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Fast color quantization using weighted
sort-means clustering
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Color quantization is an important operation with numerous applications in graphics and image processing.
Most quantization methods are essentially based on data clustering algorithms. However, despite its popular-
ity as a general purpose clustering algorithm, K-means has not received much respect in the color quantization
literature because of its high computational requirements and sensitivity to initialization. In this paper, a fast
color quantization method based on K-means is presented. The method involves several modifications to the
conventional (batch) K-means algorithm, including data reduction, sample weighting, and the use of the tri-
angle inequality to speed up the nearest-neighbor search. Experiments on a diverse set of images demonstrate
that, with the proposed modifications, K-means becomes very competitive with state-of-the-art color quantiza-
tion methods in terms of both effectiveness and efficiency. © 2009 Optical Society of America

OCIS codes: 100.2000, 100.5010.
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. INTRODUCTION
rue-color images typically contain thousands of colors,
hich makes their display, storage, transmission, and
rocessing problematic. For this reason, color quantiza-
ion (reduction) is commonly used as a preprocessing step
or various graphics and image processing tasks. In the
ast, color quantization was a necessity due to the limita-
ions of the display hardware, which could not handle the
6 million possible colors in 24-bit images. Although 24-
it display hardware has become more common, color
uantization still maintains its practical value [1]. Mod-
rn applications of color quantization include (i) image
ompression [2], (ii) image segmentation [3], (iii) image
nalysis [4], (iv) image watermarking [5], and (v) content-
ased image retrieval [6].
The process of color quantization is mainly composed of

wo phases: palette design (the selection of a small set of
olors that represents the original image colors) and pixel
apping (the assignment of each input pixel to one of the

alette colors). The primary objective is to reduce the
umber of unique colors, N�, in an image to K �K�N��
ith minimal distortion. In most applications, 24-bit pix-
ls in the original image are reduced to 8 bits or fewer.
ince natural images often contain a large number of col-
rs, faithful representation of these images with a limited
alette is a difficult problem.
Color quantization methods can be broadly classified

nto two categories [7]: image-independent methods that
etermine a universal (fixed) palette without regard to
ny specific image [8], and image-dependent methods that
etermine a custom (adaptive) palette based on the color
istribution of the images. Despite being very fast, image-
ndependent methods usually give poor results since they
o not take into account the image contents. Therefore,
ost of the studies in the literature consider only image-

ependent methods, which strive to achieve a better bal-
1084-7529/09/112434-10/$15.00 © 2
nce between computational efficiency and visual quality
f the quantization output.

Numerous image-dependent color quantization meth-
ds have been developed in the past three decades. These
an be categorized into two families: preclustering meth-
ds and postclustering methods [1]. Preclustering meth-
ds are mostly based on the statistical analysis of the
olor distribution of the images. Divisive preclustering
ethods start with a single cluster that contains all N im-

ge pixels. This initial cluster is recursively subdivided
ntil K clusters are obtained. Well-known divisive meth-
ds include median cut [9], octree [10], variance-based
ethod [11], binary splitting [12], greedy orthogonal bi-

artitioning [13], center cut [14], and radius-weighted-
ean cut [15]. More recent methods can be found in

16–18]. On the other hand, agglomerative preclustering
ethods [19–23] start with N singleton clusters, each of
hich contains one image pixel. These clusters are re-
eatedly merged until K clusters remain. In contrast to
reclustering methods that compute the palette only
nce, postclutering methods first determine an initial pal-
tte and then improve it iteratively. Essentially, any data
lustering method can be used for this purpose. Since
hese methods involve iterative or stochastic optimiza-
ion, they can obtain higher-quality results when com-
ared with preclustering methods, at the expense of in-
reased computational time. Clustering algorithms
dapted to color quantization include K-means (KM)
24–27], minmax [28], competitive learning [29–31], fuzzy
-means [32,33], BIRCH [34], and self-organizing maps
35–37].

