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bstract. In this article, we present a fast switching filter for impul-
ive noise removal from color images. The filter exploits the hue,
aturation, and lightness color space and is based on the peer
roup concept, which allows for the fast detection of noise in a
eighborhood without resorting to pairwise distance computations
etween each pixel. Experiments on large set of diverse images
emonstrate that the proposed approach is not only extremely fast,
ut also gives excellent results in comparison to various state-of-
he-art filters. © 2007 Society for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2007�51:2�155��

NTRODUCTION
he growing use of color images in diverse applications such
s content-based image retrieval, medical image analysis,
iometrics, remote sensing, watermarking, and visual quality

nspection has led to an increasing interest in color image
rocessing. These applications need to perform many of the
ame tasks as their grayscale counterparts, such as edge de-
ection, segmentation, and feature extraction.1 However, im-
ges are often contaminated with noise which is often intro-
uced during acquisition or transmission. In particular, the

ntroduction of bit errors and impulsive noise into an image
ot only lowers its perceptual quality but also makes subse-
uent tasks such as edge detection and segmentation more
ifficult. Therefore, the removal of noise from an image is
ften a necessary preprocessing step for these tasks. Modern

mage filtering solutions can eliminate noise without signifi-
antly degrading the underlying image structures such as
dges and fine details.2 Recent applications of color image
enoising include enhancement of cDNA microarray

mages,3,4 virtual restoration of artworks,5,6 and video
ltering.7–10

Numerous filters have been proposed in the literature
or noise removal from color images.11–14 Among these, non-
inear vector filters have proved successful in dealing with
mpulsive noise while preserving edges and image details.13

hese filters treat pixels in a color image as vectors to avoid
olor shifts and artifacts. An important class of nonlinear
ector filters is the one based on robust order statistics with
he vector median filter (VMF),15 the basic vector directional
lter (BVDF),16 and the directional-distance filter17 (DDF)
eing the most well-known examples. These filters involve

eceived Sep. 12, 2006; accepted for publication Dec. 14, 2006.
l062-3701/2007/51�2�/155/11/$20.00.
he reduced ordering18 of a set of input vectors within a
indow to compute the output vector.

The fundamental order-statistics based filters (VMF,
VDF, and DDF) as well as their fuzzy19,20 and hybrid21

xtensions share a common deficiency in that they are
mplemented uniformly across the image and tend to modify
ixels that are not corrupted by noise.22 This results in ex-
essive smoothing and the consequent blur of edges and loss
f fine image details. In order to overcome this, intelligent
lters that switch between a robust order-statistics based fil-

er such as the VMF and the identity operation have been
ntroduced.22–37 These filters determine whether the pixel
nder consideration is noisy or not in the context of its
eighborhood. In the former case, the pixel is replaced by

he output of the noise removal filter; otherwise, it is left
nchanged to preserve the desired (noise-free) signal struc-

ures. Such an approach is computationally efficient consid-
ring that the expensive filtering operation is performed only
n the noisy pixels, which often comprise a small percentage
f the image.

In this article, we introduce a new switching filter for
he removal of impulsive noise from color images. The pro-
osed filter exploits the hue, saturation, and lightness (HSL)
olor space13 and is based on the concept of a peer group,22

hich allows for the fast detection of noise in a neighbor-
ood without resorting to pairwise distance computations
etween each pixel. The center pixel in a neighborhood is
onsidered as noise-free if it has a certain number of pixels
hat are similar to it. In this case, it remains intact. Other-
ise, it is replaced by the VMF output, i.e., the pixel that
inimizes the sum of distances to all other pixels in the

eighborhood. The method is tested on a large set of images
rom diverse domains. The results demonstrate that the pro-
osed filter is not only extremely fast, but also gives excellent
esults in comparison to various state-of-the-art filters.

