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Vector operators based on robust order statistics have proved successful in digital multichannel imaging ap-
plications, particularly color image filtering and enhancement, in dealing with impulsive noise while preserv-
ing edges and fine image details. These operators often have very high computational requirements, which
limits their use in time-critical applications. This paper introduces techniques to speed up vector filters using
the minimax approximation theory. Extensive experiments on a large and diverse set of color images show that
proposed approximations achieve an excellent balance among ease of implementation, accuracy, and computa-
tional speed. © 2009 Optical Society of America
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. INTRODUCTION
mage noise filtering—the process of estimating the origi-
al image information from noisy data—is a common pre-
rocessing step in image processing and analysis applica-
ions, as the presence of noise in images not only lowers
heir perceptual quality but also makes subsequent tasks
uch as edge detection and segmentation more difficult
1]. With the recent shift from traditional grayscale imag-
ng to color imaging, numerous filters have been proposed
or removing noise from color images. An extensive over-
iew of color image filtering solutions and their applica-
ions can be found in [2], with detailed performance
nalysis presented in [3].
An important class of filters for noise reduction in color

mages is the one based on robust vector-order statistics
4,5]. A typical natural image exhibits strong correlation
mong its red, green, and blue color channels; therefore,
reating the pixels of the image as vectors avoids color
hifts and artifacts in the output of the filter. Since im-
ges are nonstationary due to the presence of edges as
ell as noise and blur introduced during the image forma-

ion, vector filters usually operate on pixels inside a sup-
orting window that slides over the image. Desired noise
ltering characteristics can be obtained by using vectors
ith certain ranks in the ordered set of pixel values inside

he supporting window, since an ordering operation per-
ormed according to a distance or similarity criterion dis-
inguishes outliers from noise-free samples [4].

Many researchers have noted the high computational
equirements of order-statistics-based vector filters; how-
ver, relatively few studies [6,7] have focused on alleviat-
ng this problem. Furthermore, the scope of these studies
s limited to the vector median filter [8], which has been
1084-7529/09/061518-7/$15.00 © 2
onsidered the gold standard of performance in color im-
ge filtering due to its robustness and excellent impulsive
oise suppression capability [9].
This paper introduces techniques to speed up popular

ector filters that use vector ordering criteria other than
he Euclidean distance. In particular, the filtering solu-
ions from [10–12] involve, respectively, computationally
xpensive inverse cosine, exponential, and logarithmic
unctions that are evaluated during the filtering process
ypically millions of times. To allow the use of such filters
n time-critical imaging applications, we utilize the mini-

ax approximation theory to substitute the above-
entioned elementary functions with computationally ef-
cient polynomials. Extensive experiments on a large and
iverse image set show that the presented approxima-
ions achieve an excellent balance among ease of imple-
entation, accuracy, and computational speed.
The rest of the paper is organized as follows. Section 2

ives background on minimax approximation theory. Sec-
ion 3 introduces the use of the minimax approximation
heory in speeding up order-statistics-based vector filters.
otivation and design characteristics are discussed in de-

ail. Section 4 describes the image set, noise models, fil-
ering performance criteria, and the experimental setup.
inally, conclusions are given in Section 5.

. OVERVIEW OF MINIMAX
PPROXIMATION THEORY
iven a function f, we would like to approximate it by an-

ther function g such that the error ��� between them over
given interval is arbitrarily small. The existence of such
pproximations is stated by the following theorem:
009 Optical Society of America
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Theorem 2.1. (Weierstrass) Let f be a continuous real-
alued function defined on �a ,b�, i.e., f�C�a ,b�. Then
��0 there exists a polynomial P such that �f−P���, i.e.,
z� �a ,b�, �f�z�−P�z����.
This is commonly known as the minimax approxima-

ion to a function. It differs from other methods, e.g.,
east-squares approximations, in that it minimizes the

aximum error ��� rather than the average error:

� = max
z��a,b�

�f�z� − P�z��. �1�

similar theorem establishes the existence of a rational
ariant of this method [13]. Let n�0 be a natural number
nd let