In this paper, a fast color quantization method based on
he KM clustering algorithm [38] is presented. The
ethod first reduces the amount of data to be clustered by

ampling only the pixels with unique colors. In order to
ncorporate the color distribution of the pixels into the
009 Optical Society of America
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lustering procedure, each color sample is assigned a
eight proportional to its frequency. These weighted

amples are then clustered by using a fast and exact vari-
nt of the KM algorithm. The set of final cluster centers is
aken as the quantization palette.

The rest of the paper is organized as follows. Section 2
escribes the conventional KM clustering algorithm and
he proposed modifications. Section 3 describes the ex-
erimental setup and presents the comparison of the pro-
osed method with other color quantization methods. Fi-
ally, Section 4 gives the conclusions.

. COLOR QUANTIZATION USING
-MEANS CLUSTERING ALGORITHM
he KM algorithm is inarguably one of the most widely
sed methods for data clustering [39]. Given a data set
= �x1 , . . . ,xN��RD, the objective of KM is to partition X

nto K exhaustive and mutually exclusive clusters S
�S1 , . . . ,Sk�, �k=1

K Sk=X, Si�Sj�� for i� j by minimiz-
ng the sum of squared error (SSE):

SSE = �
k=1

K

�
xi�Sk

�xi − ck�2
2, �1�

here � �2 denotes the Euclidean �L2� norm and ck is the
enter of cluster Sk calculated as the mean of the points
hat belong to this cluster. This problem is known to be
omputationally intractable even for K=2 [40], but a heu-
istic method developed by Lloyd [41] offers a simple so-
ution. Lloyd’s algorithm starts with K arbitrary centers,
ypically chosen uniformly at random from the data
oints [42]. Each point is then assigned to the nearest
enter, and each center is recalculated as the mean of all
oints assigned to it. These two steps are repeated until a
redefined termination criterion is met. The pseudocode
or this procedure is given in Algorithm 1 (bold symbols
enote vectors). Here, m�i	 denotes the membership of
oint xi, i.e., index of the cluster center that is nearest to
i.

When compared with the preclustering methods, there
re two problems with using KM for color quantization.
irst, because of its iterative nature, the algorithm might
equire an excessive amount of time to obtain an accept-
ble output quality. Second, the output is quite sensitive
o the initial choice of the cluster centers. In order to ad-
ress these problems, we propose several modifications to
he conventional KM algorithm:

• Data sampling. A straightforward way to speed up
M is to reduce the amount of data, which can be
chieved by sampling the original image. Although ran-
om sampling can be used for this purpose, there are two
roblems with this approach. First, random sampling will
urther destabilize the clustering procedure in the sense
hat the output will be less predictable. Second, the sam-
ling rate will be an additional parameter that will have a
ignificant impact on the output. In order to avoid these
rawbacks, we propose a deterministic sampling strategy
n which only the pixels with unique colors are sampled.
he unique colors in an image can be determined effi-
iently by using a hash table that uses chaining for colli-
ion resolution and a universal hash function of the form
a�x�= ��i=1

3 aixi� mod m, where x= �x1 ,x2 ,x3� denotes a
ixel with red �x1�, green �x2�, and blue �x3� components,

is a prime number, and the elements of sequence a
�a1 ,a2 ,a3� are chosen randomly from the set

0,1, . . . ,m−1�.
• Sample weighting. An important disadvantage of

he proposed sampling strategy is that it disregards the
olor distribution of the original image. In order to ad-
ress this problem, each point is assigned a weight that is
roportional to its frequency (note that the frequency in-
ormation is collected during the data sampling stage).
he weights are normalized by the number of pixels in

he image to avoid numerical instabilities in the calcula-
ions. In addition, Algorithm 1 is modified to incorporate
he weights into the clustering procedure.

