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Abstract
Color quantization (CQ) is an important operation with many applications in computer graphics and image processing and 
analysis. Clustering algorithms have been extensively applied to this problem. However, despite its popularity as a general 
purpose clustering algorithm, k-means has not received much attention in the CQ literature because of its high computational 
requirements and sensitivity to initialization. In this paper, we propose a novel CQ method based on an online k-means for-
mulation due to MacQueen. The proposed method utilizes adaptive and efficient cluster center initialization and quasirandom 
sampling to attain deterministic, high speed, and high-quality quantization. Experiments on a diverse set of publicly available 
images demonstrate that the proposed method is significantly faster than the more common batch k-means formulation due 
to Lloyd while delivering nearly identical results.

Keywords  Color quantization · Clustering · MacQueen k-means · Lloyd k-means

1  Introduction

Given an input image, CQ involves the reduction of the 
number of distinct colors ( N′ ) in the image to K ( ≪ N′ ) 
with minimum possible distortion. CQ is a challenging prob-
lem as most real-world images contain tens of thousands 
of colors. Recent applications of CQ include compression, 
segmentation, text localization/detection, color analysis, 
watermarking, non-photorealistic rendering, and content-
based retrieval (for specific references, the reader is referred 
to our earlier work [8]).

A large number of CQ methods have been developed over 
the past four decades. These methods can be categorized into 
two groups: preclustering (hierarchical clustering) methods 
and postclustering (partitional clustering) methods [7]. The 
former methods recursively find nested clusters either in a 
top-down (divisive) or bottom-up (agglomerative) fashion. 
In contrast, the latter ones find all the clusters simultane-
ously as a partition of the data and do not impose a hierarchi-
cal structure [32]. Compared to preclustering methods, post-
clustering methods generally produce better results, that is, 
lower distortion, but are computationally more demanding.

Popular preclustering methods include median-cut [27], 
octree [22], variance-based method [59], binary splitting 
[40], greedy orthogonal bipartitioning [61], center-cut [33], 
RWM-cut [66], and the more recent methods proposed by 
Celebi et al. [8] and Ueda et al. [56]. On the other hand, 
postclustering algorithms adapted to CQ include maximin 
[63], k-means [9, 10, 29, 30, 57], k-harmonic means [21], 
competitive learning [11, 12], fuzzy c-means [47, 60], rough 
c-means [50], and self-organizing maps [16, 17, 64].

Recent CQ methods are typically based on metaheuristics 
or a hybrid of metaheuristics and preclustering/postcluster-
ing methods. These methods cast CQ as a global optimiza-
tion problem, which they then solve by means of a variety 
of physics- or nature-inspired metaheuristics. Metaheuristics 
applied to CQ to date include physics-inspired single-solu-
tion-based metaheuristics such as simulated annealing [42] 
as well as nature-inspired population-based metaheuristics 
such as evolutionary algorithms (genetic algorithms [51], 
evolution strategies [24], differential evolution [31, 48, 54], 
etc.) and swarm intelligence algorithms (particle swarm 
optimization [39], ant colony optimization [43, 44], artificial 
bee colony optimization [41], artificial fish swarm optimiza-
tion [20], etc.). These methods are more powerful than pre-
clustering/postclustering methods in that they can optimize 
nonsmooth, nonconvex objective functions. Unfortunately, 
these “black-box” methods have several major disadvan-
tages. First they are generally randomized. Second, they 
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have several parameters that are often difficult to fine tune 
(initial/final temperature, cooling schedule, population size, 
crossover/mutation probability, etc.) Third, due to the vast 
search space in CQ applications, they often require a large 
number of iterations, which renders them computationally 
demanding (they can be orders of magnitude slower than 
k-means). We should, however, mention that some of the 
recent studies on metaheuristics-based CQ report signifi-
cantly reduced computational requirements [44].

In this paper, we present an effective and efficient clus-
tering method for CQ. The rest of the paper is organized as 
follows. Section 2 describes two variants of the k-means 
clustering algorithm and the proposed k-means based CQ 
method. Section 3 presents the experimental setup and com-
pares the proposed method to other CQ methods. Finally, 
Section 4 gives the conclusions.

