
Retrospective Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A 403

Median cut color quantization algorithm:
retrospective
M. Emre Celebi1,* AND María-Luisa Pérez-Delgado2

1Department of Computer Science and Engineering, University of Central Arkansas, Conway, Arkansas 72035, USA
2Department of Computer Science and Automatics, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Av. Requejo, 33,
Zamora 49022, Spain
*ecelebi@uca.edu

Received 21 August 2025; revised 4 January 2026; accepted 12 January 2026; posted 12 January 2026; published 29 January 2026

Color quantization, reducing the number of distinct colors in a given image with minimal distortion, is a common
image processing operation with many applications in visual computing. Heckbert’s median cut algorithm, which
dates back to the early 1980s, is generally considered the first true color quantization algorithm. Heckbert’s semi-
nal work generated numerous subsequent studies extending his algorithm in various ways. In this retrospective, we
present a detailed analysis of the median cut algorithm and demonstrate how it influenced later color quantization,
vector quantization, and data clustering algorithms. © 2026 Optica Publishing Group. All rights, including for text and

datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.

https://doi.org/10.1364/JOSAA.577058

1. INTRODUCTION: THE BIRTH OF COLOR
QUANTIZATION

High-resolution true-color images have become ubiquitous over
the past quarter century [1]. Such images often have thousands
of distinct colors, complicating nearly all operations that can
be performed on them. Color quantization (cq) is an image
processing operation that reduces the number of distinct colors
in a given image with minimal distortion.

Figure 1 shows the coloring pencils image (Ref. [2], cc by-sa

3.0 license, 768× 512 pixels) quantized to 4, 16, 64, and 256
colors using the median cut algorithm. It can be seen that the
reproduction with 256 colors is nearly indistinguishable from its
original.

Let I = [ir ,c]H×W be a W × H true-color (i.e., 24-bit)
red–green–blue (rgb) input image, with ir ,c denoting the
pixel at the intersection of row r (∈ {1, . . . , H}) and column c
(∈ {1, . . . ,W}). The 8-bit red (ir ,c ,1), green (ir ,c ,2), and blue
(ir ,c ,3) components of pixel ir ,c attain values in {0, . . . , 255}.
Further, let K denote the desired number of colors in the output
image; typically, we have K ∈ {2, . . . , 256}. cq comprises two
phases: color palette (cpal) design and pixel mapping. In the
former phase, a palette C of size K representing the colors in I is
generated, while, in the latter phase, each pixel in I is assigned to
the nearest color in C. The output of cq is a reduced-color rgb

image Ĩ = [ι̃r ,c]H×W containing only the K palette colors. The
objective is to minimize the distortion between the input and
output images, that is,

min
C={c1,. . .,cK }⊂I

DC(I , Ĩ), (1)

such that the pixel at location (r , c) of Ĩ is given by

ι̃r ,c = arg min
ck∈C

d(ir ,c , ck), (2)

where C = {c1, . . . , cK } is the cpal, and d(·, ·) and D(·, ·) are
measures of distortion between a pair of colors and color images,
respectively (with the latter being a function of the former).

Due to its analytical tractability, it is customary to
take d = `2

2 (squared Euclidean distortion) and D as the
sum-of-squared-distortion (ssd), that is,

DC(I , Ĩ)=
H∑

r=1

W∑
c=1

∥∥ir ,c − ι̃r ,c

∥∥2
2 , (3)

where ‖·‖2 is the Euclidean norm (aka the `2 norm) given by∥∥ir ,c − ι̃r ,c

∥∥
2

=

√(
ir ,c ,1 − ι̃r ,c ,1

)2
+
(
ir ,c ,2 − ι̃r ,c ,2

)2
+
(
ir ,c ,3 − ι̃r ,c ,3

)2
.
(4)

It is important to note that the `2 norm treats the three color
components equally, which is problematic from a perceptual
point of view, as the rgb color space is perceptually nonuni-
form (i.e., equal `2 distances in the space do not necessarily
correspond to equal perceived color differences); see Section 3.
However, true-color images are almost universally gamma-
corrected [3], which alleviates this perceptual nonuniformity
issue. Note also that there are many clustering objectives besides

1084-7529/26/020403-10 Journal © 2026Optica PublishingGroup

https://orcid.org/0000-0002-2721-6317
https://orcid.org/0000-0003-1810-0264
mailto:ecelebi@uca.edu
https://doi.org/10.1364/JOSAA.577058
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.577058&domain=pdf&date_stamp=2026-01-30

404 Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A Retrospective

Fig. 1. Coloring pencils and its various quantized versions.

ssd, including those proposed in the fuzzy [4], information-
theoretic [5], kernel [6], probabilistic [7], and spectral clustering
[8] literatures.

Since natural images typically contain a broad range of colors,
reproducing such images accurately with a small cpal can be
difficult. In fact, considering the number of possible colors in
the rgb space (224

= 16,777,216), it is easy to see that cq is a
large-scale combinatorial optimization problem.

Jain and Pratt [9] coined the term color quantization in 1972
as an application of signal quantization to color images. The
authors acknowledged that the rgb components should ide-
ally be quantized jointly as a vector (i.e., vector quantization)
rather than independently (i.e., scalar quantization). However,
for practical reasons (e.g., computational limitations), they
investigated uniform scalar quantization applied to each color
component independently. Unfortunately, such a componen-
twise approach disregards the spectral correlations between
the components. Specifically, an independent uniform scalar
quantizer tends to assign palette colors to regions where few

input colors reside, as colors in natural images are hardly, if ever,
distributed uniformly in the rgb space.