ROPOSED METHOD
et y�x� :Z2→Z3 denote a RGB color image that is com-
rised of a two-dimensional array of three component
amples. Although natural images are often nonstationary,
lters operate on the assumption that they can be subdi-
ided into small regions that are stationary.12 This is accom-
lished using a small window that slides through the indi-
idual image pixels while performing the filtering operation
ocally. The most commonly used window is a square-
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haped window W= �xi � i=1,2 , . . . ,n� of a finite size n,
here x1 ,x2 , . . . ,xn is a set of pixels centered around x�n+1�/2

hich determines the position of the window.
Most vector filters operate by ordering the vectors inside

he filter window. However, calculating the aggregate dis-
ances used in the ordering criterion may limit the use of
hese filters in real-time applications. One way to reduce the
omputational requirements of a nonlinear vector filter is to
imit the number of comparisons that are performed be-
ween the center pixel and the neighboring pixels in the
indow. The fast peer group filter31 (FPGF) uses the concept
f the peer group22 to determine the output vector according
o the following rule:

Figure 1. �a� HSL doub
xFPGF = �x�n+1�/2 if ��xj � W�j � �n + 1�/2 and �x�n+1�/2 − xj�p � Tol�� � m

,

xVMF otherwise

�1�
L
fi
n

fi
t
w
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here Tol is the distance threshold, m is the size of the peer
roup, � · � is the set cardinality, � · �p is the Lp (Minkowski)
orm, and xVMF denotes the VMF output given by

xVMF = argmin
xi�W

�
j=1

n

�xi − xj�p . �2�

ssentially, the peer group of a pixel represents the neigh-
oring pixels in the window that are sufficiently “similar” to
t according to a particular measure. This concept is due to n

56
ee38 and has been used extensively in the design of various
lters, often under the name of extended spatial
eighborhood.31

The FPGF is much faster than the well-known vector
lters mentioned in the previous section because it declares

he center pixel to be noise-free as soon as m pixels in the
indow are determined to be sufficiently similar to it. If m is

ow, and the level of noise in the image is not very high, this
llows for a dramatic reduction in the number of distance
omputations that need to be performed. In particular, the
inimum and maximum number of distance calculations
Table I. Number of elementary operations.

unction ABS ADD SUB COMP MULT COS

L1 3 2 3 1 ¯ ¯

L2 ¯ 2 3 1 3 ¯

DHSL ¯ 2 3 1 6 1

S Max .3 ¯ Max. 3 Max. 3 ¯ ¯
ecessary to classify a pixel equal m and n−m, respectively.

J. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
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herefore, on the average, the number of distance calcula-
ions performed by the FPGF is much lower than that per-
ormed by the VMF, i.e., n�n−1� /2. However, due to the
ature of the L2 norm, the distance computations performed

n highly correlated spaces such as RGB remain expensive.
n the other hand, if the image is transformed into a color

pace which decouples chromaticity and luminance, the dis-
ance between two color vectors can be evaluated without
uch a computation. In this study, we adopted the HSL color
pace in order to accomplish this.

The HSL color space is an intuitive alternative to the
GB space.13 It uses approximately cylindrical coordinates,
nd is a nonlinear deformation of the RGB color cube (Fig.
(a)). The hue H� 	0,360
 is a function of the angle in the
olar coordinate system and describes a pure color. The
aturation S� 	0 , 100
 is proportional to radial distance and
enotes the purity of a color. Finally, the lightness
� 	0 , 255
 is the distance along the axis perpendicular to

he polar coordinate plane and represents the brightness.
he distance between two vectors xi = �hi , si , li� and

j = �hj , sj , lj� in the HSL space is given by

D�xi,xj� = DHSL�xi,xj�

= �si
2 + sj

2 − 2sisjcos�hi − hj� + �li − lj�2. �3�

Building upon the idea of the peer group in much the
ame way as the FPGF, we propose a new filtering algorithm
alled the Fast HSL-based switching filter (FHSF). First, the
GB image is transformed to the HSL space.13 The output
ector in a window is then determined according to the

ollowing rule:
xFHSF = �x�n+1�/2 if ��xj � W�j � �n + 1�/2 and S�x�n+1�/2,xj� = 1�� � m

,

xVMF otherwise

S�xi,xj� = �1 if �hi − hj� � Ht and �si − sj� � St and �li − lj� � Lt

,

0 otherwise

�4�

Figure 2. Representative images from the image set.
t
c

w
p
c
d
s
f

here (hi, si, li) and (hj, sj, lj) denote the hue, saturation, and
ightness of the pixels xi andxj, respectively. Ht, St, and Lt are
he thresholds for the hue, saturation, and lightness, respec-
ively.

The FHSF algorithm works as follows. First, it checks
hether the center pixel is noisy or not. If the pixel is deter-
ined to be noisy, it is replaced by the VMF output. Other-
ise, it remains untouched. A noise-free pixel is one which
as a minimum of m peers that are sufficiently similar to it.

he similarity is determined by the function S, which checks s

. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
o see if the hue, saturation and lightness of the pixel are
lose to those of the center pixel.