2 � k‑means clustering for CQ

In this section, we first describe two common variants of 
the k-means clustering algorithm, one due to Lloyd and the 
other due to MacQueen. We then elaborate on the proposed 
CQ method based on MacQueen’s k-means algorithm.

2.1 � Lloyd’s k‑means algorithm

Lloyd’s algorithm [35] is perhaps the most common cluster-
ing algorithm in scientific and engineering applications [14]. 
Commonly referred to as (batch) k-means, Lloyd’s algorithm 
starts with a data set1 X = {�1,… , �N} ⊆ ℝ

D and a posi-
tive integer value K, which denotes the desired number of 
clusters. In the context of CQ, the parameters N, D, and K 
correspond, respectively, to the number of pixels in the input 
image, number of color channels (which is typically three), 
and number of colors desired by the user. The algorithm then 
assigns each data point � ∈ X  to the closest cluster, thereby 
minimizing the sum of error (SE) given by

where d(�, {�1,… , �K}) denotes the Bregman divergence of 
� to the nearest center in {�1,… , �K} , that is

(1)SE =
∑

�∈X

d(�, {�1,… , �K}),

d(�, {�1,… , �K}) = min
i∈{1,…,K}

d(�, �i).

Bregman divergences are a family of nonmetric dissimilar-
ity functions that include the squared Euclidean distance 
( �2

2
 ), squared Mahalanobis distance, Kullback–Leibler 

divergence, and Itakura–Saito divergence. In practice, the 
most popular Bregman divergence is the squared Euclidean 
distance, in which case the SE is called the sum of squared 
error (SSE). For any Bregman divergence, it can be shown 
that the optimal center �i for cluster Ci is given by the cen-
troid (or center of mass) of the cluster [1], that is

where ni denotes the cardinality of cluster Ci , that is, the 
number of points that belong to Ci.

The pseudocode for the k-means algorithm is given 
below. Starting with a set of K centers, the algorithm alter-
nates between two steps. First, each point is assigned to the 
nearest cluster. Each cluster center is then recomputed to be 
the centroid of all points that belong to that cluster. Together, 
these two steps are referred to as a “Lloyd iteration”. These 
iterations continue until cluster memberships of points no 
longer change.

1.	 Let {�1,… , �K} be the initial set of centers.
2.	 For each i ∈ {1,… ,K} , set cluster Ci to be the set of 

points in X  that are closer in terms of d to �i than they 
are to any other center, that is, 

3.	 For each i ∈ {1,… ,K} , set the center �i of cluster Ci to 
be the centroid of all points in Ci using Eq. (2).

4.	 Repeat Lloyd iterations, that is, steps (2) and (3), until 
convergence.

The most crucial aspect of k-means is step 1, that is, ini-
tialization. A common way to determine the initial cluster 
centers is to select K points uniformly at random from X  
and take these as the initial cluster centers. Unfortunately, 
k-means is relatively sensitive to initialization [13]. Some of 
the negative effects of improper initialization include empty 
clusters, slower convergence, and a higher probability of 
getting stuck at a poor local minimum.

2.2 � MacQueen’s k‑means algorithm

MacQueen [36] proposed an online formulation of the batch 
k-means algorithm. The two k-means algorithms are similar 
in the sense that each point is assigned to the cluster repre-
sented by the nearest center to that point. The algorithms, 
however, differ in the way the cluster centers are recom-
puted. The online algorithm updates the nearest center after 

(2)�i =
1

ni

∑

�∈Ci

�,

Ci =
{

� ∈ X : d(�, �i) ≤ d(�, �𝚤), for all 𝚤 ≠ i
}

.

1  Strictly speaking, in practice, data sets are not implemented as 
sets, but as sequences, where elements are ordered and duplicates are 
allowed. This is especially true for image data sets, which are often 
stored and accessed in raster order.
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the presentation of each point, whereas the batch algorithm 
updates all centers after the presentation of the entire set 
of points.