Pn��a,b�� = �a0 + a1z + . . . + anzn:z � �a,b�, ai � R, i

= 0,1, . . . ,n� �2�

e the set of all polynomials of degree less than or equal to
. The set of irreducible rational functions, Rm

n ��a ,b��, is
efined as

Rm
n ��a,b�� = 	p�z�

q�z�
:p�z� � Pn��a,b��, q�z� � Pm��a,b��
 ,

�3�

here p and q have no common factors. Then [13] we
ave the following:
Theorem 2.2. For each function f�C�a ,b�, there exists

t least one best rational approximation from the class

m
n ��a ,b��.
This theorem states the existence of a rational approxi-
ation r*�Rm

n ��a ,b�� to a function f�C�a ,b� that is opti-
al in the Chebyshev sense:

max
z��a,b�

�f�z� − r*�z�� = dist�f,Rm
n �, �4�

where dist�f ,Rm
n � denotes the distance between f and

m
n ��a ,b�� with respect to some norm, in our case the
hebyshev (maximum) norm. Regarding the choice be-

ween a polynomial and a rational approximant, it can be
aid that certain functions can be approximated more ac-
urately by rationals than by polynomials. Jean-Michel
uller explains this phenomenon as follows: “It seems

uite difficult to predict if a given function will be much
etter approximated by rational functions than by polyno-
ials. It makes sense to think that functions that have a

ehavior that is ‘highly nonpolynomial’ (finite limits at
�, poles, infinite derivatives,…) will be poorly approxi-
ated by polynomials” [14], p. 47.
In this study the Remez exchange algorithm, an itera-

ive method that uses Lagrangian interpolation to sys-
ematically minimize the maximum absolute difference
etween the given function and its polynomial approxi-
ation, was used to calculate the polynomials. The reader

s referred to [13,14] for more information on the minimax
pproximation theory and [15] for the implementation de-
ails of the Remez algorithm.
. PROPOSED IMPLEMENTATIONS OF
ECTOR FILTERS
onsider an M�N red–green–blue (RGB) input image X

hat represents a two-dimensional array of three-
omponent vectors x�r ,c�= �x1�r ,c� ,x2�r ,c� ,x3�r ,c�� occu-
ying the spatial location �r ,c�, with the row and column
ndices r= �1, . . . ,M� and c= �1, . . . ,N�, respectively. In the
ixel x�r ,c�, the xk�r ,c� values denote the red �k=1�, green
k=2�, and blue �k=3� components. In order to isolate
mall image regions, each of which can be treated as sta-
ionary, and reduce processing errors by operating in such
localized area of the input image, an �n��n supporting
indow W�r ,c� centered on pixel x�r ,c� is used. The win-
ow slides over the entire image X in a raster fashion and
he procedure replaces the input vector x�r ,c� with the
utput vector y�r ,c�=F�W�r ,c�� of a filter function F�·�
hat operates over the samples inside W�r ,c�. Repeating
he procedure for each pair �r ,c�, with r= �1, . . . ,M� and
= �1, . . . ,N�, produces the output vector y�r ,c� of the M
N filtered image Y. For notational simplicity, the input

ectors inside W�r ,c� are reindexed as a set, i.e., W�r ,c�
�xi : i=1, . . . ,n� (see Fig. 1), as commonly seen in the re-

ated literature [2,3]. In this notation, the center pixel in
is given by xC=x�n+1�/2, and in the vector xi

�xi1 ,xi2 ,xi3� with components xik, the i� �1, . . . ,n� and
� �1,2,3� indices denote the position of the vector inside
he window and the color channel, respectively.