The median cut (mcut) algorithm, developed by Heckbert
first in his 1980 undergraduate thesis [10] and then published
in a 1982 journal paper [11], is generally considered the first
true cq algorithm. mcut has been so influential that it is still
the most popular and widely implemented cq algorithm four
decades after its introduction, as evidenced by its implementa-
tion in numerous programming languages, including (i) C/C++
[12–16], (ii) Go [17], (iii) Java [18–20], (iv) JavaScript [21], (v)
matlab [22], (vi) Perl [23], (vii) php [24], (viii) Python [25], (ix)
R [26], (x) Ruby [27], (xi) Rust [28], (xii) Swift [29], and (xiii)
Tcl [30]. Recent applications of mcut include (i) video style
transfer [31], (ii) graphical user interface evaluation [32], (iii)
embedded simultaneous localization and mapping [33], (iv)
photorealistic rendering of neural radiance fields [34], (v) photo
sequence synthesis [35], (vi) scientific document visualization
[36], (vii) virtual reality scientific data visualization [37], (viii)
scene image text detection [38], (ix) sports video analysis [39],
and (x) entertainment video summarization [40].

Retrospective Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A 405

Heckbert motivated mcut from a signal quantization
perspective. However, it is more convenient to describe his algo-
rithm as a divisive hierarchical clustering algorithm. Given an
input dataset and an integer K ≥ 2 denoting the desired num-
ber of clusters, a divisive clustering algorithm divides the data
space into K disjoint regions using (K − 1) successive binary
divisions. At each iteration, the algorithm selects a region (corre-
sponding to a cluster) and divides it into two using a hyperplane.
Upon termination, the algorithm returns the centroids of the
resulting K regions (i.e., the arithmetic means of the data points
that fall into these regions) as the cluster centers.

mcut is simply an instance of the divisive clustering algo-
rithm above applied to an rgb image whose colors reside in a
three-dimensional color space. Specifically, mcut selects the
cluster with the greatest range on any color axis (i.e., red, green,
or blue) at each iteration and divides it into two using a plane
orthogonal to the same axis, passing through the median point
(hence the name of the algorithm). This is the iterative mcut

algorithm Heckbert proposed in his thesis [10]. In a subsequent
journal paper [11], Heckbert described a recursive mcut algo-
rithm that divides every cluster at each iteration. The recursive
algorithm generates a cpal in which each color represents a
roughly equal number of input colors, while the iterative one
does not impose such a restriction. It is easy to see that the iter-
ative algorithm is more adaptive to the input color distribution
than the recursive one. This is because the former algorithm
divides the most elongated cluster at each iteration (to reduce its
distortion), whereas the latter one divides every cluster regardless
of its color distribution. Therefore, we will focus on the iterative
algorithm in the rest of this discussion. Figure 2 illustrates this
algorithm on a two-dimensional artificial dataset containing
four compact and well-separated clusters [41]. It can be seen
that, despite its simplicity, the algorithm recovers the underlying
clusters reasonably well, except for a few misclassified peripheral
data points.

2. NOVELTIES OF MCUT

The novelties of Heckbert’s work include the following.
Optimization-based formulation: As mentioned in Section 1,

Heckbert formulated cq as an optimization problem: select
a cpal that minimizes the distortion between the input and
output images. For computational reasons, he adopted the ssd

objective given by Eq. (3). He pointed out that, in one dimen-
sion (i.e., the case of scalar quantization), ssd can be minimized
in polynomial time-using dynamic programming. Such is the
case when the input is an 8-bit grayscale image [42]. He also
conjectured that the ssd minimization problem is computa-
tionally intractable in higher dimensions (i.e., the case of vector
quantization). His conjecture was proved nearly three decades
later by Mahajan et al. [43], who proved that the problem is
np-hard even in two dimensions for K ≥ 2.

Uniform scalar quantization: Heckbert applied uniform scalar
quantization to each color component as a preprocessing step.
He accomplished such a pre-quantization by cutting the least-
significant 3 bits from each 8-bit color component. Bit cutting
reduces the amount of color data to be clustered, which in turn
reduces the time and memory requirements of the cpal design
phase. In addition, bit cutting can make the peaks of the input

color distribution more prominent, making it easier to detect
them. Bit cutting was also used in many later cq algorithms [1].

• Hashing : The colors in a W × H rgb image can be stored
in a two-dimensional array of size N × 3, where N =W H is
the number of pixels in the image. However, such an array is
clearly wasteful, as it stores each repeated color as many times
as it occurs in the image. Assuming 3 bits per component
bit cutting, an alternative data structure would have been a
three-dimensional array of size 25

× 25
× 25, in which each

element corresponds to the frequency of a particular color.
Although such an array allows efficient access to each of its
elements, it is still wasteful, as many images do not contain all
possible 215 colors. In his thesis, Heckbert proposed a more
space-efficient storage scheme based on a hash table, a gener-
alization of the array data structure that uses a hash function
to map keys (i.e., rgb colors) to indices in an underlying array
[44] (while each key maps to a distinct index in an ordinary
array, the mapping is many-to-one in a hash table; hence, the
savings in memory space.) Heckbert used a hash function that
concatenates the least-significant 3 bits of the 5-bit color com-
ponents. For the 640× 480 test images he used, the two- and
three-dimensional arrays above would have contained 900 K
and 32 K elements, respectively, while the hash table contained
only 0.5 K elements. Although hashing was already being used in
multispectral image processing in the 1970s [45], Heckbert can
still be considered an early adopter of this versatile data structure
in color image processing. For an overview of data structures
used in cq, refer to Celebi [1].

• Adaptive and nonuniform cq: Due to computational
limitations, early color quantizers (e.g., the one proposed by
Jain and Pratt [9]) typically employed non-adaptive (aka image-
independent) and uniform quantization. Here, the qualifiers
non-adaptive and uniform refer to the generation of a universal
cpal based on a given color space (e.g., rgb) and the placement
of the palette colors uniformly throughout the color space,
respectively. On the other hand, Heckbert proposed an adaptive
(aka image-dependent) and nonuniform color quantizer, which
generates a custom cpal based on the color distribution of a
given input image, with the palette colors placed nonuniformly
throughout the color space. Such an adaptive and nonuniform
color quantizer nearly always produces superior results to a non-
adaptive and uniform one, and the more nonuniform the input
color distribution, the greater the quality difference between the
two quantizers.