The similarity function S is clearly cheaper to evaluate
hen compared to the L2 norm in the RGB space. The su-
erficial similarity between the S function and the L1 norm
an be discounted by the fact that the former operates in the
ecorrelated HSL space as opposed to the correlated RGB
pace and consequently the conjunction involved in this
unction allows for short-circuit evaluation. That is, for in-

tance, as long as two color vectors differ in hue, the remain-
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ng two conditions need not be evaluated. On the other
and, in the L1 norm the absolute differences between the R,
, and B components always need to be calculated. Table I

hows the number of elementary operations required by
ach function. It can be seen that in the worst case, since
OMPs and ADDs have the same complexity,39 the S func-

ion has the same number of operations as the L1 norm.

XPERIMENTAL RESULTS

oise Model and Error Metrics
everal simplified color image noise models have been pro-
osed in the literature.10,11,13 In this study, the correlated

mpulsive noise model originally proposed in Ref. 10 is
dopted. In order to evaluate the filtering performance the
ollowing error metrics are used: mean absolute error
MAE),13 mean squared error (MSE),13 normalized color
istance (NCD),13 and perceptual color distance (PCD).40–42

AE and MSE are based on the RGB color difference and

Figure 3. m vs minimum PCD at noise le
easure the detail preservation and noise suppression cap-

58
ility of a filter, respectively. NCD and PCD are perceptually
riented metrics that measure the color preservation capa-
ility of a filter. NCD is based on the CIELAB color differ-
nce whereas PCD is based on the S-CIELAB color differ-
nce, which is a spatial extension of the former.43 It should
e noted that, to the best of the authors’ knowledge, PCD
as not been used in the color image filtering literature to
ate. It is included because it takes into account both the
patial and color sensitivity of the human visual system.41

arameter Selection
here are four parameters involved in the proposed filter: m

the peer group size), Ht, St, and Lt. Appropriate ranges for
hese parameters need to be determined to ensure a good
ltering performance on a variety of images. Since the filter-

ng operation is very fast, a simple grid search procedure can
e used for this task. In order to do this, the parameter space
hould first be quantized.

The parameters m, Ht, St, and Lt were restricted to [1,

� 5%, �b� 10%, �c� 15%, and �d� 20%.
vels �a
J. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
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]† (step size �=1), [6, 20] ��=2�, [4, 16] ��=2�, [32, 64]
nd ��=4�, respectively. The sizes of the intervals for the Ht,
t, and Lt parameters follow the relative importance of the
ndividual components of the HSL space. This is because the
uman visual system is most sensitive to changes in hue,

ollowed by saturation, and then lightness.44 For example,
he hue threshold Ht is restricted to the [6, 20] interval
ecause for noise removal purposes, two colors that have
ore than 20° of hue difference can safely be considered as

issimilar (see Fig. 1(b)).
A set of 100 images was collected from the World Wide

eb to be used in the grid search. These included images of
eople, animals, plants, buildings, aerial maps, manmade
bjects, natural scenery, paintings, sketches, as well as scien-
ific, biomedical, and synthetic images and test images com-

only used in the color image processing literature. Figure 2
hows several representative images from this set.

The PCD measure was used to quantify the goodness of
particular set of parameters �m ,Ht,St ,Lt�. Figure 3 shows

he minimum PCD values obtained during the grid search at
ach m value for several images that are contaminated with
%, 10%, 15%, and 20% impulsive noise.

igure 4. Filtering results for the parrots image using different parameter
onfigurations.
eAssuming a 3�3 window.

. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
As explained in the Proposed Method Section, the fil-
ering operation is faster for lower values of m. In fact, the
erformance of the proposed filter (in terms of both the
ffectiveness and the efficiency) will approach that of the
MF at high values of m. It can be seen from Fig. 3 that
=3 provides a good compromise between effectiveness

nd efficiency. This is in line with the observations of
molka and Chydzinski.31

The ranges for the remaining three parameters, Ht, St,
nd Lt, were determined as follows. For each test image, the
arameters were varied in the earlier-mentioned intervals
nd the corresponding PCD values were calculated. Consid-

Figure 5. Filtering results for the cat image corrupted with 10% noise.
ring the diversity of the images, it is unreasonable to expect

159
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he same parameter combination to give the lowest PCD
alue for each image. Therefore, the parameter combinations
hat achieved the lowest 5% PCD values for each image were
ecorded. It is expected that a parameter combination that
ill perform well on a variety of images would appear some-
here in these top 5% lists. The intersection of these lists

evealed that the following ranges perform well on the test
mages, Ht� 	8 , 12
, St� 	8 , 14
, and Lt� 	40, 56
. For
omparison with other filters, the following default values
re used: Ht=10, St=10, and Lt=48.