. Vector Directional Filters
he vector directional filter (VDF) family [10] operates on

he direction of the input vectors with the aim of eliminat-
ng the vectors with atypical directions. This family uti-
izes the angle between the input vectors to order the vec-
ors inside the supporting window. For example, the
utput of the basic vector directional filter (BVDF), the
ost well-known member of the VDF class, is the input

ector inside the supporting window whose direction is
he maximum likelihood estimate of the directions of the
nput vectors [16]:

y�r,c� = arg min
xi�W�r,c�

�
j=1

n

A�xi,xj�� ,

A�xi,xj� = arccos�xi1xj1 + xi2xj2 + xi3xj3

�xi�2�xj�2
� , �5�

here A�xi ,xj� denotes the angle between the two input
ectors xi and xj and � . �2 is the L2 (Euclidean) norm. Note
hat in addition to BVDF, the angular function A�. , . � was
sed in the design of a number of other filters including
he generalized VDF [17], directional distance filter [18],
ybrid vector filters [19], weighted VDFs [20], data-
daptive VDFs [21], and switching VDFs [22].
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Fig. 1. Indexing convention inside a 3�3 window.
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The computational requirements of these filters can be
educed by speeding up the inverse cosine (ARCCOS)
unction, whose argument falls into the interval [0,1] (see
ig. 2). Unfortunately, approximating the ARCCOS func-
ion in this interval is not easy because of its behavior
ear 1. This can be circumvented using the following nu-
erically more stable identity for z�0.5:

arccos�z� = 2 arcsin��0.5�1 − z��, �6�

here the inverse sine function (ARCSIN) receives its ar-
uments from the interval [0, 0.5] (see Fig. 3). Instead of
lugging the value of �0.5�1−z� into a minimax approxi-
ation for the ARCSIN function and then multiplying the

esult by 2, two multiplication operations can be avoided
f the following function is approximated:

� = �1 − z

arccos�z� = 2 arcsin��/�2�, �7�

here the argument � falls into the interval �0,1/�2�.

Fig. 2. Function arccos(z) in the interval [0, 1].

Fig. 3. Function arcsin(z) in the interval [0, 0.5].

Table 1. Fourth-Degree Minimax Polyno

unction � a0 a1

ARCSIN 2.097814e−05 2.097797e−05 1.4128
ARCOS 1.048949e−05 1.570786 −9.990285
Table 1 lists the coefficients of the fourth-degree mini-
ax polynomials that approximate the ARCSIN and AR-
OS functions. Since both functions exhibit strong linear-

ty in their respective intervals, they can be accurately
pproximated by polynomials, as indicated by the small
rror values listed in the table.

. Adaptive Multichannel Nonparametric Filters
daptive multichannel nonparametric filters (AMNFs)

11] approach the filtering problem from an estimation-
heoretic perspective. Specifically, these filters employ
onparametric kernel density estimators to determine
he pixels in the filtered image as follows:

y�r,c� = 
i=1

n

xi�
hi

−3K��xC − xi�hi�


j=1

n

hj
−3K��xC − xj�hj�� ,

hi = n−�/3
j=1

n

�xi − xj�1, �8�

here � . �1 denotes the L1 (city-block) norm. Two possible
hoices for the kernel function are the multivariate expo-
ential K�x�=e−�x�1 (AMNFE) and the multivariate
aussian K�x�=e−0.5�x�2

2
(AMNFG) functions. The scaling

actor � in the kernel width calculation is set to the
uthor-recommended value of 0.33 [11]. The computa-
ional requirements of Eq. (8) can be reduced by speeding
p the kernel computation. Both kernels involve the ex-
onential (EXP) function which can be accurately ap-
roximated by polynomials. Note that in addition to AM-
Fs, the EXP function was used in the design of a
umber of other filters, including the fuzzy vector median
lter [23], fuzzy vector median–rational hybrid filter [19],
ernel vector median filter [24], fast adaptive noise reduc-
ion filter [25], and self-adaptive noise reduction filter
26].