The pseudocode for the online k-means algorithm is given 
below. It can be seen that, unlike the batch algorithm, this 
algorithm does not generate the centroidal Voronoi diagram 
itself, but approximate positions of its generators [19]. This 
allows the algorithm to achieve O(DK) per-iteration time 
complexity, compared to the O(NDK) time complexity of 
batch k-means. Therefore, depending on the number of itera-
tions, the online algorithm can be significantly faster than 
the batch one.

1.	 Let {�1,… , �K} be the initial set of centers and 
n1 = ⋯ = nK = 1.

2.	 Select a random point �r from X  and find the nearest 
center �i to this point, that is, 

 where d(⋅, ⋅) denotes a Bregman divergence as in 
Lloyd’s algorithm.

3.	 Update the nearest center and the cardinality of the cor-
responding cluster 

 This ensures that center �i now accurately represents the 
centroid (mean) of all points, including �r , assigned to 
the corresponding cluster Ci.

4.	 Repeat steps (2) and (3) until convergence.

Note that the random presentation of points reduces the 
sensitivity of the algorithm to the order in which the points 
are processed. In this regard, random presentation has 
been shown to be superior to cyclic presentation (that is, 
�1, �2,… , �N , �1, �2,… ) [2]. In fact, cyclic presentation is 
likely to introduce bias into the learning procedure especially 
in redundant data sets such as image data. Online k-means can 
be considered as a noisy version of batch k-means [3] and this 
stochastic noise helps the online algorithm escape from poor 
local minima more easily.

The online k-means algorithm can also be viewed as an 
instance of the competitive learning paradigm [25, 46], which 
is closely related to neural networks. In a basic competitive 
learning algorithm, we have a randomly distributed set of 
units that compete for the right to respond to a given subset of 
inputs [46]. After the presentation of each input, the unit that 
most closely matches the input (typically in the �2 sense) is 
declared as the winner and is moved towards the input. Since 
only the winner unit is adapted, this kind of learning scheme is 
termed hard competitive learning. Let �(t) be the input at time 

i ← argmin
𝚤∈{1,…,K}

d(�r, �𝚤),

�i ← (ni�i + �r)∕(ni + 1),

ni ← ni + 1.

t ( t = 1, 2,… ) and �(t) be the corresponding nearest (winner) 
unit according to the �2 distance. The adaptation equation for 
�
(t) is given by

where � ∈ [0, 1] is the learning rate, which is typically a 
monotonically decreasing function of time. The larger the 
� value, the more emphasis is given to the new input (this 
is more obvious in Eq. 5) and hence the faster the learning. 
Very large values of � , however, may prevent the algorithm 
from converging. In general, � is chosen to satisfy the Rob-
bins–Monro conditions 

 These conditions ensure that the learning rate decreases 
fast enough to suppress the noise, but not too fast to avoid 
premature convergence. Under mild regularity conditions, 
the algorithm converges almost surely to a local minimum 
[53, pp. 95–125]. Note that, unlike its batch counterpart, this 
algorithm does not need to process the entire data set to con-
verge. In Sect. 3, we introduce a sampling fraction f ∈ (0, 1] 
parameter that can be used to control the proportion of data 
points that participate in learning.

Rearranging the terms in Eq. (3), we obtain

which indicates that the new center �(t+1) is a convex combi-
nation of the old center �(t) and the input �(t) . In other words, 
values of � in [0, 1] move � along the line segment joining 
� and �.

The choice �(t) = (1 + t)−p with p ∈ (0.5, 1] guarantees 
converge [53, p. 109]. The value p = 1 gives us the most 
popular rate in the stochastic approximation literature, 
�(t) = 1∕(1 + t) , which coincides with MacQueen’s choice.2 
This rate gives the fastest asymptotic convergence for K = 1 
[65]. In practice, however, other rates (e.g., p = 0.5 [18, 
62]) can lead to faster convergence for finite data sets [53, 
pp. 95–125], especially when K > 1.

