Fast Switching Filter for Impulsive Noise Removal from Color Images

M. Emre Celebi, Hassan A. Kingravi, Bakhtiyar Uddin and Y. Alp Aslandogan

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas E-mail: celebi@cse.uta.edu

Abstract. In this article, we present a fast switching filter for impulsive noise removal from color images. The filter exploits the hue, saturation, and lightness color space and is based on the peer group concept, which allows for the fast detection of noise in a neighborhood without resorting to pairwise distance computations between each pixel. Experiments on large set of diverse images demonstrate that the proposed approach is not only extremely fast, but also gives excellent results in comparison to various state-of-the-art filters. © 2007 Society for Imaging Science and Technology. [DOI: 10.2352/J.ImagingSci.Technol.(2007)51:2(155)]

INTRODUCTION

The growing use of color images in diverse applications such as content-based image retrieval, medical image analysis, biometrics, remote sensing, watermarking, and visual quality inspection has led to an increasing interest in color image processing. These applications need to perform many of the same tasks as their grayscale counterparts, such as edge detection, segmentation, and feature extraction.¹ However, images are often contaminated with noise which is often introduced during acquisition or transmission. In particular, the introduction of bit errors and impulsive noise into an image not only lowers its perceptual quality but also makes subsequent tasks such as edge detection and segmentation more difficult. Therefore, the removal of noise from an image is often a necessary preprocessing step for these tasks. Modern image filtering solutions can eliminate noise without significantly degrading the underlying image structures such as edges and fine details.² Recent applications of color image denoising include enhancement of cDNA microarray images,^{3,4} virtual restoration of artworks,^{5,6} and video filtering.^{7–10}

Numerous filters have been proposed in the literature for noise removal from color images.^{11–14} Among these, nonlinear vector filters have proved successful in dealing with impulsive noise while preserving edges and image details.¹³ These filters treat pixels in a color image as vectors to avoid color shifts and artifacts. An important class of nonlinear vector filters is the one based on robust order statistics with the vector median filter (VMF),¹⁵ the basic vector directional filter (BVDF),¹⁶ and the directional-distance filter¹⁷ (DDF) being the most well-known examples. These filters involve the reduced ordering¹⁸ of a set of input vectors within a window to compute the output vector.

The fundamental order-statistics based filters (VMF, BVDF, and DDF) as well as their fuzzy^{19,20} and hybrid²¹ extensions share a common deficiency in that they are implemented uniformly across the image and tend to modify pixels that are not corrupted by noise.²² This results in excessive smoothing and the consequent blur of edges and loss of fine image details. In order to overcome this, intelligent filters that switch between a robust order-statistics based filter such as the VMF and the identity operation have been introduced.²²⁻³⁷ These filters determine whether the pixel under consideration is noisy or not in the context of its neighborhood. In the former case, the pixel is replaced by the output of the noise removal filter; otherwise, it is left unchanged to preserve the desired (noise-free) signal structures. Such an approach is computationally efficient considering that the expensive filtering operation is performed only on the noisy pixels, which often comprise a small percentage of the image.

In this article, we introduce a new switching filter for the removal of impulsive noise from color images. The proposed filter exploits the hue, saturation, and lightness (HSL) color space¹³ and is based on the concept of a peer group,²² which allows for the fast detection of noise in a neighborhood without resorting to pairwise distance computations between each pixel. The center pixel in a neighborhood is considered as noise-free if it has a certain number of pixels that are similar to it. In this case, it remains intact. Otherwise, it is replaced by the VMF output, i.e., the pixel that minimizes the sum of distances to all other pixels in the neighborhood. The method is tested on a large set of images from diverse domains. The results demonstrate that the proposed filter is not only extremely fast, but also gives excellent results in comparison to various state-of-the-art filters.

PROPOSED METHOD

Let $y(x): Z^2 \rightarrow Z^3$ denote a RGB color image that is comprised of a two-dimensional array of three component samples. Although natural images are often nonstationary, filters operate on the assumption that they can be subdivided into small regions that are stationary.¹² This is accomplished using a small window that slides through the individual image pixels while performing the filtering operation locally. The most commonly used window is a square-

Received Sep. 12, 2006; accepted for publication Dec. 14, 2006. 1062-3701/2007/51(2)/155/11/\$20.00.

Figure 1. (a) HSL double hexcone and (b) hue circle.

shaped window $W = \{x_i | i=1, 2, ..., n\}$ of a finite size n, where $x_1, x_2, ..., x_n$ is a set of pixels centered around $x_{(n+1)/2}$ which determines the position of the window.

Most vector filters operate by ordering the vectors inside the filter window. However, calculating the aggregate distances used in the ordering criterion may limit the use of these filters in real-time applications. One way to reduce the computational requirements of a nonlinear vector filter is to limit the number of comparisons that are performed between the center pixel and the neighboring pixels in the window. The fast peer group filter³¹ (FPGF) uses the concept of the peer group²² to determine the output vector according to the following rule:

 Table I. Number of elementary operations.