• Connection to divisive hierarchical clustering, decision tree
induction, tree-structured vector quantizer design, and space par-
titioning : As mentioned in Section 1, mcut can be viewed as
a divisive hierarchical clustering algorithm [46] applied to an
rgb image. Heckbert [11] mentions in passing that his recur-
sive algorithm is “nearly identical” to Bentley’s algorithm for
constructing a k-d tree [47], a multidimensional search tree that
generalizes the binary search tree; the most prominent difference
between the two algorithms is that the former divides the data
points along the longest color axis, whereas the latter cycles
through the axes, that is, if there are D axes numbered 1 through
D, axis ((L mod D)+ 1) is used as the dividing axis at recursion
level L ∈ {0, 1, . . .}. It is also not difficult to see the resemblance
between mcut and the algorithms used for binary decision tree

406 Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A Retrospective

Fig. 2. Illustration of mcut on a two-dimensional artificial dataset (red stars in subfigure (d) represent the cluster centroids).

induction [48], binary tree-structured vector quantizer design
[49], and binary space partitioning [50].

• Lloyd’s k-means algorithm: Like most of its successors,
mcut is a heuristic algorithm with no guarantee on the quality
of its solution. For this reason, Heckbert [11] suggested using
Lloyd’s k-means algorithm [51,52] to improve the output of
mcut, thereby ensuring at least local optimality of the resulting
cpal. His choice was not coincidental, as the ssd objective given
by Eq. (3) is precisely the objective minimized by k-means.
Without presenting any numerical results, he stated that such
a postprocessing step reduced mcut’s distortion only slightly.
Later, Wan et al. [53] reached a similar conclusion about their
mcut variant, likely based on limited experimentation with only
three images and two palette sizes (K ∈ {8,64}). Furthermore,
many early cq researchers (e.g., [53–56]) considered k-means to
be prohibitively slow due to its iterative nature; in general, the
number of iterations required to converge to a locally optimal
solution cannot be predicted in advance and depends on the
number, dimensionality, and distribution of the data points,
the number of clusters sought, and the initial centers [1]. Celebi
[57,58] showed that an accelerated k-means implementation
can not only be fast but also significantly improve the output of
mcut and many of its variants, both qualitatively and quantita-
tively. Recent studies [59–61] further improved the efficiency
and effectiveness of k-means, making it a highly practical cq

algorithm.
• Dithering : Due to its lossy nature, cq inevitably leads to

loss of color and fine details. For example, representing a large,
almost uniformly colored region with a small or poorly designed
cpal can lead to the appearance of bands of uniform colors with
visually disturbing contours in between. Heckbert suggested

eliminating such false contours using dithering [62], a classical
image processing operation that exploits the spatial integration
property of the human visual system to create the illusion of
more colors. Figure 3 compares the coloring pencils image from
Fig. 1 with or without Floyd–Steinberg [62] dithering applied
after mcut quantization. Observe that the output images with
4, 16, 64, and 256 colors from Fig. 1 are duplicated in the left
column of Fig. 3 for convenient comparison. It can be seen that
for the smallest four-color cpal, dithering made a substantial
difference by recovering many details (e.g., the bodies of entire
pencils in the lower-right corner), whereas for the larger 64- and
256-color cpal, it barely made any difference. Finally, in the case
of the 16-color cpal, dithering mitigated or even eliminated
some of the false contours (e.g., the pencil at nearly the 9 o’clock
position and the pencil below it). Unfortunately, these visual
improvements came at the expense of noticeable noise in the
background and on the bodies and tips of most pencils.

• Accelerated pixel mapping : Once the cpal is designed, the
output image is generated by pixel mapping. For each pixel in
the input image, the trivial pixel-mapping algorithm performs
an exhaustive search for its nearest palette color given by Eq. (2).
This mapping is clearly inefficient, as, for any given input pixel,
most palette colors will likely be too far to be its nearest color.

Heckbert proposed the first accelerated pixel-mapping algo-
rithm in the cq literature, locally sorted search (lls), which starts
by dividing the rgb cube into L × L × L subcubes, where
L ≥ 2 is a user-defined number (i.e., L = 8 for K = 256 colors

Retrospective Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A 407

Fig. 3. Comparison of coloring pencils with (right column) or without (left column) dithering applied after mcut quantization.

[10,11]). For each subcube, the algorithm maintains a sorted list
of palette colors that are nearest to some color in that subcube.
Given an input pixel, lls first determines the subcube con-
taining its color and then performs an exhaustive search in that
subcube’s list. There are three problems with lls: (i) it acceler-
ates the trivial algorithm only slightly (Heckbert reported a mere

three-fold acceleration on one of his test images for K = 256);
(ii) it divides the rgb cube uniformly regardless of the input
color distribution; and (iii) it is nontrivial to estimate the opti-
mal L value for a given image. Many accelerated pixel-mapping
algorithms have been proposed since Heckbert; refer to Celebi
[1] for an overview.

408 Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A Retrospective

Fig. 4. All possible ways to obtain four clusters using three successive binary divisions (shaded nodes represent the clusters).

3. EXTENSIONS OF MCUT

Future work suggested by Heckbert includes the following.

• Alternative color spaces and distortion measures: For com-
putational reasons, Heckbert adopted the rgb space and the
`2

2 distortion measure, a combination still prevalent in color
image processing. However, he suggested that performing cq in
a perceptually more uniform color space using an appropriate
distortion measure (e.g., cielab and `2) may lead to better
results. To this date, very little work has been done to investigate
the effects of color space and distortion measure on cq [1], at
least in the algorithmic literature (refer to Nieves et al. [63] for a
colorimetric approach based on the cielab color space).