• Sort-means (SM) algorithm. The assignment
hase of KM involves many redundant distance calcula-
ions. In particular, for each point, the distances to each of
he K cluster centers are calculated. Consider a point xi,
wo cluster centers ca and cb, and a distance metric d; us-
ng the triangle inequality, we have d�ca ,cb��d�xi ,ca�
d�xi ,cb�. Therefore, if we know that 2d�xi ,ca�
d�ca ,cb�, we can conclude that d�xi ,ca��d�xi ,cb� with-

ut having to calculate d�xi ,cb�. The compare-means al-
orithm [43] precalculates the pairwise distances between
luster centers at the beginning of each iteration. When
earching for the nearest cluster center for each point, the
lgorithm often avoids a large number of distance calcu-
ations with the help of the triangle inequality test. The
M algorithm [43] further reduces the number of distance
alculations by sorting the distance values associated
ith each cluster center in ascending order. At each itera-

ion, point xi is compared against the cluster centers in
ncreasing order of distance from the center ck that xi was
ssigned to in the previous iteration. If a center that is far
nough from ck is reached, all of the remaining centers
an be skipped, and the procedure continues with the
ext point. In this way, SM avoids the overhead of going
hrough all the centers. It should be noted that more
laborate approaches to accelerate KM have been pro-
osed in the literature. These include algorithms based on
d-trees [44], core sets [45], and more sophisticated uses
f the triangle inequality [46]. Some of these algorithms
45,46] are not suitable for low-dimensional data sets
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uch as color image data, since they incur significant
verhead to create and update auxiliary data structures
46]. Others [44] provide computational gains comparable
ith SM at the expense of significant conceptual and

mplementation complexity. In contrast, SM is conceptu-
lly simple, easy to implement, and incurs very small
verhead, which makes it an ideal candidate for color
lustering.

We refer to the KM algorithm with the abovementioned
odifications as the weighted SM (WSM) algorithm. The

seudocode for WSM is given in Algorithm 2.

. EXPERIMENTAL RESULTS AND
ISCUSSION
. Image Set and Performance Criteria
he proposed method was tested on some of the most
ommonly used test images in the quantization literature
see Fig. 1). The natural images in the set included Air-
lane (512 � 512, 77,041 (29%) unique colors), Baboon
512 � 512, 153,171 (58%) unique colors), Boats (787 �
76, 140,971 (31%) unique colors), Lenna (512 � 480,
6,164 (23%) unique colors), Parrots (1536 � 1024,
00,611 (13%) unique colors), and Peppers (512 � 512,
11,344 (42%) unique colors). The synthetic images in-
luded Fish (300 � 200, 28,170 (47%) unique colors) and
oolballs (510 � 383, 13,604 (7%) unique colors).
The effectiveness of a quantization method was quan-
ified by the mean squared error (MSE) measure:

MSE�X,X̂� =
1

HW�
h=1

H

�
w=1

W

�x�h,w� − x̂�h,w��2
2, �2�

here X and X̂ denote, respectively, the H�W original
nd quantized images in the RGB color space. MSE rep-
esents the average distortion with respect to the L2

2 norm
1) and is the most commonly used evaluation measure in
he quantization literature [1,7]. Note that the peak
ignal-to-noise ratio (PSNR) measure can be easily calcu-
ated from the MSE value:

PSNR = 20 log10
 255

�MSE
� . �3�

The efficiency of a quantization method was measured
y CPU time in milliseconds. Note that only the palette
eneration phase was considered, since this is the most
ime-consuming part of the majority of quantization
ethods. All of the programs were implemented in the C

anguage, compiled with the gcc v4.2.4 compiler, and ex-
cuted on an Intel Core 2 Quad Q6700 2.66 GHz machine.
he time figures were averaged over 100 runs.

. Comparison of WSM against Other Quantization
ethods
he WSM algorithm was compared with some of the well-
nown quantization methods in the literature:

• Median-cut (MC) [9]. This method starts by build-
ng a 32 � 32 � 32 color histogram that contains the
riginal pixel values reduced to 5 bits per channel by uni-
orm quantization. This histogram volume is then recur-
ively split into smaller boxes until K boxes are obtained.
t each step, the box that contains the largest number of
ixels is split along the longest axis at the median point,
o that the resulting subboxes each contain approxi-
ately the same number of pixels. The centroids of the fi-
al K boxes are taken as the color palette.
• Variance-based method (WAN) [11]. This method

s similar to MC, with the exception that at each step the
ox with the largest weighted variance (squared error) is
plit along the major (principal) axis at the point that
inimizes the marginal squared error.
• Greedy orthogonal bipartitioning (WU) [13].