Function	ABS	ADD	SUB	COMP	MULT	COS
L	3	2	3	1		
L ₂	•••	2	3	1	3	
D _{HSL}		2	3	1	6	1
S	Max .3		Max. 3	Max. 3		

$$x_{\text{FPGF}} = \begin{cases} x_{(n+1)/2} & \text{if } |\{x_j \in W | j \neq (n+1)/2 \text{ and } \|x_{(n+1)/2} - x_j\|_p \leq Tol\}| \ge m \\ & , \\ x_{\text{VMF}} & \text{otherwise} \end{cases},$$
(1)

where *Tol* is the distance threshold, *m* is the size of the peer group, $|\cdot|$ is the set cardinality, $\|\cdot\|_p$ is the L_p (Minkowski) norm, and x_{VMF} denotes the VMF output given by

$$x_{\text{VMF}} = \underset{x_i \in W}{\operatorname{argmin}} \sum_{j=1}^{n} \|x_i - x_j\|_p.$$
(2)

Essentially, the peer group of a pixel represents the neighboring pixels in the window that are sufficiently "similar" to it according to a particular measure. This concept is due to Lee³⁸ and has been used extensively in the design of various filters, often under the name of extended spatial neighborhood.³¹

The FPGF is much faster than the well-known vector filters mentioned in the previous section because it declares the center pixel to be noise-free as soon as m pixels in the window are determined to be sufficiently similar to it. If m is low, and the level of noise in the image is not very high, this allows for a dramatic reduction in the number of distance computations that need to be performed. In particular, the minimum and maximum number of distance calculations necessary to classify a pixel equal m and n-m, respectively. Therefore, on the average, the number of distance calculations performed by the FPGF is much lower than that performed by the VMF, i.e., n(n-1)/2. However, due to the nature of the L_2 norm, the distance computations performed in highly correlated spaces such as RGB remain expensive. On the other hand, if the image is transformed into a color space which decouples chromaticity and luminance, the distance between two color vectors can be evaluated without such a computation. In this study, we adopted the HSL color space in order to accomplish this.

The HSL color space is an intuitive alternative to the RGB space.¹³ It uses approximately cylindrical coordinates, and is a nonlinear deformation of the RGB color cube (Fig. 1(a)). The hue $H \in [0,360]$ is a function of the angle in the polar coordinate system and describes a pure color. The saturation $S \in [0, 100]$ is proportional to radial distance and denotes the purity of a color. Finally, the lightness $L \in [0, 255]$ is the distance along the axis perpendicular to the polar coordinate plane and represents the brightness. The distance between two vectors $x_i = (h_i, s_i, l_i)$ and $x_j = (h_i, s_i, l_j)$ in the HSL space is given by

$$D(x_i, x_j) = D_{\text{HSL}}(x_i, x_j)$$

= $\sqrt{s_i^2 + s_j^2 - 2s_i s_j \cos(h_i - h_j) + (l_i - l_j)^2}.$ (3)

Building upon the idea of the peer group in much the same way as the FPGF, we propose a new filtering algorithm called the Fast HSL-based switching filter (FHSF). First, the RGB image is transformed to the HSL space.¹³ The output vector in a window is then determined according to the following rule:

(e) peppers

(f) pig

Figure 2. Representative images from the image set.

$$x_{\text{FHSF}} = \begin{cases} x_{(n+1)/2} & \text{if } |\{x_j \in W | j \neq (n+1)/2 \text{ and } S(x_{(n+1)/2}, x_j) = 1\}| \ge m \\ & , \\ x_{\text{VMF}} & \text{otherwise} \end{cases},$$

$$S(x_i, x_j) = \begin{cases} 1 & \text{if } |h_i - h_j| \le \text{Ht and } |s_i - s_j| \le \text{St and } |l_i - l_j| \le \text{Lt} \\ & , \\ 0 & \text{otherwise} \end{cases},$$
(4)

where (h_i, s_i, l_i) and (h_j, s_j, l_j) denote the hue, saturation, and lightness of the pixels x_i and x_j , respectively. Ht, St, and Lt are the thresholds for the hue, saturation, and lightness, respectively.

The FHSF algorithm works as follows. First, it checks whether the center pixel is noisy or not. If the pixel is determined to be noisy, it is replaced by the VMF output. Otherwise, it remains untouched. A noise-free pixel is one which has a minimum of m peers that are sufficiently similar to it. The similarity is determined by the function S, which checks

to see if the hue, saturation and lightness of the pixel are close to those of the center pixel.

The similarity function S is clearly cheaper to evaluate when compared to the L_2 norm in the RGB space. The superficial similarity between the S function and the L_1 norm can be discounted by the fact that the former operates in the decorrelated HSL space as opposed to the correlated RGB space and consequently the conjunction involved in this function allows for short-circuit evaluation. That is, for instance, as long as two color vectors differ in hue, the remain-

Figure 3. *m* vs minimum PCD at noise levels (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

ing two conditions need not be evaluated. On the other hand, in the L_1 norm the absolute differences between the R, G, and B components always need to be calculated. Table I shows the number of elementary operations required by each function. It can be seen that in the worst case, since COMPs and ADDs have the same complexity,³⁹ the S function has the same number of operations as the L_1 norm.