Let us elaborate on the computational requirements 
of Lloyd’s and MacQueen’s algorithms in terms of their 

(3)�
(t+1) = �

(t) + �(t)(�(t) − �
(t)),

(4a)lim
t→∞

�(t) = 0,

(4b)
∞
∑

t=1

�(t) = ∞,

(4c)
∞
∑

t=1

𝜂(t)2 < ∞.

(5)�
(t+1) = �(t)�(t) + (1 − �(t))�(t),

2  In MacQueen’s algorithm, each unit has its own learning rate, 
which quantifies the number of times that unit won the competition.
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floating-point operation (FLOP) counts. As mentioned ear-
lier, from asymptotic analysis, we know that one iteration of 
Lloyd’s algorithm has the same time complexity, O(NDK) , 
as one sweep of MacQueen’s algorithm (a ‘sweep’ is one 
pass through the data set, that is, the successive presenta-
tion of N data points). In step (2) of Lloyd’s algorithm, for 
each data point, we compute K �2

2
 distances, find the small-

est distance using K comparisons (CMPs), and update the 
running sum associated with the nearest center along each 
dimension using D additions (ADDs). It is easy to see that 
an �2

2
 computation involves D subtractions (SUBs), D multi-

plications (MULs), and (D − 1) ADDs. Hence, assuming that 
ADD and SUB have the same cost, an �2

2
 computation costs 

(2D − 1) ADDs and D MULs. Totaling for N data points, we 
see that step (2) of Lloyd’s algorithm involves NDK MULs, 
N(2DK + D − K) ADDs, and NK CMPs. Step (3) involves 
dividing the running sum associated with each center by its 
respective cluster size along each dimension, which costs 
DK divisions (DIVs). Therefore, one iteration of Lloyd’s 
algorithm involves DK DIVs, NDK MULs, N(2DK + D − K) 
ADDs, and NK CMPs. Now, let us examine the FLOP counts 
for one sweep of MacQueen’s algorithm. In one iteration, 
we select a data point (SEL), compute K �2

2
 distances, find 

the smallest distance using K CMPs, determine the learning 
rate using exponentiation (EXP), and perform adaptation 
using 2D ADDs and D MULs. Therefore, one sweep of Mac-
Queen’s algorithm involves N EXPs, N SELs, ND(K + 1) 
MULs, N(2DK + 2D − K) ADDs, and NK CMPs. This 
means that one sweep of MacQueen’s algorithm costs an 
additional N EXPs, N SELs, ND MULs, ND ADDs, minus 
DK DIVs, over one iteration of Lloyd’s algorithm. Since in 
CQ applications we have D = 3 and K ≪ N , the contribu-
tion of DIVs is negligible. Therefore, we conclude that, in a 
CQ application, one sweep of MacQueen’s algorithm costs 
roughly N EXPs, N SELs, 3N MULs, and 3N ADDs more 
than one iteration of Lloyd’s algorithm. Unfortunately, it is 
difficult to appreciate the practical implications of this analy-
sis as the actual CPU time requirements of these FLOPs 
depend on the CPU architecture and the numerical algo-
rithms used for EXP and SEL. In Sect. 3, we compare the 
two algorithms empirically with respect to CPU time.

2.3 � Proposed CQ method

In this section, we describe the proposed CQ method based 
on MacQueen’s k-means algorithm. We would like to devise 
an effective, efficient, and deterministic CQ method. In other 
words, we would like our CQ method to produce high-
quality results using as little CPU time as possible. We also 
would like the method to be deterministic so that it would 
need to be executed only once. We first address the initializa-
tion issue and then elaborate upon the sampling issue.

As mentioned earlier, the simplest initialization method 
involves random selection of the cluster centers. This can be 
done very efficiently, but the method is not only randomized, 
but also unreliable. For example, there is no mechanism to 
avoid choosing centers that are too close to each other. In 
this study, we explore a well-known alternative to random 
selection, namely the maximin method [23]. This method 
selects the first center arbitrarily from the data points and 
the remaining (K − 1) centers are chosen successively as fol-
lows. In iteration i ( i ∈ {2,… ,K} ), the ith center is chosen to 
be the point with the greatest minimum distance to the previ-
ously selected (i − 1) centers, that is, C(i−1) = {�1,… , �i−1} . 
In other words, �i is chosen to be �j∗ ∈ X  with index

where d(�j, C
(i−1)) is the distance between point �j and its 

nearest center among the previously chosen (i − 1) centers, 
that is

In many cases, the first center �1 is chosen randomly, but this 
would render the entire method randomized. A convenient 
and deterministic alternative is to use the mean data point, 
that is,