his method is similar to WAN, with the exception that at
ach step the box with the largest weighted variance is
plit along the axis that minimizes the sum of the vari-
nces on both sides.
• Neu-quant (NEU) [35]. This method utilizes a one-

imensional self-organizing map (Kohonen neural net-
ork) with 256 neurons. A random subset of N / f pixels is
sed in the training phase, and the final weights of the
eurons are taken as the color palette. In the experi-
ents, the highest-quality configuration, i.e., f=1, was
sed.
• Modified minmax (MMM) [28]. This method cho-

es the first center c1 arbitrarily from the data set, and
he ith center c �i=2, . . . ,K� is chosen to be the point that
i
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as the largest minimum weighted L2
2 distance (the

eights for the red, green, and blue channels are taken as
.5, 1.0, and 0.25, respectively) to the previously selected
enters, i.e., c1 ,c2 , . . . ,ci−1. Each of these initial centers is
hen recalculated as the mean of the points assigned to it.

• Split and Merge (SAM) [23]. This two-phase
ethod first divides the color space uniformly into B par-

itions. This initial set of B clusters is represented as an
djacency graph. In the second phase, �B−K� merge op-
rations are performed to obtain the final K clusters. At
ach step of the second phase, the pair of clusters with the
inimum joint quantization error are merged. In the ex-

eriments, the initial number of clusters was set to B
20K.
• Fuzzy c-means (FCM) [47]. FCM is a generaliza-

ion of KM in which points can belong to more than one
luster. The algorithm involves the minimization of the
unctional Jq�U ,V�=�i=1

N �k=1
K uik

q �xi−vk�2
2 with respect to U

a fuzzy K-partition of the data set) and V (a set of
rototypes—cluster centers). The parameter q controls
he fuzziness of the resulting clusters. At each iteration,
he membership matrix U is updated by uik= ��j=1

K ��xi
vk�2 / �xi−vj�2�2/�q−1��−1, which is followed by the update
f the prototype matrix V by vk= ��i=1

N uik
q xi� / ��i=1

N uik
q �. A

äive implementation of the FCM algorithm has a com-
lexity that is quadratic in K. In the experiments, a linear
omplexity formulation described in [48] was used, and
he fuzziness parameter was set to q=2, as is commonly
een in the fuzzy clustering literature [39].

• Fuzzy c-means with partition index maximiza-
ion (PIM) [32]. This method is an extension of FCM in
hich the functional to be minimized incorporates a clus-

er validity measure called the partition index. This index
easures how well a point xi has been classified and is

efined as Pi=�k=1
K uik

q . The FCM functional can be modi-
ed to incorporate Pi as follows: Jq

��U ,V�=�i=1
N �k=1

K uik
q �xi

vk�2
2−��i=1

N Pi. The parameter � controls the weight of
he second term. The procedure that minimizes J��U ,V�

Fig. 1. (Color online) Test images: a, Airplane; b, Baboon
q

s identical to the one used in FCM except for the mem-
ership matrix update equation: uik= ��j=1

K ���xi−vk�2
�� / ��xi−vj�2−��	2/�q−1��−1. An adaptive method to deter-
ine the value of � is to set it to a fraction 0 � � � 0.5 of

he distance between the nearest two centers, i.e., �
�mini�j�vi−vj�2

2. Following [32], the fraction value was
et to � � 0.4.

• Finite-state KM (FKM) [25]. This method is a fast
pproximation for KM. The first iteration is the same as
hat of KM. In each of the subsequent iterations, the
earest center for a point xi is determined from among
he K� �K��K� nearest neighbors of the center that the
oint was assigned to in the previous iteration. When
ompared with KM, this technique leads to considerable
omputational savings, since the nearest center search is
erformed in a significantly smaller set of K� centers
ather than the entire set of K centers. Following [25], the
umber of nearest neighbors was set to K�=8.
• Stable-flags KM (SKM) [26]. This method is an-

ther fast approximation for KM. The first I� iterations
re the same as those of KM. In the subsequent itera-
ions, the clustering procedure is accelerated by using the
oncepts of center stability and point activity. More spe-
ifically, if a cluster center ck does not move by more than
units (as measured by the L2

2 distance) in two successive
terations, this center is classified as stable. Furthermore,
oints that were previously assigned to the stable centers
re classified as inactive. At each iteration, only unstable
enters and active points participate in the clustering pro-
edure. Following [26], the algorithm parameters were set
o I�=10 and � � 1.0.