EXPERIMENTAL RESULTS

Noise Model and Error Metrics

Several simplified color image noise models have been proposed in the literature.^{10,11,13} In this study, the correlated impulsive noise model originally proposed in Ref. 10 is adopted. In order to evaluate the filtering performance the following error metrics are used: mean absolute error (MAE),¹³ mean squared error (MSE),¹³ normalized color distance (NCD),¹³ and perceptual color distance (PCD).⁴⁰⁻⁴² MAE and MSE are based on the RGB color difference and measure the detail preservation and noise suppression cap-

bility of a filter, respectively. NCD and PCD are perceptually oriented metrics that measure the color preservation capability of a filter. NCD is based on the CIELAB color difference whereas PCD is based on the S-CIELAB color difference, which is a spatial extension of the former.⁴³ It should be noted that, to the best of the authors' knowledge, PCD has not been used in the color image filtering literature to date. It is included because it takes into account both the spatial and color sensitivity of the human visual system.⁴¹

Parameter Selection

There are four parameters involved in the proposed filter: m (the peer group size), Ht, St, and Lt. Appropriate ranges for these parameters need to be determined to ensure a good filtering performance on a variety of images. Since the filtering operation is very fast, a simple grid search procedure can be used for this task. In order to do this, the parameter space should first be quantized.

The parameters *m*, Ht, St, and Lt were restricted to [1,

Figure 4. Filtering results for the parrots image using different parameter configurations.

8]^{\dagger} (step size $\Delta = 1$), [6, 20] ($\Delta = 2$), [4, 16] ($\Delta = 2$), [32, 64] and ($\Delta = 4$), respectively. The sizes of the intervals for the Ht, St, and Lt parameters follow the relative importance of the individual components of the HSL space. This is because the human visual system is most sensitive to changes in hue, followed by saturation, and then lightness.⁴⁴ For example, the hue threshold Ht is restricted to the [6, 20] interval because for noise removal purposes, two colors that have more than 20° of hue difference can safely be considered as dissimilar (see Fig. 1(b)).

A set of 100 images was collected from the World Wide Web to be used in the grid search. These included images of people, animals, plants, buildings, aerial maps, manmade objects, natural scenery, paintings, sketches, as well as scientific, biomedical, and synthetic images and test images commonly used in the color image processing literature. Figure 2 shows several representative images from this set.

The PCD measure was used to quantify the goodness of a particular set of parameters $\{m, \text{Ht}, \text{St}, \text{Lt}\}$. Figure 3 shows the minimum PCD values obtained during the grid search at each *m* value for several images that are contaminated with 5%, 10%, 15%, and 20% impulsive noise.

Figure 5. Filtering results for the cat image corrupted with 10% noise.

As explained in the Proposed Method Section, the filtering operation is faster for lower values of m. In fact, the performance of the proposed filter (in terms of both the effectiveness and the efficiency) will approach that of the VMF at high values of m. It can be seen from Fig. 3 that m=3 provides a good compromise between effectiveness and efficiency. This is in line with the observations of Smolka and Chydzinski.³¹

The ranges for the remaining three parameters, Ht, St, and Lt, were determined as follows. For each test image, the parameters were varied in the earlier-mentioned intervals and the corresponding PCD values were calculated. Considering the diversity of the images, it is unreasonable to expect

[†]Assuming a 3×3 window.

Figure 6. Filtering results for the pig image corrupted with 10% noise and the corresponding absolute difference images.

the same parameter combination to give the lowest PCD value for each image. Therefore, the parameter combinations that achieved the lowest 5% PCD values for each image were recorded. It is expected that a parameter combination that will perform well on a variety of images would appear somewhere in these top 5% lists. The intersection of these lists revealed that the following ranges perform well on the test images, $Ht \in [8, 12]$, $St \in [8, 14]$, and $Lt \in [40, 56]$. For comparison with other filters, the following default values are used: Ht=10, St=10, and Lt=48.

Note that the full range of H is [0, 360] and thus acceptable values for Ht lie between 2.22% and 3.33% of this range. Similarly, the range of S is [0, 100] and values for St

lie between 8.00% and 14.00%. Finally, the range of *L* is [0, 255] and values for Lt lie between 15.62% and 21.87%. This is in line with the earlier-mentioned fact that the human visual system is most sensitive to changes in hue, followed by saturation, and then lightness.⁴⁴ Figure 4 shows an example of this phenomenon wherein a zoomed section of the parrots image is corrupted with 10% noise and then filtered using a parameter configuration in which two of the thresholds are fixed while the other one is relaxed. Figure 4(c) is the filtering result with the default parameters, Fig. 4(d) is with Ht relaxed by 5% (Ht=28), Fig. 4(e) is with St relaxed by 10% (St=20), and Fig. 4(f) is with Lt relaxed by 12.5% (Lt=80). It can be seen that although the change in

Table II.	Comparison of	f the filters on the	e test images at	5% noise level.