Now that the first center is chosen deterministically, maxi-
min becomes completely deterministic. Note that the solu-
tion to Eq. (6) may not be unique and, thus, for maximin to 
be deterministic, a deterministic tie-breaking strategy must 
be used. Perhaps the most common tie-breaking strategy is 
selecting the smallest index that satisfies Eq. (6), which is 
computationally very convenient. We should mention that 
ties are a nuisance that plague many clustering algorithms 
including Lloyd’s [52] and MacQueen’s algorithms.

A very interesting property of maximin is that the 
method selects exactly one center from each of the K clus-
ters if the data set is composed of compact and separated 
clusters, that is, if each of the possible intra-cluster dis-
tances is less than each of the possible inter-cluster ones 
[26]. This can be expressed mathematically as follows:

where d(⋅, ⋅) is a metric.

(6)j∗ = argmax
j∈{1,…,N}

d
(

�j, C
(i−1)

)

,

(7)d
(

�j, C
(i−1)

)

= min
𝚤∈{1,…,i−1}

d(�j, �𝚤).

(8)�1 ←
1

N

N
∑

j=1

�j.

(9)
mini,𝚤∈{1,…,K},

i≠𝚤

min
�∈Ci,�

�∈C𝚤
d(�, ��)

maxi∈{1,…,K} max
�,��∈Ci

d(�, ��)
> 1,
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This greedy initialization method was originally devel-
oped as a 2-approximation to the discrete k-center cluster-
ing problem, which is defined as follows. Given a set X  
of N points in a metric space, find K representative points 
(centers) such that the maximum distance of any point to 
its nearest center is minimized. It is NP-hard to approxi-
mate this problem to within a factor of less than 2 [28]. 
Therefore, maximin is the best possible polynomial-time 
approximation algorithm for this problem.

The pseudocode for the maximin method is given 
below. It is easy to see that the method has O(NDK) time 
complexity.

1.	 Let �1 be the first center chosen arbitrarily and 
d1 = ⋯ = dN = ∞ , where dj denotes the distance of �j 
to its nearest center at any given time. Set the index of 
the next center to be determined in step 3 as i ← 2.

2.	 Initialize the maximum distance between any point 
and its nearest center as dmax ← −∞ (at the end of this 
step, the following will hold dmax = max(d1,… , dN) ). 
For each j ∈ {1,… ,N} , if d(�j, �i−1) < dj , then update 
the distance of �j to its nearest center as follows 
dj ← d(�j, �i−1) . Update dmax and the index of the corre-
sponding point if necessary: if dmax < dj , then dmax ← dj 
and j∗ ← j.

3.	 Set the new center as follows �i ← �j∗ and increment i by 
one.

4.	 Repeat steps (2) and (3) a total of (K − 1) times.

Now that we have an efficient and deterministic initiali-
zation method at hand, let us turn to the issue of sampling. 
Due to their online formulation, clustering algorithms such 
as MacQueen’s algorithm are generally more adaptive 
and thus more likely to escape poor local minima when 
compared to batch algorithms such as Lloyd’s algorithm. 
The online nature of such clustering algorithms, however, 
presents two drawbacks. First, these algorithms are order 
dependent, that is, different presentation orders of the input 
data points induce different partitions. Second, stochastic 
selection of the input data points renders these algorithms 
randomized, that is, each run could potentially generate 
different clustering results. We avoid these problems by 
substituting the pseudorandom sampling scheme used in 
MacQueen’s algorithm with quasirandom sampling. More 
specifically, we sample the pixel data by means of a qua-
sirandom Sobol’ sequence [4]. A quasirandom sequence is 
a sequence of D-dimensional points that fill ℝD more uni-
formly than uncorrelated pseudorandom points [45]. This 
is illustrated in Fig. 1, where the top row shows three pseu-
dorandom sequences with increasing lengths generated by 
the popular MT19937 generator [37] and the bottom row 
shows the corresponding quasirandom Sobol’ sequences. It 
is clear that the pseudorandom sequences show clumping, 
resulting in rather uneven coverage of the sampled region 
(this would bias the online learning process), whereas the 
quasirandom sequences produce a significantly more uni-
form point distribution. It is important to note that, despite 