The argument of the EXP function in Eq. (8) depends
n the � value and the size and contents of a particular
indow. However, to obtain an accurate approximation,

his argument needs to be constrained to a preferably
mall interval. Fortunately, for most practical purposes,
e can set a cutoff point at T=10.0 �e−T=4.539993e−05�
nd return 0 for arguments outside the interval �0,T�.
igure 4 shows a plot of the function in this interval.
Table 2 shows the coefficients of the minimax polyno-
ials of various degrees. Here, p and � represent the de-

ree of the polynomial and the error of the minimax ap-
roximation, respectively. It can be seen that the error
alues are relatively high, and as the approximation de-
ree is increased, the accuracy does not improve signifi-
antly. This suggests that rational functions might be bet-
er suited for this approximation. Table 3 lists the

for the ARCSIN and ARCOS Functions

a2 a3 a4

1.429881e−02 6.704361e−02 6.909677e−02
−1.429899e−02 −9.481335e−02 −1.381942e−01
mials

40
e−01
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oefficients of a minimax rational that approximates the
XP function with an error of �=2.227050e−06.

. Entropy Vector Filters
he entropy vector median filter (EVMF) introduced in

12] adaptively switches between the identity operation
nd a noise filtering mode to improve signal-detail-
reserving characteristics of standard filters such as the
ector median filter, which performs a fixed amount of
moothing in all pixel locations. Noise filtering is per-
ormed only in pixel locations that are identified as noisy
y a switching operator. This is realized by comparing an
daptive threshold 	C expressed in the form of normal-
zed entropy to a measure of normalized local contrast PC
s follows:

y�r,c� = �arg min
xi�W�r,c�

�
j=1

n

�xi − xj�2� PC � 	C

x�r,c� otherwise ,
�

Pi =
�xi − x̄�2


j=1

n

�xj − x̄�2

; 	i =
− Pi log Pi

− 
j=1

n

Pj log Pj

, �9�

here C= �n+1� /2 and x̄ denote the linear index of the
enter pixel (see Fig. 1) and the mean vector inside

�r ,c�, i.e., x̄= 1
ni=1

n xi, respectively.

Table 2. Minimax Polyn

p � a0 a1

2 1.785517e−01 8.214528e−01 −3.186948e
3 8.259345e−02 9.174126e−01 −5.631179e
4 3.337085e−02 9.666313e−01 −7.620584e

Fig. 4. Function exp(–z) in the interval [0, 10].

Table 3. Minimax Rati

erm a0 a1

umerator 3.206619e−02 −1.195191e−02
enominator 3.206627e−02 2.011147e−02
Note that within the so-called generalized entropy vec-
or filter (EVF) class [27], new filters can be designed by
eplacing the Euclidean distance function in Eq. (9) with
ome other distance or similarity measure.

The computational requirements of EVFs can be re-
uced by speeding up the entropy (ENT) function, whose
rgument falls into the interval [0, 1]. Although, in theory,
s the argument approaches 0 the function value ap-
roaches 0, in practice, this does not hold as the value of
he logarithm function approaches negative infinity.
herefore, as in the case of the EXP function, we set a cut-
ff point at T=0.05 and return 0 for arguments less than
. Figure 5 shows a plot of the function in the interval

0.05, 1]. It can be seen that this function is highly non-
olynomial [14], i.e., its derivatives are infinite at z=0,
nd therefore using rational functions is more appropri-
te. Table 4 lists the coefficients of a minimax rational
hat approximates the ENT function with an error of �
7.342477e−07.

. EXPERIMENTAL RESULTS
n order to evaluate the performance and robustness of
he presented approximations, a set of 100 high-quality
GB images was collected from the Internet. The set in-
luded images of people, animals, plants, buildings, aerial
aps, man-made objects, natural scenery, paintings, and

ketches, as well as scientific, biomedical, synthetic, and
est images commonly used in the color image processing
iterature.