For each KM-based quantization method (except for
KM), two variants were implemented. In the first one,
he number of iterations was limited to 10, which makes
his variant suitable for time-critical applications. These
xed-iteration variants are denoted by the plain acronyms
M, FKM, and WSM. In the second variant, to obtain
igher-quality results, the method was executed until it

ats; d, Lenna; e, Parrots; f, Peppers; g, Fish; h, Poolballs.
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Table 1. MSE Comparison of the Quantization Methods
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Table 2. CPU Time Comparison of the Quantization Methods
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onverged. Convergence was determined by the following
ommonly used criterion [38]: �SSEi−1−SSEi� /SSEi�	,
here SSEi denotes the SSE [Eq. (1)] value at the end of

he ith iteration. Following [25,26], the convergence
hreshold was set to 	 � 0.0001. The convergent variants
f KM, FKM, and WSM are denoted KM-C, FKM-C, and
SM-C, respectively. Note that since SKM involves at

east I�=10 iterations, only the convergent variant was
mplemented for this method. As for the fuzzy quantiza-
ion methods, i.e., FCM and PIM, because of their exces-
ive computational requirements, the number of itera-
ions for these methods was limited to 10.

Tables 1 and 2 compare the performance of the methods
t quantization levels K= �32,64,128,256� on the test im-
ges. Note that, for computational simplicity, random ini-
ialization was used in the implementations of FCM, PIM,
M, KM-C, FKM, FKM-C, SKM, WSM, and WSM-C.
herefore, in Table 1, the quantization errors for these
ethods are specified in the form of mean (µ) and stan-

ard deviation (
) over 100 runs. The best (lowest) error
alues are shown in bold. In addition, with respect to each
erformance criterion, the methods are ranked based on
heir mean values over the test images. Table 3 gives the
ean ranks of the methods. The last column gives the

verall mean ranks with the assumption that each crite-
ion has equal importance. Note that the best possible
ank is 1. The following observations are in order:

• In general, the postclustering methods are more ef-
ective but less efficient than the preclustering methods.

• With respect to distortion minimization, WSM-C out-
erforms the other methods by a large margin. This
ethod obtains an MSE rank of 1.06, which means that it

lmost always obtains the lowest distortion.
• WSM obtains a significantly better MSE rank than

ts fixed-iteration rivals.
• Overall, WSM and WSM-C are the best methods.

age �K=32�: a, MMM output; b, MMM error; c, NEU output; d,
error.
Table 3. Performance Rank Comparison of the
Quantization Methods

Method MSE Rank Time Rank Mean Rank

MC 13.97 1.38 7.67
WAN 13.66 2.84 8.25
WU 8.47 3.31 5.89
NEU 6.31 6.00 6.16
MMM 12.31 7.63 9.97
SAM 10.09 2.53 6.31
FCM 10.31 13.94 12.13
PIM 9.81 12.94 11.38
KM 7.56 11.34 9.45

KM-C 3.03 15.00 9.02
FKM 7.91 7.75 7.83

FKM-C 3.88 11.53 7.70
SKM 8.06 10.25 9.16
WSM 3.56 5.28 4.42

WSM-C 1.06 8.25 4.66
Table 4. Stability Rank Comparison of the
Quantization Methods

Method MSE Rank

FCM 9.36
PIM 9.56
KM 8.31

KM-C 2.84
FKM 8.10

FKM-C 3.41
SKM 7.11
WSM 3.92

WSM-C 2.02
ig. 2. (Color online) Sample quantization results for the Airplane im
EU error; e, WSM output; f, WSM error; g, WSM-C output; h, WSM-C
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• In general, the fastest method is MC, which is fol-
owed by SAM, WAN, and WU. The slowest methods are
M-C, FCM, PIM, FKM-C, KM, and SKM.
• WSM-C is significantly faster than its convergent ri-

als. In particular, it provides up to 392 times speedup
ver KM-C with an average of 62.