• Alternative divisive clustering strategies: In a divisive cluster-
ing algorithm, a cluster is selected at each iteration and divided
into two using a hyperplane. Although the selected cluster can be
divided into B > 2 subclusters, most divisive algorithms adopt
the binary strategy for simplicity, which is what we assume in the
remainder of this discussion. Observe that the extreme case of
a K -ary divisive strategy corresponds to a partitional clustering
algorithm rather than a hierarchical one.

Consider a dataset X with N data points in RD. It is easy to
see that the binary divisive strategy represents X as a full binary
tree with the following properties: (i) the root node represents
X , while every other node represents a proper subset of X ; (ii) a
non-leaf node’s children divide their parent’s elements into two
subsets; and (iii) the leaf nodes form a partition of X (i.e., the
corresponding subsets of X are exhaustive, mutually exclusive,
and nonempty).

The number of (K − 1) successive binary divisions of X
then equals the number of full binary trees with K leaves given
by (2K − 2)!/(K !(K − 1)!), which can be approximated by
4K−1/

√
π(K − 1)3 as K →∞. As an example, Fig. 4 illus-

trates the five possible ways to obtain K = 4 clusters using three
successive binary divisions. Observe that a recursive algorithm
(i.e., one that divides every cluster at each iteration) can generate
only the first configuration, whereas an iterative one can generate
all five configurations.

Now, consider the case of K = 2, where we have a single
cluster corresponding to the entire dataset X . It can be shown
that the number of ways to divideX using a hyperplane is on the
order of ND [64]. In fact, not surprisingly, the ssd minimization
problem has been proven to be np-hard even for two clusters for
D≥ 2 [65,66]. Hence, both determining an optimal order of
binary divisions for X and optimally dividing X (or any of its
subsets) into two are computationally intractable problems.

The computational hardness of optimal binary divisive
clustering prompted researchers to propose numerous efficient
heuristics since the early 1960s. These heuristics can be charac-
terized by the following decisions they make at each iteration: (i)
the cluster to divide, (ii) the orientation of the dividing hyper-
plane, and (iii) the position of the dividing hyperplane (aka the
dividing point).

In mcut, the cluster with the greatest range on any color axis
is selected at each iteration. This cluster is then divided using a
plane orthogonal to the axis above, passing through the median
point on the same axis. Essentially, mcut divides the longest
cluster at each iteration, where the length of a cluster is mea-
sured along the color axes. This is a computationally efficient
approach, but the most elongated cluster is not necessarily the
one with the greatest distortion. From a distortion minimization
perspective, then, a more sensible choice would have been the
cluster with the greatest ssd. Such a divisive cq heuristic was first
proposed by Wan et al. [53]. Heckbert also suggested an alter-
native, where the cluster with the greatest variance on any color
axis is selected at each iteration, which is then divided using an
orthogonal plane passing through the data point minimizing
the sum of variances of the resulting two subclusters. Milvang
[67] and Wu [68] developed the earliest cq algorithms based on
Heckbert’s variance minimization heuristic.

Heckbert’s rationale for dividing at the median point is that
the resulting two subclusters will be nearly equal in size. This
makes sense when building a multidimensional search tree such
as a k-d tree, but for divisive clustering, there is no justification
to require an almost even division regardless of the data distribu-
tion [53]. In fact, it can be shown that an ssd-optimal division
of a multivariate normal cluster [66] requires the hyperplane

Retrospective Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A 409

Fig. 5. Illustration of varcut on the dataset shown in Fig. 2 (red stars in subfigure (d) represent the cluster centroids).

to be orthogonal to the dominant eigenvector of the cluster
covariance matrix (rather than being orthogonal to the longest
axis) and pass through the mean (rather than the median) point
on the same axis. It can also be shown that the mean is closer
to the optimal dividing point than the median for any non-
symmetric continuous univariate distribution [54]. Orchard
and Bouman [55] proposed the first cq algorithm based on the
aforementioned ssd-optimal strategy. Later, Wu [56] relaxed
the multivariate normality assumption by sweeping a plane
orthogonal to the dominant eigenvector, passing through the
data point that maximizes the reduction in the ssd. Note that
when the dividing plane is orthogonal to a color axis at each
iteration (as in mcut), the rgb cube is divided into rectangular
boxes using axis-parallel cuts. By contrast, when the dividing
plane is orthogonal to the dominant eigenvector, which is a
linear combination of the color axes, at each iteration, the rgb

cube is divided into convex polyhedra using oblique cuts.
A particularly simple and efficient heuristic divisive cq algo-

rithm, dubbed varcut, divides the cluster with the greatest
ssd using a plane orthogonal to the color axis with the greatest
variance, passing through the mean point on the same axis [69].
Figure 5 illustrates this heuristic on the dataset shown in Fig. 2.
It can be seen that varcut overcomes mcut’s limitations and
successfully recovers the underlying clusters.

Various divisive clustering algorithms can be designed by
modifying the aforementioned decisions; refer to Celebi [1] for
a detailed survey.

• Integrated cq and dithering : Heckbert suggested eliminat-
ing false contours in the output image using the Floyd–Steinberg
dithering algorithm [62]. However, while cq aims to minimize

the distortion between the input and output images, dither-
ing tends to increase this distortion. For this reason, Heckbert
stated that treating these two operations independently may
not be ideal from a distortion minimization perspective. For
algorithms that integrate cq and dithering, refer to [70–72].

• Interactive cq: In some cases, the region of interest (roi),
e.g., the eyes, occupies a small area in the input image. Most cq

algorithms tend to neglect such regions in their zeal to minimize
distortion. Heckbert suggested an interactive cq algorithm
that allows the user to manually specify one or more rois. The
colors in these rois are then weighted more in the cpal design
phase, increasing their representation in the resulting palette.
However, the potential of such an interactive cq algorithm,
e.g., in non-photorealistic rendering, remains unexplored.