Note that the full range of H is [0, 360] and thus ac-
eptable values for Ht lie between 2.22% and 3.33% of this

Figure 6. Filtering results for the pig image corrupt
ence images.
ange. Similarly, the range of S is [0, 100] and values for St 1

60
ie between 8.00% and 14.00%. Finally, the range of L is
0, 255] and values for Lt lie between 15.62% and 21.87%.
his is in line with the earlier-mentioned fact that the hu-
an visual system is most sensitive to changes in hue, fol-

owed by saturation, and then lightness.44 Figure 4 shows an
xample of this phenomenon wherein a zoomed section of
he parrots image is corrupted with 10% noise and then
ltered using a parameter configuration in which two of the

hresholds are fixed while the other one is relaxed. Figure
(c) is the filtering result with the default parameters, Fig.
(d) is with Ht relaxed by 5% �Ht=28�, Fig. 4(e) is with St
elaxed by 10% �St=20�, and Fig. 4(f) is with Lt relaxed by

10% noise and the corresponding absolute differ-
ed with
2.5% �Lt=80�. It can be seen that although the change in

J. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
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Table II. Comparison of the filters on the test images at 5% noise level.

aboon �512�512 pixels� Peppers �512�480�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

ONE 3.021 444.912 0.054147 3.190 ¯ NONE 3.068 489.064 0.047504 4.138 ¯

SVMFmean 5.288 213.915 0.034924 2.245 0.265 ASVMFmean 0.506 6.389 0.004151 0.534 0.172

SVMFrank 4.752 203.662 0.031785 2.189 0.672 ASVMFrank 0.507 7.089 0.004236 0.542 0.641

VMF 1.909 114.535 0.017017 1.263 0.828 AVMF 0.419 21.954 0.006366 0.613 0.750

VDF 11.270 379.708 0.07534 3.363 8.281 BVDF 2.150 30.059 0.018474 1.254 7.704

DF 10.293 315.996 0.068711 3.069 8.765 DDF 1.730 15.445 0.014379 0.922 8.047

FNRF 4.044 218.383 0.027072 1.984 0.375 FFNRF 0.212 4.908 0.002637 0.436 0.329

HSFHSL 5.120 202.901 0.034014 2.132 0.359 FHSFHSL 0.233 3.021 0.002206 0.441 0.235

HSFS 2.443 102.198 0.016858 1.269 0.093 FHSFS 0.208 2.672 0.002091 0.430 0.078

PGF2 4.416 201.745 0.028855 2.060 0.234 FPGF2 0.220 3.885 0.002388 0.440 0.125

PGF1 7.164 271.991 0.046831 2.660 0.266 FPGF1 0.266 4.260 0.002657 0.471 0.109

GF 1.483 69.330 0.010498 0.998 0.250 PGF 0.207 4.337 0.002422 0.431 0.234

VMFmean 4.015 169.237 0.026675 1.930 0.359 SVMFmean 0.380 4.911 0.003151 0.489 0.312

VMFrank 4.010 169.825 0.026523 1.927 0.594 SVMFrank 0.335 3.642 0.00265 0.475 0.562

MF 10.570 316.689 0.071926 3.171 0.624 VMF 1.680 10.600 0.014163 0.866 0.563

arrots �1536�1024� Flowerbee �3088�2048�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

ONE 3.065 472.017 0.061343 4.685 ¯ NONE 3.066 480.868 0.046835 1.717 ¯

SVMFmean 0.179 3.110 0.002168 0.1465 1.187 ASVMFmean 0.578 5.952 0.003608 0.272 5.094

SVMFrank 0.181 3.653 0.002350 0.147 3.547 ASVMFrank 0.559 6.543 0.003593 0.278 14.687