Baboon (512	imes 512 pixels)					Peppers (512	× 480)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
NONE	3.021	444.912	0.054147	3.190		NONE	3.068	489.064	0.047504	4.138	
ASVMF _{mean}	5.288	213.915	0.034924	2.245	0.265	ASVMF _{mean}	0.506	6.389	0.004151	0.534	
ASVMF _{rank}	4.752	203.662	0.031785	2.189	0.672	ASVMF _{rank}	0.507	7.089	0.004236	0.542	
AVMF	1.909	114.535	0.017017	1.263	0.828	AVMF	0.419	21.954	0.006366	0.613	
BVDF	11.270	379.708	0.07534	3.363	8.281	BVDF	2.150	30.059	0.018474	1.254	
DDF	10.293	315.996	0.068711	3.069	8.765	DDF	1.730	15.445	0.014379	0.922	
FFNRF	4.044	218.383	0.027072	1.984	0.375	FFNRF	0.212	4.908	0.002637	0.436	
FHSF _{HSL}	5.120	202.901	0.034014	2.132	0.359	FHSF _{HSL}	0.233	3.021	0.002206	0.441	
FHSFs	2.443	102.198	0.016858	1.269	0.093	FHSFs	0.208	2.672	0.002091	0.430	
FPGF ₂	4.416	201.745	0.028855	2.060	0.234	FPGF ₂	0.220	3.885	0.002388	0.440	
FPGF ₁	7.164	271.991	0.046831	2.660	0.266	FPGF ₁	0.266	4.260	0.002657	0.471	
PGF	1.483	69.330	0.010498	0.998	0.250	PGF	0.207	4.337	0.002422	0.431	
SVMF _{mean}	4.015	169.237	0.026675	1.930	0.359	SVMF _{mean}	0.380	4.911	0.003151	0.489	
SVMF _{rank}	4.010	169.825	0.026523	1.927	0.594	SVMF _{rank}	0.335	3.642	0.00265	0.475	
VMF	10.570	316.689	0.071926	3.171	0.624	VMF	1.680	10.600	0.014163	0.866	
Parrots (1536	5×1024)					Flowerbee (3	088×2048)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
NONE	3.065	472.017	0.061343	4.685		NONE	3.066	480.868	0.046835	1.717	
ASVMF _{mean}	0.179	3.110	0.002168	0.1465	1.187	ASVMF _{mean}	0.578	5.952	0.003608	0.272	
ASVMF _{rank}	0.181	3.653	0.002350	0.147	3.547	ASVMF rank	0.559	6.543	0.003593	0.278	
AVMF	0.359	22.315	0.007956	0.251	4.390	AVMF	0.376	20.639	0.005393	0.354	
BVDF	0.861	8.135	0.007753	0.384	39.719	BVDF	1.814	11.650	0.010962	0.426	
DDF	0.583	3.396	0.005536	0.290	43.391	DDF	1.655	9.473	0.009879	0.394	
FFNRF	0.101	2.449	0.001768	0.107	1.906	FFNRF	0.167	2.630	0.001547	0.174	
FHSF _{HSL}	0.082	1.220	0.000946	0.108	1.204	FHSF _{HSL}	0.175	1.718	0.001219	0.173	
FHSFs	0.065	0.855	0.000741	0.097	0.047	FHSFs	0.144	1.313	0.00107	0.163	
FPGF ₂	0.107	2.263	0.001714	0.103	0.735	FPGF ₂	0.160	2.149	0.001369	0.166	
FPGF ₁	0.125	2.332	0.001708	0.111	0.547	FPGF ₁	0.180	2.168	0.001383	0.173	
PGF	0.104	2.608	0.001832	0.106	1.485	PGF	0.167	2.807	0.001518	0.171	
SVMF _{mean}	0.123	2.042	0.001472	0.120	1.922	SVMF _{mean}	0.439	4.209	0.002671	0.243	
SVMF _{rank}	0.105	1.178	0.001072	0.111	3.500	SVMF _{rank}	0.417	3.390	0.002406	0.235	
VMF	0.540	2.609	0.005351	0.267	3.500	VMF	1.697	9.660	0.010444	0.397	

Table III. Comp	arison of th	ne fi	lters on	the test	images a	t 10%	noise l	evel.
-----------------	--------------	-------	----------	----------	----------	-------	---------	-------

