrieval [3]. Also, the nature of histopathology images fur-
ther complicates choosing the best features to represent them 
[17]. To overcome these problems, for the first time, we pro-
pose a novel attention-based triplet deep hashing model for 
histopathology image retrieval. The hashing concept can 
help to speed up the training and retrieval stages [33]. Also, 
the triplet structure is effective in solving the dataset issues 
[7]. Additionally, the attention mechanism assists in select-
ing the optimal features from images by focusing on the best 
region [14]. A hash layer is suggested to address the vanish-
ing gradient problem [5], capable of generating and train-
ing binary codes simultaneously. Moreover, the proposed 
loss function improves training and retrieval performance 
by considering both pair and triplet inputs. Combined, these 
contributions make a powerful CBHIR model that outper-
forms similar ones. It should be noted that this paper aims 
to utilize and enhance the existing neural network concepts 
to present an effective CBHIR model.

This paper proposes an attention-based innovative triplet 
deep hashing model to retrieve histopathology images. One 
of the significant limitations of studies on histopathology 
images is associated with datasets. Histopathology data-
bases are typically organized as either whole slide or patch-
based images. Using whole slide images can increase the 
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complexity, especially in deep learning models. On the other 
hand, patch-based images may not effectively represent the 
multi-scale characteristics of digital pathology, but they have 
shown the potential for content-based retrieval [3, 33]. Thus, 
we opted to use popular patch-based databases to reduce 
complexity and facilitate our model training.

The next challenge is to select the best features to convert 
them into binary codes. To achieve this goal, we design a 
novel attention module that utilizes both channel and spatial 
information. Despite its positive effects on retrieval results, 
the presented module may add a bit of complexity to the 
CNN architecture. Hence, designing a less complex attention 
module, which focuses only on spatial or channel informa-
tion, may become a consideration for the next study as well.

Another problem in deep hashing models is produc-
ing binary values accurately. Since the derivative of the 
sign function is zero and undefined for non-zero and zero 
inputs, respectively, using that directly in deep learning 
models is not possible (the vanishing gradient issue). 
Therefore, we suggest an effective hash layer to produce 
high-accuracy binary codes using a proper approximation 
of the sign function. Furthermore, the presented loss func-
tion can aid in reducing errors when generating binary 
codes. Nevertheless, the vanishing gradient problem 
remains an open challenge for deep hashing research.

In this paper, we proposed a novel attention module 
to improve the feature extraction process, but the use of 
different aspects of the attention mechanism can still be 
a significant subject in histopathology analysis. Recently, 
Song et al. [45] presented a fusion approach using local 
and global attention methods to enhance an image retrieval 
process. It is possible to use the idea of this study as a 
motivation for designing a fusion attention module in 
retrieving histopathology images, especially since details 
are very important when analyzing these images. As men-
tioned, the vanishing gradient issue can be a serious chal-
lenge in generating binary codes. Inspired by [5], one of 
the simple solutions can be to apply similar functions to 
the sign function with automatic parameters. The pairwise 
or triplet deep hashing methods can effectively retrieve 
images from histopathology databases, but applying them 
to multi-class databases with various samples may pose 
a challenge. Based on the recent research findings, uti-
lizing quadrupled structures can offer a solution to this 
issue [46]. Designing a quadruple model with adjustable 
margins to retrieve histology images can be an interesting 
subject for future research.

This paper proposes a deep hashing model using pattern 
recognition methods for histopathology image retrieval. In 
this case, as with similar works [1, 3], we focus more on the 
mathematical and machine learning aspects of the problem 
than on the pragmatic ones, which may negatively affect its 
cognitive and practical value. Although this problem can 

often be ignored in academic research [1], we will strive to 
address and consider it in our next studies.

Assume efficiency equals the ratio of our outputs to 
inputs. For this study, inputs can include the CNN models, 
training images, and used computers. The outputs are the 
retrieved images, evaluated using MAP and AC. According 
to previous research [4, 5], since we use identical inputs for 
a fair comparison, MAP and AP can serve as appropriate 
metrics to measure the model efficiency. However, since the 
structures and strategies of the models may differ, training 
and retrieval times can also vary. Therefore, we compare our 
model to three unique deep hashing models, including ATH, 
HashNet, and DPSH, in terms of the training and retrieval 
times in the same situation (Table 6). We have not included 
other approaches since their structures are often similar to 
those of these models. Furthermore, since we do not take 
into consideration the loading time of the images, the results 
are not greatly different for the two datasets. The results 
demonstrate that our model performs better in training and 
retrieval than other models.