VMF 0.359 22.315 0.007956 0.251 4.390 AVMF 0.376 20.639 0.005393 0.354 17.359

VDF 0.861 8.135 0.007753 0.384 39.719 BVDF 1.814 11.650 0.010962 0.426 184.969

DF 0.583 3.396 0.005536 0.290 43.391 DDF 1.655 9.473 0.009879 0.394 201.374

FNRF 0.101 2.449 0.001768 0.107 1.906 FFNRF 0.167 2.630 0.001547 0.174 7.891

HSFHSL 0.082 1.220 0.000946 0.108 1.204 FHSFHSL 0.175 1.718 0.001219 0.173 4.907

HSFS 0.065 0.855 0.000741 0.097 0.047 FHSFS 0.144 1.313 0.00107 0.163 1.453

PGF2 0.107 2.263 0.001714 0.103 0.735 FPGF2 0.160 2.149 0.001369 0.166 2.969

PGF1 0.125 2.332 0.001708 0.111 0.547 FPGF1 0.180 2.168 0.001383 0.173 2.281

GF 0.104 2.608 0.001832 0.106 1.485 PGF 0.167 2.807 0.001518 0.171 5.969

VMFmean 0.123 2.042 0.001472 0.120 1.922 SVMFmean 0.439 4.209 0.002671 0.243 8.344

VMFrank 0.105 1.178 0.001072 0.111 3.500 SVMFrank 0.417 3.390 0.002406 0.235 14.047

MF 0.540 2.609 0.005351 0.267 3.500 VMF 1.697 9.660 0.010444 0.397 14.094
. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007 161
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Table III. Comparison of the filters on the test images at 10% noise level.

aboon �512�512 pixels� Peppers �512�480�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

ONE 6.168 914.459 0.109563 5.505 ¯ NONE 6.184 983.288 0.094969 6.764 ¯

SVMFmean 5.014 210.446 0.035257 2.233 0.281 ASVMFmean 0.646 15.608 0.006727 0.618 0.203

SVMFrank 4.619 205.536 0.033701 2.196 0.657 ASVMFrank 0.679 18.524 0.007333 0.646 0.578

VMF 2.680 149.962 0.026662 1.644 0.797 AVMF 0.845 44.461 0.01275 0.851 0.703

VDF 11.650 397.573 0.078111 3.508 8.172 BVDF 2.378 40.246 0.021017 1.488 7.703

DF 10.564 324.853 0.070965 3.153 8.813 DDF 1.888 17.109 0.016101 0.970 7.953

FNRF 4.485 231.183 0.031609 2.161 0.375 FFNRF 0.439 11.573 0.005574 0.555 0.328

HSFHSL 5.768 222.239 0.038852 2.333 0.375 FHSFHSL 0.3923 6.046 0.003907 0.523 0.235

HSFS 3.151 127.181 0.022178 1.539 0.109 FHSFS 0.370 6.098 0.003869 0.508 0.079

PGF2 5.205 224.401 0.034677 2.310 0.235 FPGF2 0.429 7.772 0.004726 0.527 0.157

PGF1 7.770 287.367 0.051368 2.819 0.281 FPGF1 0.477 7.680 0.004843 0.555 0.140

GF 2.288 98.839 0.016958 1.356 0.329 PGF 0.432 10.999 0.005185 0.533 0.250

VMFmean 4.006 172.698 0.028911 1.978 0.422 SVMFmean 0.539 13.218 0.005628 0.575 0.344

VMFrank 4.041 173.619 0.028697 1.984 0.656 SVMFrank 0.461 8.509 0.004435 0.529 0.563

MF 10.813 326.192 0.073878 3.256 0.641 VMF 1.842 13.163 0.015854 0.924 0.547

arrots �1536�1024� Flowerbee �3088�2048�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

ONE 6.119 941.234 0.122676 7.956 ¯ NONE 6.129 960.795 0.093671 2.851 ¯

SVMFmean 0.310 10.874 0.005117 0.222 1.250 ASVMFmean 0.6449 12.948 0.005325 0.326 5.250

SVMFrank 0.336 12.633 0.005785 0.221 3.610 ASVMFrank 0.655 15.074 0.005739 0.346 14.797