4. MORE RECENT DEVELOPMENTS IN CQ

More recent developments in the cq literature that were not
anticipated by Heckbert include the following.

• Dynamic cq: Popular cq algorithms assume a user-
defined, static palette size. Various dynamic cq algorithms have
been proposed over the past two decades that can automatically
determine the palette size at run time [1]; refer to Tirandaz et al.
[73] for a recent study.

• Metaheuristic-based cq: Some of the most recent cq

algorithms are based on nature-inspired metaheuristics [74],
including simulated annealing, variable neighborhood search,
genetic algorithms, evolution strategies, particle swarm opti-
mization, and ant colony optimization. On standard objectives
(e.g., ssd), these powerful algorithms produce significantly

410 Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A Retrospective

better results than conventional algorithms such as mcut [75].
They can also optimize more complex (e.g., perceptually based)
objectives or even multiple objectives simultaneously. However,
they are often considerably slower and more difficult to imple-
ment and use (due to their randomized nature and user-defined
parameters). Note that some of these algorithms generate their
initial solution using a conventional algorithm, typically an
mcut variant [76,77]. For references to metaheuristic-based
cq algorithms, refer to a survey by Celebi [1] and a comparative
study of 10 such algorithms by Pérez–Delgado and Günen [75].

• Task-oriented cq: The vast majority of cq algorithms are
based on unsupervised clustering [78]. These algorithms aim
to minimize the visual distortion or, equivalently, maximize
the visual fidelity between the input and output images [79];
thus, they can be termed perceptually oriented cq algorithms.
Recently, various task-oriented cq algorithms based on convo-
lutional neural networks have been proposed [80–88]. These
algorithms differ from their perceptually oriented counterparts
in two important ways. First, rather than visual fidelity, they
aim to maximize accuracy on a predefined computer vision
task, such as image classification or object detection. Second,
they are supervised; that is, before they can be used for cq, their
internal parameters must be optimized by training. Due to their
supervised formulation, these algorithms can outperform con-
ventional cq algorithms (e.g., mcut) on the task for which they
are trained. However, their superiority appears to be confined to
the extreme color quantization [89] setting, in which the cpal to
be designed is very small (e.g., K ∈ {2, 4, 8}). Therefore, in the
absence of sufficient training data or outside the aforementioned
setting, perceptually oriented cq algorithms such as mcut and
its variants are still to be preferred.

5. CONCLUSION

This retrospective examined the celebrated median cut
algorithm proposed by Heckbert over four decades ago. In
addition to detailing the first true color quantization algorithm,
Heckbert’s seminal work introduced much of the terminology
used in the color quantization literature to this day, described the
first divisive color quantization algorithm, proposed bit cutting
as a preprocessing step and k-means clustering as a postprocess-
ing step, recommended a hash table to compactly represent the
input color data, developed the first accelerated pixel-mapping
algorithm, and suggested dithering to eliminate false contours
in the output image. Despite its limitations, Heckbert’s work
not only established color quantization as a subfield of color
image processing but also inspired the development of numer-
ous color quantization, vector quantization, and data clustering
algorithms.

Funding. National Science Foundation (OIA-1946391).

Acknowledgment. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation. The authors
gratefully acknowledge the median cut color quantization and Floyd–Steinberg
dithering implementations provided in gimp [12].

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES
1. M. E. Celebi, “Forty years of color quantization: amodern, algorithmic

survey,” Artif. Intell. Rev. 56, 13953–14034 (2023).
2. M. E. Celebi and M. L. Pérez-Delgado, “CQ100: a high-quality image

dataset for color quantization research,” J. Electron. Imaging 32,
033019 (2023).

3. C. A. Poynton, ““Gamma” and its disguises: the nonlinear mappings
of intensity in perception, CRTs, film, and video,” SMPTE J. 102,
1099–1108 (1993).

4. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms (Springer, 1981).

5. J. C. Principe, Information Theoretic Learning: Renyi’s Entropy and
Kernel Perspectives (Springer, 2010).

6. M. Filippone, F. Camastra, F. Masulli, et al., “A survey of Kernel and
spectral methods for clustering,” Pattern Recognit. 41, 176–190
(2008).

7. G. J. McLachlan and K. E. Basford, Mixture Models: Inference and
Applications to Clustering (Marcel Dekker, 1988).

8. L. Ding, C. Li, D. Jin, et al., “Survey of spectral clustering based on
graph theory,” Pattern Recognit. 151, 110366 (2024).

9. A. K. Jain andW. K. Pratt, “Color image quantization,” in Proceedings
of 1972 National Telecommunications Conference (1972), pp. 4–8.

10. P. S. Heckbert, “Color image quantization for frame buffer display,”
Bachelor’s thesis (Massachusetts Institute of Technology, 1980).

11. P. Heckbert, “Color image quantization for frame buffer display,”
ACMSIGGRAPHComput. Graph. 16, 297–307 (1982).

12. “GIMP: GNU Image Manipulation Program” [accessed 4 January
2026], https://www.gimp.org/.

13. “Leptonica Library” [accessed 4 January 2026], http://www.
leptonica.org/.

14. “libjpeg” [accessed 4 January 2026], https://libjpeg.source
forge.net/.

15. “LibTIFF: TIFF Library and Utilities” [accessed 4 January 2026],
https://gitlab.com/libtiff/libtiff.

16. “Netpbm” [accessed 4 January 2026], https://netpbm.source
forge.net/.

17. S. Keys and A. Pervukhin, “Quant,” GitHub [accessed 4 January
2026] (2018), https://github.com/soniakeys/quant.

18. “ImageJ: Image Processing and Analysis in Java” [accessed 4
January 2026], https://imagej.net/ij/.