Baboon (512	imes 512 pixels)					Peppers (512	× 480)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
NONE	6.168	914.459	0.109563	5.505		NONE	6.184	983.288	0.094969	6.764	
ASVMF _{mean}	5.014	210.446	0.035257	2.233	0.281	ASVMF _{mean}	0.646	15.608	0.006727	0.618	
ASVMF _{rank}	4.619	205.536	0.033701	2.196	0.657	ASVMF rank	0.679	18.524	0.007333	0.646	
AVMF	2.680	149.962	0.026662	1.644	0.797	AVMF	0.845	44.461	0.01275	0.851	
BVDF	11.650	397.573	0.078111	3.508	8.172	BVDF	2.378	40.246	0.021017	1.488	
DDF	10.564	324.853	0.070965	3.153	8.813	DDF	1.888	17.109	0.016101	0.970	
FFNRF	4.485	231.183	0.031609	2.161	0.375	FFNRF	0.439	11.573	0.005574	0.555	
FHSF _{HSL}	5.768	222.239	0.038852	2.333	0.375	FHSF _{HSL}	0.3923	6.046	0.003907	0.523	
FHSFs	3.151	127.181	0.022178	1.539	0.109	FHSFs	0.370	6.098	0.003869	0.508	
FPGF ₂	5.205	224.401	0.034677	2.310	0.235	FPGF ₂	0.429	7.772	0.004726	0.527	
FPGF ₁	7.770	287.367	0.051368	2.819	0.281	FPGF ₁	0.477	7.680	0.004843	0.555	
PGF	2.288	98.839	0.016958	1.356	0.329	PGF	0.432	10.999	0.005185	0.533	
SVMF _{mean}	4.006	172.698	0.028911	1.978	0.422	SVMF _{mean}	0.539	13.218	0.005628	0.575	
SVMF _{rank}	4.041	173.619	0.028697	1.984	0.656	SVMF _{rank}	0.461	8.509	0.004435	0.529	
VMF	10.813	326.192	0.073878	3.256	0.641	VMF	1.842	13.163	0.015854	0.924	
Parrots (1536	5×1024)					Flowerbee (3	088×2048)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
NONE	6.119	941.234	0.122676	7.956		NONE	6.129	960.795	0.093671	2.851	
ASVMF _{mean}	0.310	10.874	0.005117	0.222	1.250	ASVMF _{mean}	0.6449	12.948	0.005325	0.326	
ASVMF _{rank}	0.336	12.633	0.005785	0.221	3.610	ASVMF rank	0.655	15.074	0.005739	0.346	
AVMF	0.718	44.311	0.015853	0.419	4.250	AVMF	0.762	41.588	0.010859	0.566	
BVDF	0.935	9.100	0.008498	0.412	40.797	BVDF	1.925	13.044	0.01177	0.452	
DDF	0.646	4.444	0.006251	0.313	43.906	DDF	1.737	10.189	0.010584	0.411	
FFNRF	0.218	6.047	0.003981	0.160	1.953	FFNRF	0.348	6.361	0.003401	0.235	
FHSF _{HSL}	0.149	3.201	0.001901	0.161	1.344	FHSF _{HSL}	0.307	4.138	0.002272	0.217	
FHSFs	0.132	3.448	0.001691	0.162	0.485	FHSFs	0.274	3.904	0.002131	0.209	
FPGF ₂	0.214	4.490	0.003445	0.144	0.905	FPGF ₂	0.328	4.430	0.002792	0.212	
FPGF1	0.227	4.236	0.003273	0.150	0.718	FPGF ₁	0.348	4.121	0.002714	0.218	
PGF	0.226	6.976	0.00403	0.177	1.531	PGF	0.355	7.583	0.003343	0.233	
SVMF _{mean}	0.238	7.857	0.003813	0.196	2.047	SVMF _{mean}	0.524	9.415	0.004118	0.284	
SVMF _{rank}	0.170	3.210	0.002165	0.149	3.265	SVMF _{rank}	0.470	5.194	0.003169	0.252	
VMF	0.616	3.247	0.006174	0.296	3.250	VMF	1.778	10.406	0.011118	0.417	

Table IV.	Comparison of	the filters or	1 the test images at	15% noise level.