VMF 0.718 44.311 0.015853 0.419 4.250 AVMF 0.762 41.588 0.010859 0.566 17.595

VDF 0.935 9.100 0.008498 0.412 40.797 BVDF 1.925 13.044 0.01177 0.452 183.641

DF 0.646 4.444 0.006251 0.313 43.906 DDF 1.737 10.189 0.010584 0.411 192.375

FNRF 0.218 6.047 0.003981 0.160 1.953 FFNRF 0.348 6.361 0.003401 0.235 8.016

HSFHSL 0.149 3.201 0.001901 0.161 1.344 FHSFHSL 0.307 4.138 0.002272 0.217 5.578

HSFS 0.132 3.448 0.001691 0.162 0.485 FHSFS 0.274 3.904 0.002131 0.209 1.828

PGF2 0.214 4.490 0.003445 0.144 0.905 FPGF2 0.328 4.430 0.002792 0.212 3.813

PGF1 0.227 4.236 0.003273 0.150 0.718 FPGF1 0.348 4.121 0.002714 0.218 2.938

GF 0.226 6.976 0.00403 0.177 1.531 PGF 0.355 7.583 0.003343 0.233 6.625

VMFmean 0.238 7.857 0.003813 0.196 2.047 SVMFmean 0.524 9.415 0.004118 0.284 8.859

VMFrank 0.170 3.210 0.002165 0.149 3.265 SVMFrank 0.470 5.194 0.003169 0.252 14.235

MF 0.616 3.247 0.006174 0.296 3.250 VMF 1.778 10.406 0.011118 0.417 14.156
62 J. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
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Table IV. Comparison of the filters on the test images at 15% noise level.

aboon �512�512 pixels� Peppers �512�480�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

ONE 9.212 1357.231 0.163820 7.247 - NONE 9.200 1465.480 0.141325 9.101 -

SVMFmean 5.043 222.431 0.039034 2.319 0.234 ASVMFmean 0.902 32.168 0.010989 0.812 0.187

SVMFrank 4.726 219.993 0.038661 2.285 0.610 ASVMFrank 0.962 36.363 0.012038 0.843 0.578

VMF 3.522 190.028 0.037089 1.957 0.719 AVMF 1.240 64.149 0.018588 1.097 0.687

VDF 12.032 417.613 0.080963 3.640 8.109 BVDF 2.623 57.374 0.023845 1.812 7.657

DF 10.846 335.445 0.073274 3.246 8.672 DDF 2.039 19.385 0.017644 1.043 7.953

FNRF 5.017 251.577 0.037636 2.341 0.344 FFNRF 0.691 20.228 0.009018 0.709 0.328

HSFHSL 6.483 246.382 0.044302 2.519 0.360 FHSFHSL 0.590 14.166 0.006159 0.680 0.249

HSFS 3.937 157.523 0.028343 1.805 0.110 FHSFS 0.566 14.178 0.006134 0.676 0.094

PGF2 6.042 249.839 0.040849 2.524 0.281 FPGF2 0.645 11.784 0.007078 0.632 0.172

PGF1 8.400 305.442 0.056120 2.959 0.312 FPGF1 0.691 11.280 0.00703 0.663 0.156

GF 3.135 132.236 0.023939 1.679 0.328 PGF 0.677 20.420 0.008287 0.735 0.281

VMFmean 4.205 189.528 0.03397 2.106 0.391 SVMFmean 0.803 29.786 0.009688 0.79 0.344

VMFrank 4.258 189.290 0.033357 2.086 0.594 SVMFrank 0.659 17.584 0.007142 0.668 0.547

MF 11.066 337.448 0.075857 3.343 0.594 VMF 1.987 15.428 0.017381 0.996 0.563

arrots �1536�1024� Flowerbee �3088�2048�

ilter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time

SVMmean 0.536 25.797 0.010298 0.379 1.297 ASVMFmean 0.841 27.884 0.008753 0.441 5.312

SVMFrank 0.597 29.275 0.011644 0.368 3.500 ASVMFrank 0.888 31.652 0.009704 0.483 14.469

VMF 1.086 66.930 0.023909 0.585 4.187 AVMF 1.148 62.520 0.016352 0.763 17.250

VDF 1.017 11.178 0.009398 0.456 41.063 BVDF 2.048 15.394 0.012673 0.484 176.156

DF 0.716 5.083 0.007065 0.343 44.156 DDF 1.825 11.110 0.011324 0.430 186.750

FNRF 0.362 11.560 0.006896 0.236 1.984 FFNRF 0.551 12.041 0.005667 0.304 7.875

HSFHSL 0.237 8.304 0.003368 0.276 1.547 FHSFHSL 0.458 9.270 0.003634 0.270 6.250

HSFS 0.225 9.875 0.00328 0.304 0.563 FHSFS 0.427 9.834 0.003582 0.268 2.124

PGF2 0.328 6.961 0.005292 0.192 1.094 FPGF2 0.502 7.020 0.004282 0.254 4.421

PGF1 0.338 6.384 0.004945 0.198 0.906 FPGF1 0.523 6.352 0.00410 0.259 3.501

GF 0.376 14.717 0.006867 0.311 1.703 PGF 0.568 15.801 0.005609 0.309 7.157

VMFmean 0.449 22.600 0.008443 0.391 2.172 SVMFmean 0.727 23.667 0.007241 0.384 8.907