19. N. Lagomarsini, A. Aime, D. Romagnoli, et al., “Java Advanced
Imaging Extension,” GitHub [accessed 4 January 2026] (2025),
https://github.com/geosolutions-it/jai-ext.

20. “Java Imaging Utilities” [accessed 4 January 2026], https://
sourceforge.net/projects/jiu/.

21. M. Nedrich, “Palette Maker,” GitHub [accessed 4 January 2026]
(2017), https://github.com/mattnedrich/palette-maker.

22. H. Biswas, “CVIP Toolbox for MATLAB,” GitHub [accessed 4 January
2026] (2020), https://github.com/SIUE-CVIP-Lab/Computer-Vision-
and-Image-Processing-Toolbox-for-MATLAB.

23. “Image::Pngslimmer” [accessed 4 January 2026], https://meta
cpan.org/pod/Image::Pngslimmer.

24. K. Subileau, C. Rishøj, D. Schneidhoffer, et al., “Color Thief
PHP,” GitHub [accessed 4 January 2026] (2025), https://
github.com/ksubileau/color-thief-php.

25. “Pillow: Python Imaging Library (Fork)” [accessed 4 January 2026],
https://pypi.org/project/pillow/.

26. “RImagePalette: Extract the Colors from Images” [accessed 4
January 2026], https://cran.r-project.org/package=RImagePalette.

27. N. Hussain and F. Schuindt, “Camalian,” GitHub [accessed 4 January
2026] (2021), https://github.com/nazarhussain/camalian.

28. “pngquant: Lossy PNG Compressor” [accessed 4 January 2026],
https://pngquant.org/.

29. S. Xu, “ImageUtils,” GitHub [accessed 4 January 2026] (2017),
https://github.com/showxu/ImageUtils.

https://doi.org/10.1007/s10462-023-10406-6
https://doi.org/10.1117/1.JEI.32.3.033019
https://doi.org/10.5594/J01651
https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.1016/j.patcog.2024.110366
https://doi.org/10.1145/965145.801294
https://www.gimp.org/
http://www.leptonica.org/
http://www.leptonica.org/
http://www.leptonica.org/
https://libjpeg.sourceforge.net/
https://libjpeg.sourceforge.net/
https://libjpeg.sourceforge.net/
https://gitlab.com/libtiff/libtiff
https://netpbm.sourceforge.net/
https://netpbm.sourceforge.net/
https://netpbm.sourceforge.net/
https://github.com/soniakeys/quant
https://imagej.net/ij/
https://github.com/geosolutions-it/jai-ext
https://sourceforge.net/projects/jiu/
https://sourceforge.net/projects/jiu/
https://sourceforge.net/projects/jiu/
https://github.com/mattnedrich/palette-maker
https://github.com/SIUE-CVIP-Lab/Computer-Vision-and-Image-Processing-Toolbox-for-MATLAB
https://github.com/SIUE-CVIP-Lab/Computer-Vision-and-Image-Processing-Toolbox-for-MATLAB
https://github.com/SIUE-CVIP-Lab/Computer-Vision-and-Image-Processing-Toolbox-for-MATLAB
https://metacpan.org/pod/Image::Pngslimmer
https://metacpan.org/pod/Image::Pngslimmer
https://metacpan.org/pod/Image::Pngslimmer
https://github.com/ksubileau/color-thief-php
https://github.com/ksubileau/color-thief-php
https://github.com/ksubileau/color-thief-php
https://pypi.org/project/pillow/
https://cran.r-project.org/package=RImagePalette
https://github.com/nazarhussain/camalian
https://pngquant.org/
https://github.com/showxu/ImageUtils

Retrospective Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A 411

30. “Reduce Colour Depth: Median Cut” [accessed 4 January 2026],
https://wiki.tcl-lang.org/page/Reduce+Colour+Depth+-+Median
+Cut.

31. Y. Cao, X. Xiao, R. Sun, et al., “Stylefool: fooling video classification
systems via style transfer,” in Proceedings of. 2023 IEEE Symposium
on Security and Privacy (2023), pp. 1631–1648.

32. M. Zen, N. Burny, and J. Vanderdonckt, “A quality model-based
approach for measuring user interface aesthetics with grace,” Proc.
ACMHum.-Comput. Interact. 7, 1–47 (2023).

33. Q. Picard, S. Chevobbe, M. Darouich, et al., “Image quantization
towards data reduction: robustness analysis for SLAM methods on
embedded platforms,” in Proceedings of 2022 IEEE International
Conference on Image Processing (2022), pp. 4158–4162.

34. A. Yu, R. Li, M. Tancik, et al., “Plenoctrees for real-time rendering of
neural radiance fields,” in Proceedings of IEEE/CVF International
Conference on Computer Vision (2021), pp. 5752–5761.

35. C. Mousas, C. Krogmeier, and Z. Wang, “Photo sequences of vary-
ing emotion: optimization with a valence-arousal annotated dataset,”
ACM Trans. Interact. Intell. Syst. 11, 16 (2021).

36. W. Zeng, A. Dong, X. Chen, et al., “VIStory: interactive storyboard
for exploring visual information in scientific publications,” Journal of
Visualization 24, 69–84 (2021).

37. S. Johnson, F. Samsel, G. Abram, et al., “Artifact-based rendering:
harnessing natural and traditional visual media for more expressive
and engaging 3D visualizations,” IEEE Trans. Vis. Comput. Graph. 26,
492–502 (2019).

38. W. Zhu, J. Lou, L. Chen, et al., “Scene text detection via extremal
region based double threshold convolutional network classification,”
PLoSONE 12, e0182227 (2017).

39. R. A. Sharma, V. Gandhi, V. Chari, et al., “Automatic analysis of broad-
cast football videos using contextual,” Signal Image Video Process.
11, 171–178 (2017).