Baboon (512	imes 512 pixels)					Peppers (512	!×480)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
NONE	9.212	1357.231	0.163820	7.247		NONE	9.200	1465.480	0.141325	9.101	
ASVMF _{mean}	5.043	222.431	0.039034	2.319	0.234	ASVMF _{mean}	0.902	32.168	0.010989	0.812	
ASVMF _{rank}	4.726	219.993	0.038661	2.285	0.610	ASVMF rank	0.962	36.363	0.012038	0.843	
AVMF	3.522	190.028	0.037089	1.957	0.719	AVMF	1.240	64.149	0.018588	1.097	
BVDF	12.032	417.613	0.080963	3.640	8.109	BVDF	2.623	57.374	0.023845	1.812	
DDF	10.846	335.445	0.073274	3.246	8.672	DDF	2.039	19.385	0.017644	1.043	
FFNRF	5.017	251.577	0.037636	2.341	0.344	FFNRF	0.691	20.228	0.009018	0.709	
FHSF _{HSL}	6.483	246.382	0.044302	2.519	0.360	FHSF _{HSL}	0.590	14.166	0.006159	0.680	
FHSFs	3.937	157.523	0.028343	1.805	0.110	FHSFs	0.566	14.178	0.006134	0.676	
FPGF ₂	6.042	249.839	0.040849	2.524	0.281	FPGF ₂	0.645	11.784	0.007078	0.632	
FPGF ₁	8.400	305.442	0.056120	2.959	0.312	FPGF ₁	0.691	11.280	0.00703	0.663	
PGF	3.135	132.236	0.023939	1.679	0.328	PGF	0.677	20.420	0.008287	0.735	
SVMF _{mean}	4.205	189.528	0.03397	2.106	0.391	SVMF _{mean}	0.803	29.786	0.009688	0.79	
SVMF _{rank}	4.258	189.290	0.033357	2.086	0.594	SVMF rank	0.659	17.584	0.007142	0.668	
VMF	11.066	337.448	0.075857	3.343	0.594	VMF	1.987	15.428	0.017381	0.996	
Parrots (1536	6×1024)					Flowerbee (3	088×2048)				
Filter	MAE	MSE	NCD	PCD	Time	Filter	MAE	MSE	NCD	PCD	
ASVM _{mean}	0.536	25.797	0.010298	0.379	1.297	ASVMF _{mean}	0.841	27.884	0.008753	0.441	
ASVMF _{rank}	0.597	29.275	0.011644	0.368	3.500	ASVMF rank	0.888	31.652	0.009704	0.483	
AVMF	1.086	66.930	0.023909	0.585	4.187	AVMF	1.148	62.520	0.016352	0.763	
BVDF	1.017	11.178	0.009398	0.456	41.063	BVDF	2.048	15.394	0.012673	0.484	
DDF	0.716	5.083	0.007065	0.343	44.156	DDF	1.825	11.110	0.011324	0.430	
FFNRF	0.362	11.560	0.006896	0.236	1.984	FFNRF	0.551	12.041	0.005667	0.304	
FHSF _{HSL}	0.237	8.304	0.003368	0.276	1.547	FHSF _{HSL}	0.458	9.270	0.003634	0.270	
FHSFs	0.225	9.875	0.00328	0.304	0.563	FHSFs	0.427	9.834	0.003582	0.268	
FPGF ₂	0.328	6.961	0.005292	0.192	1.094	FPGF ₂	0.502	7.020	0.004282	0.254	
FPGF1	0.338	6.384	0.004945	0.198	0.906	FPGF1	0.523	6.352	0.00410	0.259	
PGF	0.376	14.717	0.006867	0.311	1.703	PGF	0.568	15.801	0.005609	0.309	
SVMF _{mean}	0.449	22.600	0.008443	0.391	2.172	SVMF _{mean}	0.727	23.667	0.007241	0.384	
SVMF _{rank}	0.287	9.150	0.004406	0.244	3.375	SVMF rank	0.600	11.385	0.004855	0.300	
VMF	0.697	4.048	0.007065	0.331	3.360	VMF	1.864	11.356	0.011815	0.437	

the hue threshold is the smallest, the degradation in the filtering result is the greatest. On the other hand, the change in the lightness threshold is the largest, but the filtering result is better than those of Figs. 4(d) and 4(e).

Comparison with State-of-the-Art Filters

The proposed filter is compared with recent switching filters such as the (PGF),²² the adaptive vector median filter (AVMF),²⁶ the fast fuzzy noise reduction filter (FFNRF),³² the FPGF,³¹ the vector sigma filters based on the mean and lowest ranked vectors (SVMF_{mean}, SVMF_{rank}),³³ and their adaptive counterparts (ASVMF_{mean}, ASVMF_{rank}).³³ The traditional filters mentioned in the introduction (VMF, BVDF, and DDF) are also included in this comparison to highlight the merits of the switching technique. Finally, for comparison purposes, the FHSF version that uses the 3D distance function in the HSL space (FHSF_{HSL}) and the L_1 version of the FPGF (FPGF₁) are also considered in the experiments. In the following discussion, the standard versions of the FHSF and the FPGF are denoted as FHSF_S (Eq. (4)) and FPGF₂ (Eq. (1) with p=2), respectively.

Figure 5 shows the filtering results for a zoomed section of the cat image. Figures 5(c) and 5(d) show the outputs of the nonswitching filters, i.e., the VMF and the DDF. It can be seen that even though these filters suppress the noise very well, this comes at the expense of the blurring of image details, e.g., the whiskers. On the other hand, the switching filters, i.e., the FPGF₂, the FFNRF, the PGF, and the FHSF_S preserve the details satisfactorily. Among these, the FHSF_S strikes the best balance between noise removal and detail preservation.

Figure 6 shows the filtering results for a section of the pig image and the corresponding difference images. In order to obtain the difference images, the pixelwise absolute differences between the original and the filtered images are multiplied by 5 and then negated. As expected, the VMF and the DDF outputs show significant differences when compared to the original image. In contrast, the switching filters show a clear improvement in restoring the original image. Among these, it can be seen that the AVMF, the PGF, and the FHSF_S give the best performance.