The corruption in the test images was simulated using
hree noise models [28]: Uncorrelated Impulsive Noise
odel, correlated impulsive noise model, and mixed noise
odel (Gaussian Noise 
 Correlated Impulsive Noise):

Uncorrelated Impulsive Noise

x = �x1,x2,x3�

xk = 	ok with probability 1 − �k,

rk with probability �k, 

s for the EXP Function

a2 a3 a4

2.544088e−02
1.015041e−01 −5.519183e−03
2.145386e−01 −2.509526e−02 1.032877e−03

for the EXP Function

a2 a3 a4

1.756974e−03 −1.199261e−04 3.182685e−06
5.853684e−03 9.780143e−04 1.251598e−04
omial

−01
−01
−01
onal
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Correlated Impulsive Noise

x =�
o with probability 1 − �,

�r1,o2,o3� with probability �1 · �,

�o1,r2,o3� with probability �2 · �,

�o1,o2,r3� with probability �3 · �,

�r1,r2,r3� with probability �1 − ��1 + �2 + �3�� · �

�
�10�

here o= �o1 ,o2 ,o3� and x= �x1 ,x2 ,x3� represent the origi-
al and the noisy color vectors, respectively; r
�r1 ,r2 ,r3� is a random vector that represents the impul-
ive noise; � is the sample corruption probability; and �1,
2, and �3 are the corruption probabilities for the red,
reen, and blue channels, respectively. In the experi-
ents, the channel corruption probabilities were set to

.25.

Table 4. Minimax Rati

erm a0 a1

umerator −1.519742e−04 −6.835769e−02
enominator 1.532270e−02 3.987796e−01

Table 5. Performance S

ilter Measure

Uncorrelated Impulsive

Mean(%) Stdev(%)

VDF MAE −1.000 1.648
MSE −0.571 1.924
NCD −0.783 1.283
Time 1381.783 16.576

MNFE MAE −0.025 0.137
MSE −0.070 0.526
NCD −0.020 0.177
Time 142.700 0.225

VMF MAE −0.141 0.524
MSE −0.376 1.732
NCD −0.147 0.837
Time 236.582 0.672

Fig. 5. Function z log(z) in the interval [0.05, 1].
Filtering performance was evaluated by three effective-
ess criteria [3]:

1. Mean Absolute Error: MAE �X ,Y�
�1/3MN�r=1

M c=1
N �x�r ,c�−y�r ,c��1, where X and Y de-

ote, respectively, the M�N original and filtered images
n the RGB color space. MAE measures the detail-
reservation capability of a filter.
2. Mean Squared Error: MSE �X ,Y�

�1/3MN�r=1
M c=1

N �x�r ,c�−y�r ,c��2
2. MSE measures the

oise suppression capability of a filter.
3. Normalized Color Difference: NCD �X ,Y�

�r=1
M c=1

N �xLab�r ,c�−yLab�r ,c��2� /r=1
M c=1

N �xLab�r ,c��2,
here xLab�r ,c� and yLab�r ,c� denote the CIEL*a*b* coor-
inates [1] of the pixel �r ,c� in the original and filtered
mages, respectively. NCD measures the color preserva-
ion capability of a filter.

he efficiency of a filter was measured by execution time
n seconds (Programming Language: C, Compiler: gcc
.4.4, CPU: Intel Pentium D 2.66 Ghz).
Table 5 shows the performance statistics for the three

oise models. The test images were first corrupted using
ne of the noise models and then filtered using the exact
nd approximate versions of each filter. In the ’Mean’ col-
mn, negative values and positive values for the MAE,
SE, and NCD indicate the percentage of filtering qual-

ty degradation and improvement, respectively. For ex-
mple, for 10% correlated impulsive noise, with respect to
he MAE criterion, the approximate version of BVDF per-
orms on the average 0.926% worse than the exact ver-
ion, whereas with respect to the MSE criterion, the
ormer performs 0.171% better than the latter. On the
ther hand, for the execution time criterion, positive val-
es indicate reduction in filtering time due to the use of
he presented approximations. For example, the approxi-

for the ENT Function

a2 a3 a4

−8.856923e−01 −5.369609e−01 1.491165
1.461793 6.827004e−01 −4.469776e−02

ics at 10% Noise Level

Correlated Impulsive Mixed

Mean(%) Stdev(%) Mean(%) Stdev(%)

−0.926 1.558 −0.022 0.310
0.171 2.426 −0.131 1.103

−0.759 1.154 0.007 0.193
1371.314 16.479 1408.964 11.964
−0.016 0.136 −0.001 0.137
−0.064 0.754 −0.006 0.317
−0.031 0.195 −0.004 0.176
143.496 0.214 140.814 0.187
−0.108 0.489 0.000 0.133
−0.203 1.496 0.013 0.241
−0.149 0.625 −0.004 0.138
236.105 0.646 215.000 0.449
onal
tatist
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ate version of BVDF is on the average 1371% (or 13.71
imes) faster than the exact version.