40. F. Hohman, S. Soni, I. Stewart, et al., “A viz of ice and fire: exploring
entertainment video using color and dialogue,” in Proceedings of 2nd
Workshop on Visualization for the Digital Humanities (2017).

41. E. H. Ruspini, “Numerical methods for fuzzy clustering,” Inf. Sci. 2,
319–350 (1970).

42. X. Wu, “Optimal quantization by matrix searching,” J. Algorithms 12,
663–673 (1991).

43. M.Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is NP-Hard,” in Proceedings of 3rd International Workshop
on Algorithms and Computation (2009), pp. 274–285.

44. T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al., Introduction to
Algorithms, 4th ed. (TheMIT Press, 2022).

45. S. Shlien and A. Smith, “A rapid method to generate spectral theme
classification of LANDSAT imagery,” Remote Sens. Environ. 4, 67–77
(1975).

46. P.Macnaughton-Smith,W. T.Williams,M. B. Dale, et al., “Dissimilarity
analysis: a new technique of hierarchical sub-division,” Nature 202,
1034–1035 (1964).

47. J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” Commun. ACM 18, 509–517 (1975).

48. J. N. Morgan and J. A. Sonquist, “Problems in the analysis of survey
data, and a proposal,” J. Am. Stat. Assoc. 58, 415–434 (1963).

49. A. Buzo, R. M. Gray, A. H. Gray, Jr., et al., “Speech coding based
upon vector quantization,” IEEE Trans. Acoust. Speech Signal
Process. 28, 562–574 (1980).

50. H. Fuchs, Z. M. Kedem, and B. F. Naylor, “On Visible surface gen-
eration by a priori tree structures,” in Proceedings of 7th Annual
Conference on Computer Graphics and Interactive Techniques
(1980), pp. 124–133.

51. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun. 28, 84–95 (1980).

52. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory 28, 129–137 (1982).

53. S. J. Wan, S. K. M. Wong, and P. Prusinkiewicz, “An algorithm for
multidimensional data clustering,” ACM Trans. Math. Softw. 14,
153–162 (1988).

54. X. Wu and I. H. Witten, “A fast k-means type clustering algorithm,”
Tech. Rep. 85/197/10 (University of Calgary, 1985).

55. M. Orchard and C. Bouman, “Color quantization of images,” IEEE
Trans. Signal Process. 39, 2677–2690 (1991).

56. X. Wu, “Statistical colour quantization for minimum distortion,” in
Computer Graphics and Mathematics, B. Falcidieno, I. Herman, and
C. Pienovi, eds. (Springer, 1992), pp. 189–202.

57. M. E. Celebi, “Fast color quantization using weighted sort-means
clustering,” J. Opt. Society AmA 26, 2434–2443 (2009).

58. M. E. Celebi, “Improving the performance of k-means for color quan-
tization,” Image Vis. Comput. 29, 260–271 (2011).

59. S. Thompson, M. E. Celebi, and K. H. Buck, “Fast color quantization
usingMacQueen’s k-means algorithm,” J. Real-Time Image Process.
17, 1609–1624 (2020).

60. A. D. Abernathy and M. E. Celebi, “The incremental online k-means
clustering algorithm and its application to color quantization,” Expert
Syst. Appl. 207, 117927 (2022).

61. H. Bounds, M. E. Celebi, and J. Maxwell, “Color quantization using
an accelerated Jancey k-means clustering algorithm,” J. Electron.
Imaging 33, 053052 (2024).

62. R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial
greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).

63. J. L. Nieves, L. Gomez-Robledo, Y. J. Chen, et al., “Computing the
relevant colors that describe the color palette of paintings,” Appl.
Opt. 59, 1732–1740 (2020).

64. E. F. Harding, “The number of partitions of a set of n points in k dimen-
sions induced by hyperplanes,” Proc. Edinburgh Math. Soc. 15, 285–
289 (1967).

65. D. Aloise, A. Deshpande, P. Hansen, et al., “NP-hardness of
Euclidean sum-of-squares clustering,” Mach. Learn. 75, 245–248
(2009).

66. S. Dasgupta and Y. Freund, “Random projection trees for vector
quantization,” IEEE Trans. Inf. Theory 55, 3229–3242 (2009).

67. O. Milvang, “An adaptive algorithm for color image quantization,”
in Proceedings of 5th Scandinavian Conference on Image Analysis
(1987), Vol. 1, pp. 43–47.

68. X. Wu, “Efficient statistical computations for optimal color quanti-
zation,” in Graphics Gems II, J. Arvo, ed. (Academic Press, 1991),
pp. 126–133.

69. M. E. Celebi, Q. Wen, and S. Hwang, “An effective real-time color
quantization method based on divisive hierarchical clustering,” J.
Real-Time Image Process. 10, 329–344 (2015).

70. J. Puzicha, M. Held, J. Ketterer, et al., “On spatial quantization of
color images,” IEEE Trans. Image Process. 9, 666–682 (2000).

71. D. Özdemir and L. Akarun, “Fuzzy algorithms for combined quantiza-
tion and dithering,” IEEE Trans. Image Process. 10, 923–931 (2001).

72. H. Z. Huang, K. Xu, R. R. Martin, et al., “Efficient, edge-aware, com-
bined color quantization and dithering,” IEEE Trans. Image Process.
25, 1152–1162 (2016).

73. Z. Tirandaz, D. H. Foster, J. Romero, et al., “Efficient quantization of
painting images by relevant colors,” Sci. Rep. 13, 3034 (2023).

74. C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
overview and conceptual comparison,” ACM Comput. Surv. 35,
268–308 (2003).

75. M. L. Pérez-Delgado and M. A. Günen, “A comparative study of evo-
lutionary computation and swarm-based methods applied to color
quantization,” Expert Syst. Appl. 231, 120666 (2023).