Tables II–IV compare the filters using the criteria described in the subsection Noise Model and Error Metrics, i.e., MAE, MSE, NCD, PCD, and the execution time[§] in seconds. It can be seen that the FHSF_S compares favorably with the best filters in terms of filtering effectiveness, as assessed by the first four criteria. The execution time is also a very important factor which determines the practicality of a noise removal filter. From this perspective, due to their high computational requirements, the nonswitching filters in general are not appropriate for denoising large images that are common in domains such as astronomy, remote sensing, and biology. Regarding the remaining filters, as the image size increases, the computational advantage of the FHSF_S over the others becomes apparent. In general, the FHSF_S is almost twice as fast as the next fastest filter, i.e., the FPGF₁. Note that the timing for the FHSF_S includes the RGB to HSL transform, although this is negligible.^{||}

In summary, the experiments demonstrate that the $FHSF_S$ combines simplicity, excellent filtering performance and significant computational efficiency, which makes it a practical method for impulsive noise removal from color images.

CONCLUSIONS

In this article, we introduced a fast switching filter for the removal of impulsive noise from color images. The proposed filter exploited the HSL color space in conjunction with the concept of a peer group in order to allow for the fast detection of noise in a neighborhood. The method was tested on a large set of images from diverse domains, as well as classical images used in the color image processing literature. The experiments demonstrated that the new method is much faster than state-of-the-art filters and that the filtering quality is also excellent.

ACKNOWLEDGMENTS

This work was supported by NSF (Grant No. 0216500-EIA), Texas Workforce Commission (Grant No. 3204600182), and the James A. Schlipmann Melanoma Cancer Foundation.

REFERENCES

- ¹H. J. Trussell, E. Saber, and M. J. Vrhel, "Color image processing: Basics and special issue overview", IEEE Trans. Signal Process. **22**, 14–22 (2005).
- ² R. Lukac, B. Smolka, K. N. Plataniotis, and A. N. Venetsanopoulos, "Selection weighted vector directional filters", Comput. Vis. Image Underst. **94**, 140–167 (2004).
- ³ R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos, "A multichannel order-statistic technique for cDNA microarray image processing", IEEE Trans. Nanobiosci. 3, 272–285 (2004).
 ⁴ R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos,
- ⁴ R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos, "cDNA microarray image processing using fuzzy vector filtering framework", Fuzzy Sets Syst. **152**(1), 17–35 (2005).
- ⁵M. Barni, F. Bartolini, and V. Cappellini, "Image processing for virtual restoration of artworks", IEEE Multimedia **7**, 34–37 (2000).
- ⁶L. Lucchese and S. K. Mitra, "A new class of chromatic filters for color image processing: Theory and applications", IEEE Trans. Image Process. 13, 534–548 (2004).
- ⁷ R. Lukac, V. Fischer, G. Motyl, and M. Drutarovsky, "Adaptive video filtering framework", Int. J. Imaging Syst. Technol. 14, 223–237 (2004).
- ⁸ V. I. Ponomaryov, F. J. Gallegos-Funes, and A. Rosales-Silva, "Real-time color imaging based on RM-filters for the impulsive noise reduction", J. Imaging Sci. Technol. **49**, 205–219 (2005).
- ⁹V. Fischer, R. Lukac, and K. Martin, "Cost-effective video filtering solution for real-time vision systems", EURASIP Journal on Applied Signal Processing 13, 2026–2042 (2005).
- ¹⁰ T. Viero, K. Oistamo, and Y. Neuvo, "Three-dimensional median-related filters for color image sequence filtering", IEEE Trans. Circuits Syst. Video Technol. 4, 129–142 (1994).
- ¹¹ B. Smolka, K. N. Plataniotis, and A. N. Venetsanopoulos, "Nonlinear techniques for color image processing," in *Nonlinear Signal and Image Processing: Theory, Methods, and Applications*, edited by K. E. Barner and G. R. Arce (CRC Press, Boca Raton, FL, 2003).
- ¹² R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis, and A. N. Venetsanopoulos, "Vector filtering for color imaging", IEEE Signal Process. Mag. 22, 74–86 (2005).
- ¹³ K. N. Plataniotis and A. N. Venetsanopoulos, *Color Image Processing and Applications* (Springer-Verlag, Berlin, 2000).

¹⁴R. Lukac and K. N. Plataniotis, "A taxonomy of color image filtering and

 $^{^{\}parallel}$ On a 4096 × 4096 image that contains 16 million unique colors, the RGB to HSL transform takes 45 ns per pixel. On a typical 1024 × 1024 image, the total transformation time is less than 0.05 s.

[§]C language, GCC 3.4.4 compiler, Intel Centrino 1.6 GHz processor.

enhancement solutions", in Advances in Imaging & Electron Physics, edited by P. W. Hawkes (Academic, San Diego, CA, 2006), Vol. 140, pp. 187–264.