• WSM is the fastest postclustering method. It pro-
ides up to 46 times speedup over KM with an average of
4.
• KM-C, FKM-C, and WSM-C are significantly more

table (particularly when K is small) than their fixed-

ig. 3. (Color online) Sample quantization results for the Parro
rror; e, WSM output; f, WSM error; g, WSM-C output; h, WSM-
teration counterparts as evidenced by their low standard
eviation values in Table 1. This was expected, since
hese methods were allowed to run longer, which helped
hem overcome potentially adverse initial conditions.

Table 4 gives the mean stability ranks of the methods
hat involve random initialization. Given a test image and

value combination, the stability of a method is calcu-
ated based on the coefficient of variation (
/µ) as 100(1 �

/µ), where µ and 
 denote the mean and the standard de-
iation over 100 runs, respectively. Note that the µ and 


ge �K=64�: a, MC output; b, MC error; c, FKM output; d, FKM
r.
ts ima
C erro
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alues are given in Table 1. Clearly, the higher the stabil-
ty of a method, the better. For example, when K=32,

SM-C obtains a mean MSE of 57.461492 with a stan-
ard deviation of 0.861126 on the Airplane image. There-
ore, the stability of WSM-C in this case is calculated as
00(1 � 0.861126/57.461492) � 98.50%. It can be seen
hat WSM-C is the most stable method, whereas WSM is
he most stable fixed-iteration method.

Figures 2 and 3 show sample quantization results and
he corresponding error images [49]. The error image for a
articular quantization method was obtained by taking
he pixelwise absolute difference between the original and
uantized images. In order to obtain a better visualiza-
ion, pixel values of the error images were multiplied by 4
nd then negated. It can be seen that WSM-C and WSM
btain visually pleasing results with less prominent con-
ouring. Furthermore, they achieve the highest color fi-
elity, which is evident by the clean error images that
hey produce.

Figure 4 illustrates the scaling behavior of WSM with
espect to K. It can be seen that the complexity of WSM is
ublinear in K, which is due to the intelligent use of the
riangle inequality that avoids many distance computa-
ions once the cluster centers stabilize after a few itera-
ions. For example, on the Parrots image, increasing K
rom 2 to 256 results in an only about 3.67-fold increase in
he computational time (172 versus 630 ms).

We should also mention two other KM-based quantiza-
ion methods [24,27]. As in the case of FKM and SKM,
hese methods aim to accelerate KM without degrading
ts effectiveness. However, they do not address the stabil-
ty problems of KM and thus provide almost the same re-
ults in terms of quality. In contrast, WSM (WSM-C) not
nly provides a considerable speedup over KM (KM-C),
ut also gives significantly better results, especially at
ower quantization levels.

. CONCLUSIONS
n this paper, a fast and effective color quantization
ethod called WSM (weighted sort-means) was intro-

uced. The method involves several modifications to the
onventional K-means (KM) algorithm, including data re-
uction, sample weighting, and the use of the triangle in-

Fig. 4. (Color online) CPU time for WSM for K= �2, . . . ,256�.
quality to speed up the nearest-neighbor search. Two
ariants of WSM were implemented. Although both have
ery reasonable computational requirements, the fixed-
teration variant is more appropriate for time-critical ap-
lications, while the convergent variant should be pre-
erred in applications where obtaining the highest output
uality is of prime importance, or the number of quanti-
ation levels or the number of unique colors in the origi-
al image is small. Experiments on a diverse set of im-
ges demonstrated that the two variants of WSM
utperform state-of-the-art quantization methods with re-
pect to distortion minimization. Future work will be di-
ected toward the development of a more effective initial-
zation method for WSM.

The implementation of WSM will be made publicly
vailable as part of the Fourier image processing and
nalysis library, which can be downloaded from http://
ourceforge.net/projects/fourier-ipal.
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