76. M. L. Pérez-Delgado and J. A. R. Gallego, “A hybrid color quantiza-
tion algorithm that combines the greedy orthogonal bi-partitioning
method with artificial ants,” IEEE Access 7, 128714–128734 (2019).

77. M. L. Pérez-Delgado and J. A. R. Gallego, “A two-stage method
to improve the quality of quantized images,” J. Real-Time Image
Process. 17, 581–605 (2020).

78. M. E. Celebi and K. Aydin, eds., Unsupervised Learning Algorithms
(Springer, 2016).

79. M. L. Pérez-Delgado and M. E. Celebi, “A comparative study of
color quantization methods using various image quality assessment
indices,” Multimedia Syst. 30, 40 (2024).

80. I. Yoo, X. Luo, Y. Wang, et al., “GIFnets: differentiable GIF encoding
framework,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (2020), pp. 14473–14482.

81. Y. Hou, L. Zheng, and S. Gould, “Learning to structure an image with
few colors,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (2020), pp. 10116–10125.

82. S. Su, L. Gu, Y. Yang, et al., “Name your colour for the task: artifi-
cially discover colour naming via colour quantisation transformer,”

https://wiki.tcl-lang.org/page/Reduce+Colour+Depth+-+Median+Cut
https://wiki.tcl-lang.org/page/Reduce+Colour+Depth+-+Median+Cut
https://wiki.tcl-lang.org/page/Reduce+Colour+Depth+-+Median+Cut
https://doi.org/10.1145/3593224
https://doi.org/10.1145/3593224
https://doi.org/10.1145/3593224
https://doi.org/10.1145/3458844
https://doi.org/10.1007/s12650-020-00688-1
https://doi.org/10.1007/s12650-020-00688-1
https://doi.org/10.1007/s12650-020-00688-1
https://doi.org/10.1109/TVCG.2019.2934260
https://doi.org/10.1371/journal.pone.0182227
https://doi.org/10.1007/s11760-016-0916-3
https://doi.org/10.1016/S0020-0255(70)80056-1
https://doi.org/10.1016/0196-6774(91)90039-2
https://doi.org/10.1016/0034-4257(75)90006-1
https://doi.org/10.1038/2021034a0
https://doi.org/10.1145/361002.361007
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1109/TASSP.1980.1163445
https://doi.org/10.1109/TASSP.1980.1163445
https://doi.org/10.1109/TASSP.1980.1163445
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/45054.45056
https://doi.org/10.1109/78.107417
https://doi.org/10.1109/78.107417
https://doi.org/10.1109/78.107417
https://doi.org/10.1364/JOSAA.26.002434
https://doi.org/10.1016/j.imavis.2010.10.002
https://doi.org/10.1007/s11554-019-00914-6
https://doi.org/10.1016/j.eswa.2022.117927
https://doi.org/10.1016/j.eswa.2022.117927
https://doi.org/10.1016/j.eswa.2022.117927
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1117/1.JEI.33.5.053052
https://doi.org/10.1364/AO.378659
https://doi.org/10.1364/AO.378659
https://doi.org/10.1364/AO.378659
https://doi.org/10.1017/S0013091500011925
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1109/TIT.2009.2021326
https://doi.org/10.1007/s11554-012-0291-4
https://doi.org/10.1007/s11554-012-0291-4
https://doi.org/10.1007/s11554-012-0291-4
https://doi.org/10.1109/83.841942
https://doi.org/10.1109/83.923288
https://doi.org/10.1109/TIP.2015.2513599
https://doi.org/10.1038/s41598-023-29380-8
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.eswa.2023.120666
https://doi.org/10.1109/ACCESS.2019.2937934
https://doi.org/10.1007/s11554-018-0814-8
https://doi.org/10.1007/s11554-018-0814-8
https://doi.org/10.1007/s11554-018-0814-8
https://doi.org/10.1007/s00530-023-01206-7

412 Vol. 43, No. 2 / February 2026 / Journal of the Optical Society of America A Retrospective

in Proceedings of IEEE/CVF International Conference on Computer
Vision (2023), pp. 12021–12031.

83. J. H. Park, S. H. Kim, J. C. Lee, et al., “Scalable color quantization for
task-centric image compression,” ACM Trans. Multimedia Comput.
Commun. Appl. 19, 82 (2023).

84. B. Yuan, Z. Wang, M. Baktashmotlagh, et al., “Color-oriented redun-
dancy reduction in dataset distillation,” in Proceedings of 38th
Conference on Neural Information Processing Systems (2024),
pp. 53237–53260.

85. J. Li, L. Fu, S. Yang, et al., “HiEI: A universal framework for gen-
erating high-quality emerging images from natural images,” in
Proceedings of 18th European Conference on Computer Vision
(2024), pp. 129–145.

86. Y. Hou, S. Gould, and L. Zheng, “Scalable deep color quantiza-
tion: a cluster imitation approach,” IEEE Trans. Image Process. 33,
5273–5283 (2024).

87. J. Li, L. Fu, S. Yang, et al., “MI-CAPTCHA: enhance the security of
CAPTCHA using mooney images,” in Proceedings of 39th AAAI
Conference on Artificial Intelligence (2025), Vol. 39, pp. 1383–1391.

88. Y. Wang, G. Liu, Z. Zhu, et al., “VivID: A visually improved GIF encod-
ing network design,” IEEE Trans. Circuits Syst. Video Technol. 35,
6101–6113 (2025).

89. S. Redfield and J. G. Harris, “The role of extreme color quantization
in object recognition,” in Proceedings of 1st International Conference
on Color in Graphics and Image Processing (2000), pp. 225–230.

https://doi.org/10.1145/3551389
https://doi.org/10.1145/3551389
https://doi.org/10.1145/3551389
https://doi.org/10.1109/TIP.2024.3414132
https://doi.org/10.1109/TCSVT.2025.3533007