- ¹⁵ J. Astola, P. Haavisto, and Y. Neuvo, "Vector median filters", Proc. IEEE **78**, 678–689 (1990).
- ¹⁶ P. E. Trahanias and A. N. Venetsanopoulos, "Vector directional filters: A new class of multichannel image processing filters", IEEE Trans. Image Process. 2, 528–534 (1993).
- ¹⁷ D. Karakos and P. E. Trahanias, "Generalized multichannel image filtering structures", IEEE Trans. Image Process. 6, 1038–1045 (1997).
- ¹⁸ V. Barnett, "The ordering of multivariate data", Journal of the Statistical Society of America A139, 318–355 (1976).
- ¹⁹ K. N. Plataniotis, D. Androutsos, and A. N. Venetsanopoulos, "Adaptive fuzzy systems for multichannel signal processing", Proc. IEEE **87**, 1601–1622 (1999).
- ²⁰ V. Chatzis and I. Pitas, "Fuzzy scalar and vector median filters based on fuzzy distances", IEEE Trans. Image Process. 8, 731–734 (1999).
- ²¹ L. Khriji and M. Gabbouj, "Adaptive fuzzy order statistics-rational hybrid filters for color image processing", Fuzzy Sets Syst. **128**, 35–46 (2002).
- ²² C. Kenney, Y. Deng, B. S. Manjunath, and G. Hewer, "Peer group image enhancement", IEEE Trans. Image Process. **10**, 326–334 (2001).
- ²³ B. Smolka, K. N. Plataniotis, A. Chydzinski, M. Szczepanski, A. N. Venetsanopoulos, and W. Wojciechowski, "Self-adaptive algorithm of impulsive noise reduction in color images", Pattern Recogn. 35, 1771–1784 (2002).
- ²⁴ B. Smolka, R. Lukac, K. N. Plataniotis, and W. Wojciechowski, "Fast adaptive similarity based impulsive noise reduction filter", Real-Time Imag. 9, 261–276 (2003).
- ²⁵ E. S. Hore, B. Qiu, and H. R. Wu, "Improved vector filtering for color images using fuzzy noise detection", Opt. Eng. (Bellingham) 42, 1656–1664 (2003).
- ²⁶ R. Lukac, "Adaptive vector median filtering", Pattern Recogn. Lett. 24, 1889–1899 (2003).
- ²⁷ R. Lukac, "Adaptive color image filtering based on center-weighted vector directional filters", Multidimens. Syst. Signal Process. **15**, 169–196 (2004).
- ²⁸ H. Allende and J. Galbiati, "A non-parametric filter for digital image restoration using cluster analysis", Pattern Recogn. Lett. 25, 841–847 (2004).
- ²⁹ R. Lukac, K. N. Plataniotis, A. N. Venetsanopoulos, and B. Smolka, "A

statistically-switched adaptive vector median filter", J. Intell. Robotic Syst. 42, 361-391 (2005).

- ³⁰Z. Ma, D. Feng, and H. R. Wu, "A neighborhood evaluated adaptive vector filter for suppression of impulsive noise in color images", Real-Time Imag. **11**, 403–416 (2005).
- ³¹ B. Smolka and A. Chydzinski, "Fast detection and impulsive noise removal in color images", Real-Time Imag. **11**, 389–402 (2005).
- ³² S. Morillas, V. Gregori, G. Peris-Fajarnes, and P. Latorre, "A fast impulsive noise color image filter using fuzzy metrics", Real-Time Imag. 11, 417–428 (2005).
- ³³ R. Lukac, B. Smolka, K. N. Plataniotis, and A. N. Venetsanopoulos, "Vector sigma filters for noise detection and removal in color images", J. Visual Commun. Image Represent **17**, 1–26 (2006).
- ³⁴Z. Ma, H. R. Wu, and D. Feng, "Partition-based vector filtering technique for suppression of noise in digital color images", IEEE Trans. Image Process. 15, 2324–2342 (2006).
- ³⁵ Z. Ma, H. R. Wu, and B. Qiu, "A robust structure-adaptive hybrid vector filter color image restoration", IEEE Trans. Image Process. 14, 1990–2001 (2005).
- ³⁶ R. Lukac and K. N. Plataniotis, "cDNA microarray image segmentation using root signals", Int. J. Imaging Syst. Technol. **16**, 51–64 (2006).
- ³⁷ R. Lukac, K. N. Plataniotis, and A. N. Venetsanopoulos, "Color image denoising using evolutionary computation", Int. J. Imaging Syst. Technol. **15**, 236–251 (2005).
- ³⁸ J. S. Lee, "Digital image smoothing and the sigma filter", Comput. Vis. Graph. Image Process. 24, 255–269 (1983).
- ³⁹J. L. Hennessy and D. A. Patterson, *Computer Architecture: A Quantitative Approach*, 3rd ed. (Morgan Kaufmann, San Mateo, CA, 2002).
- ⁴⁰ X. Zhang and B. A. Wandell, "A spatial extension of CIELAB for digital color image reproduction", SID Int. Symp. Digest Tech. Papers **27**, 731–734 (1996).
- ⁴¹X. Zhang and B. A. Wandell, "Color image fidelity metrics evaluated using image distortion maps", Signal Process. **70**, 201–214 (1998).
- ⁴²G. M. Johnson and M. D. Fairchild, "A top down description of S-CIELAB and CIEDE2000", Color Res. Appl. 28, 425–435 (2003).
- ⁴³ M. D. Fairchild, *Color Appearance Models*, 2nd ed. (Wiley, New York, 2005).
- ⁴⁴H.-C. Lee, Introduction to Color Imaging Science (Cambridge University Press, Cambridge, 2005).