Our method is a CAD system whose goal is to assist cli-
nicians in making the best decision in a treatment process. 
Our study simulates a real-world experiment using two 
popular patch-based datasets, Kather and BreakHis, which 
have demonstrated their potential for content-based retrieval. 
According to the results, HATDH is an effective tool for 
helping clinicians detect diseases such as colorectal and 
breast cancers with high accuracy. In summary, our study, 
as well as related works such as [1, 3] and [33], only sug-
gests a CAD model that can be used effectively in retrieving 
histopathology images based on academic evaluation met-
rics. However, using this model and similar methods directly 
in hospitals is neither the goal of these works nor may it be 
feasible.

The proposed CBHIR system can aid in the early detec-
tion of various cancers, including breast and colorectal, 
resulting in decreased mortality rates. Although final diag-
nosis is still carried out by doctors using biopsy and other 
clinician tools, HATDH can identify suspect cases rapidly 
and accurately to facilitate further evaluation. The model 
also enables doctors to search and find similar cases for a 
query sample, allowing them to select the best treatment 
option. Moreover, the proposed model can help minimize 

Table 6   Results of the training and retrieval times for one iterative in 
seconds

Methods Training Retrieval

HATDH (ours) 168.06 0.83
ATH 290.22 2.14
HashNet 249.50 1.52
DPSH 209.31 1.38



Journal of Imaging Informatics in Medicine	

human errors in the detection process. All techniques and 
novelties used in designing HATDH, such as using the tri-
ple deep hashing structure and attention mechanism, have 
been employed to increase the accuracy and reliability of 
the model. In the future, however, HATDH should be tested 
more in clinical settings to evaluate and improve its perfor-
mance in practical studies.

In this paper, we propose a novel attention-based triplet 
deep hashing model to retrieve histopathology images. 
As previous studies have shown [7, 8], a triplet structure 
may yield better results in multi-class datasets compared 
to pairwise methods. Furthermore, the process of extract-
ing features from histopathology images can be challenging 
due to their special nature and different sizes. Therefore, we 
introduce a new attention module integrated into the CNN 
architecture to improve feature extraction. The separation 
concept employed in designing our module helps to focus 
better on specific regions and select the best features. In 
addition, since high-dimensional features are often required 
to represent histology images, an effective hash layer is sug-
gested to generate binary codes of varying lengths, result-
ing in speeding up the training and retrieval phases as well 
as addressing the problem of vanishing gradients. Also, we 
introduce an improved triplet loss function considering pair 
inputs separately in addition to triplet inputs for enhancing 
efficiency during the training and retrieval phases. Moreover, 
the presented loss function can decrease the error between 
generated hash codes and real ones. As a result of these nov-
elties, our model performs better than other hashing-based 
approaches when retrieving histopathology images.

Generally, in contrast to most medical images that often 
focus on one part of the body, histopathology images can be 
used to detect various diseases in different parts of the body 
[18]. Despite this, retrieving them by traditional methods can 
be challenging because of the structural complexity, uneven 
distribution, and other problems [1]. Furthermore, an effec-
tive retrieval procedure may involve high-dimensional fea-
tures, making the process time-consuming and complex [3]. 
On the other hand, choosing optimized features and focus-
ing on the considered region in images can be important 
[14]. Therefore, we present a novel attention-based triplet 
deep hashing model for tackling these issues. MobileNet is 
chosen as the base model because it is easy to implement 
and effective in the analysis of histopathology images [9]. 
MobileNet also appears to be less sensitive to the number of 
training samples as compared to other CNN models, such as 
the VGGNet and ResNet [12]. Tables 3 and 4 demonstrate 
that our CNN model performs better than other models, 
such as VGG19 and ResNet101, in feature extraction. For 
improving feature extraction, an attention module is pro-
posed. The presented module may add some complexity to 
the CNN architecture. Therefore, developing a less complex 
attention module, which focuses only on spatial or channel 

information, may be considered for the next work. How-
ever, its effectiveness in comparison to other modules can 
be restricted.

Several experiments are conducted to assess different 
components of our model, resulting in the introduction of 
multiple subtypes of HATDH (Table 5). HATDH-V1 to 
HATDH-V4 utilize ECA [29], CBAM [14], HAM [13], 
and coordinate attention modules in place of our attention 
module. Other parts of these subtypes, such as the datasets, 
CNN model, and loss function, are identical to HATDH. 
As indicated in Tables 3 and 4, using our attention mod-
ule can lead to better results than others. To evaluate the 
effect of the concept of the attention mechanism on retrieval 
performance, we use three popular CNN models, including 
MobileNet [12], VGG19 [10], and ResNet101 [11], instead 
of our attention-based CNN model (HATDH-V5, HATDH-
V6, and HATDH-V7). As per our model, the softmax layer 
of these three models is supplanted by the suggested hash 
layer. In this study, the datasets and the loss function remain 
unchanged. The results show that applying attention modules 
to a deep hashing structure can improve retrieval accuracy. 
In HATDH-V8, HATDH-V9, and HATDH-V10, only our 
loss function is replaced by [7, 8], and [26] without changing 
other parts. The results demonstrate that our loss function 
outperforms other recently proposed ones.