VMFrank 0.287 9.150 0.004406 0.244 3.375 SVMFrank 0.600 11.385 0.004855 0.300 13.906

MF 0.697 4.048 0.007065 0.331 3.360 VMF 1.864 11.356 0.011815 0.437 13.875
. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007 163
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he hue threshold is the smallest, the degradation in the
ltering result is the greatest. On the other hand, the change

n the lightness threshold is the largest, but the filtering re-
ult is better than those of Figs. 4(d) and 4(e).

omparison with State-of-the-Art Filters
he proposed filter is compared with recent switching filters

uch as the (PGF),22 the adaptive vector median filter
AVMF),26 the fast fuzzy noise reduction filter (FFNRF),32

he FPGF,31 the vector sigma filters based on the mean and
owest ranked vectors (SVMFmean, SVMFrank),33 and their
daptive counterparts (ASVMFmean, ASVMFrank).33 The tra-
itional filters mentioned in the introduction (VMF, BVDF,
nd DDF) are also included in this comparison to highlight
he merits of the switching technique. Finally, for compari-
on purposes, the FHSF version that uses the 3D distance
unction in the HSL space �FHSFHSL� and the L1 version of
he FPGF �FPGF1� are also considered in the experiments. In
he following discussion, the standard versions of the FHSF
nd the FPGF are denoted as FHSFS (Eq. (4)) and FPGF2

Eq. (1) with p=2), respectively.
Figure 5 shows the filtering results for a zoomed section

f the cat image. Figures 5(c) and 5(d) show the outputs of
he nonswitching filters, i.e., the VMF and the DDF. It can
e seen that even though these filters suppress the noise very
ell, this comes at the expense of the blurring of image
etails, e.g., the whiskers. On the other hand, the switching
lters, i.e., the FPGF2, the FFNRF, the PGF, and the FHSFS

reserve the details satisfactorily. Among these, the FHSFS

trikes the best balance between noise removal and detail
reservation.

Figure 6 shows the filtering results for a section of the
ig image and the corresponding difference images. In order

o obtain the difference images, the pixelwise absolute differ-
nces between the original and the filtered images are mul-
iplied by 5 and then negated. As expected, the VMF and the
DF outputs show significant differences when compared to

he original image. In contrast, the switching filters show a
lear improvement in restoring the original image. Among
hese, it can be seen that the AVMF, the PGF, and the FHSFS

ive the best performance.
Tables II–IV compare the filters using the criteria de-

cribed in the subsection Noise Model and Error Metrics,
.e., MAE, MSE, NCD, PCD, and the execution time§ in
econds. It can be seen that the FHSFS compares favorably
ith the best filters in terms of filtering effectiveness, as as-

essed by the first four criteria. The execution time is also a
ery important factor which determines the practicality of a
oise removal filter. From this perspective, due to their high
omputational requirements, the nonswitching filters in gen-
ral are not appropriate for denoising large images that are
ommon in domains such as astronomy, remote sensing,
nd biology. Regarding the remaining filters, as the image
ize increases, the computational advantage of the FHSFS

ver the others becomes apparent. In general, the FHSFS is
lmost twice as fast as the next fastest filter, i.e., the FPGF1.
C language, GCC 3.4.4 compiler, Intel Centrino 1.6 GHz processor. m

64
ote that the timing for the FHSFS includes the RGB to HSL
ransform, although this is negligible.

�

In summary, the experiments demonstrate that the
HSFS combines simplicity, excellent filtering performance
nd significant computational efficiency, which makes it a
ractical method for impulsive noise removal from color

mages.

ONCLUSIONS
n this article, we introduced a fast switching filter for the
emoval of impulsive noise from color images. The proposed
lter exploited the HSL color space in conjunction with the
oncept of a peer group in order to allow for the fast detec-
ion of noise in a neighborhood. The method was tested on

large set of images from diverse domains, as well as clas-
ical images used in the color image processing literature.
he experiments demonstrated that the new method is
uch faster than state-of-the-art filters and that the filtering

uality is also excellent.
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