It can be seen that in most cases the exact filters
lightly outperform their respective approximate ver-
ions. This was expected since the approximate filters

Table 6. Performance Sta

ilter Measure

20%

Mean (%) Stdev (%)

VDF MAE −0.753 1.311
MSE 0.193 2.994
NCD −0.607 1.016
Time 1342.074 15.480

MNFE MAE −0.032 0.231
MSE −0.125 0.945
NCD −0.045 0.349
Time 143.460 0.241

VMF MAE −0.030 0.676
MSE −0.056 1.539
NCD −0.004 0.829
Time 228.346 0.551

ig. 6. (Color online) Comparison of the exact and approximate
.373, MSE 987.418, time 0), (c) BVDF exact (MAE 3.936, MSE 4
.688), (e) AMNFE exact (MAE 3.471, MSE 30.303, time 0.594),
xact (MAE 1.139, MSE 25.898, time 0.594), (h) EVMF approx. (
ecessarily involve small amounts of computational error.
evertheless, the difference between the approximate
nd the exact versions for each filter is negligible for most
ractical purposes, which demonstrates the accuracy of
he presented approximations. In addition, the low stan-

s at Higher Noise Levels

30% 40%

Mean (%) Stdev (%) Mean (%) Stdev (%)

−0.626 1.070 −0.419 0.861
0.027 2.630 −0.073 1.855

−0.530 0.881 −0.424 0.802
1328.939 14.784 1301.070 14.026

0.030 0.342 −0.001 0.315
0.021 1.172 0.006 0.812
0.034 0.478 0.027 0.395

145.513 0.226 145.362 0.249
0.013 0.534 0.067 0.476
0.046 1.105 0.065 0.867
0.026 0.633 0.088 0.547

222.356 0.431 216.354 0.423

on the Lena image: (a) Original �512�512�, (b) 10% noisy (MAE
time 10.360), (d) BVDF approx. (MAE 3.936, MSE 43.558, time
NFE approx. (MAE 3.471, MSE 30.303, time 0.422), (g) EVMF
.138, MSE 25.819, time 0.250).
tistic
filters
3.571,
(f) AM

MAE 1
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ard deviation values indicate the robustness of the ap-
roximations.
The discrepancies in the speedup factors for the three

lters can be attributed to the relative computational cost
f the elementary functions involved. In other words, the
peedup in BVDF is much greater than in the other two
lters because the ARCCOS function is computationally
uch more expensive than the EXP and ENT functions.
Since the filters presented in Section 3 are primarily in-

ended for the removal of impulsive noise, we conducted
urther experiments with the most commonly used impul-
ive noise model [2,3], i.e., the correlated impulsive noise
odel [28]. Table 6 shows the performance statistics at

0%, 30%, and 40% noise levels. It can be seen that the
erformance of the approximate filters does not change
ignificantly as the noise level is increased.

Figure 6 compares the exact and the approximate ver-
ions of each filter on the Lena image. It can be seen that
he presented approximations achieve substantial compu-
ational savings without introducing any perceivable ar-
ifacts on the filtering results. In addition, the MAE and
SE values indicate that the filtering effectiveness of the

xact and approximate filters are virtually the same.

. CONCLUSIONS
n this paper we proposed a novel approach to speed up
opular vector filters using minimax approximations. Ad-
antages of this approach include ease of implementation,
xtremely good accuracy, and high computational speed.
he presented approach can be adapted to other noise re-
oval filters that involve computationally expensive
athematical functions. Finally, the given approxima-

ions have applications that go beyond color image filter-
ng, including computer graphics and computational ge-
metry.
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