Content-based histopathology image retrieval can aid in 
the detection of numerous diseases, including breast and 
colorectal cancers [1]. For a query sample, several database 
images are ranked, and the class can be determined based on 
the ranked samples [3]. For example, if the top ten images 
retrieved correspond to the cancer category, we can clas-
sify the query as a cancer case. Human investigation of all 
images in a dataset may be error-prone and time-consum-
ing [1]. By using the techniques mentioned, HATDH can 
rank a wide range of similar images for a query accurately 
and automatically. As a result, the detection process can be 
carried out with high efficiency and minimal error rates. 
By utilizing the proposed model, various diseases can be 
diagnosed based on similar cases without undergoing heavy 
surgery or paying high prices. Furthermore, clinicians can 
make the best treatment decisions based on similar samples. 
The evaluation metrics used in this study, including MAP 
and Precision, can demonstrate the reliability of HATDH 
during a diagnosis process. The high MAP and precision 
of our model indicate that if a query sample is labeled as 
cancer, doctors can be fairly confident in the classification 
and take action to save the patient. In particular, a high 
MAP shows that HATDH has effectively searched and 
retrieved numerous samples, enabling clinicians to make 
more informed decisions with increased data. On the other 
hand, our model saves and visualizes results, which can be 
used to evaluate treatment progress. HATDH can ensure a 
more accurate investigation of suspicious cases, especially 
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Fig. 7   A selection of 5 retrieved 
samples of the two studied 
databases by HATDH and 
some hashing approaches for a 
randomly selected query sample 
(a Kather; b BreakHis)

(a)

(b)
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in remote areas and emergencies. In addition, HATDH is a 
very flexible model that can even be applied to other medi-
cal images in particular scenarios. The purpose of this study 
is to introduce HATDH as a powerful CBHIR model with 
the potential to aid in accurate and rapid disease recogni-
tion. Hence, using this model in a clinical setting for more 
accurate practical evaluation could be an interesting future 
study topic.

Top Retrieval Results

Figure 7 represents the top five retrieved images by HATDH 
and some hashing approaches for a query image. Based on 
its methodology, each model returns the five most similar 
images. Therefore, the priority of retrieved images may be 
different. For example, the first similar image in our model 
may be the sixth in another model. In fact, it is important to 
determine how many images are retrieved correctly among 
these five images. In summary, this study shows the accu-
racy of various models in retrieving histopathology images 
visually. As a result of the comparison, HATDH appears to 
be the most effective approach.

Conclusion

This paper proposed an innovative triplet deep hashing 
model based on the attention mechanism to retrieve histo-
pathology images, called histopathology attention triplet 
deep hashing (HATDH). Three deep attention-based hash-
ing models with identical architectures and weights were 
employed to produce binary values. We designed an atten-
tion module to enhance the performance of CNNs during 
the feature extraction process. Additionally, a new triplet 
loss function was introduced to increase the efficiency of 
our model in the training and retrieval stages by incorporat-
ing pair inputs along with triplet inputs. Based on experi-
ments conducted on two public histopathology databases, 
HATDH was shown to be superior to the cutting-edge hash-
ing methods.

This study aims to present an effective CBHIR model to 
assist clinicians in the rapid and precise detection of various 
diseases. Although the suggested model serves as a support 
tool, clinicians make the final decision. In this regard, we 
believe the publication of this study would be beneficial in 
bridging the gap between academic and practical settings, 
assisting in the treatment process, decreasing patient mortal-
ity rates, and minimizing human error. As with other works, 
our model may have some inherent limitations, which are 
inevitable. As mentioned in the “Discussion” Section pre-
viously, while some challenges were acknowledged and 
addressed in this study, others will require further research 
in the future and may not align with the current study.

This study analyzed patch-based histopathology data-
bases. Therefore, in future research, additional histopathol-
ogy datasets should be examined, specifically large images 
of whole slides, to obtain a better understanding of the sizes, 
categories, and other aspects of various databases.

Data Availability  The data that support the findings of this study are 
available on request from the corresponding author.
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