(a) Random sequence (210 pts) (b) Random sequence (211 pts) (c) Random sequence (212 pts)

(d) Sobol’ sequence (210 pts) (e) Sobol’ sequence (211 pts) (f) Sobol’ sequence (212 pts)

Fig. 1   Comparison of pseudorandom (a–c) and quasirandom sampling (d–f)
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their name, quasirandom sequences are indeed completely 
deterministic. To summarize, the proposed quasirandom 
sampling scheme imposes a deterministic order on the input 
data points, thereby rendering MacQueen’s algorithm both 
deterministic and order independent.

There are various quasirandom sequences including 
Korobov, Halton, Sobol’, Faure, Niederreiter, and Niederre-
iter–Xing. Among these, Sobol’ sequences are often preferred 
in practice, especially in low dimensions, for several reasons 
including their favorable uniformity properties, the existence 
of efficient algorithms to generate them as well as the avail-
ability of high-quality implementations of such algorithms (in 
R, GSL, MATLAB, Boost, NAG Library, etc.) As mentioned 
earlier, we use Sobol’ sequences in the proposed method. 
Since the theory and implementation of these sequences are 
involved, the interested reader is referred to the relevant litera-
ture [4, 45] for further information.

3 � Experimental results and discussion

3.1 � Image set and parameter configuration

The proposed CQ method was tested on eight popular 24-bit 
test images (Fig. 2). Baboon ( 512 × 512 ), Lenna ( 512 × 512 ), 
and Peppers ( 512 × 512 ) are from the USC-SIPI Image Data-
base; Motocross ( 768 × 512 ) and Parrots ( 768 × 512 ) are from 
the Kodak Lossless True Color Image Suite; and Goldhill 
( 720 × 576 ), Fish ( 300 × 200 ), and Pills ( 800 × 519 ) are by 
Lee Crocker, Luiz Velho, and Karel de Gendre, respectively.

In addition to K, which is a user-defined parameter in 
nearly all CQ methods, the proposed method requires two 
user-defined parameters: exponent p ∈ (0.5, 1] of the learn-
ing rate function and the sampling fraction f ∈ (0, 1] . These 
parameters control the rate of learning (adaptation) and the 
proportion of the input pixels that participate in learning 
(steps 2 and 3 of MacQueen’s algorithm, whose pseudocode 
is given in Sect. 2.2, are each executed Nf times), respectively. 
To determine the best possible parameter combination for the 
proposed CQ method, we considered 24 distinct possibilities: 
p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} × f ∈ {0.25, 0.5, 0.75, 1} . For 
each of the eight input images and K ∈ {32, 64, 128, 256} 
value, we quantized the image using the proposed CQ method 
separately with each of the 24 combinations of (p, f) values 
and computed the MSE between the input and output images 
in each case. We then ranked these 24 MSE values with the 
(p, f) value producing the best, or lowest, MSE value attaining 
a rank of 1 and the combination producing the worst, or high-
est, MSE value attaining a rank of 24. Finally, we computed 
the mean and standard deviation of the MSE ranks across 

8 × 4 = 32 combinations of input images and K values. Table 1 
gives these rank statistics. It can be seen that (p, f ) = (0.5, 1) 
is the best combination attaining mean and standard deviation 
ranks of 1.4 and 0.8, respectively, indicating that, this param-
eter combination almost always generates the lowest distor-
tion. This was not particularly surprising given that within the 
allowable range of values for p, the fastest learning is given by 

Fig. 2   Test images
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p = 0.5 and, for finite data sets and K > 1 , p = 0.5 may indeed 
be better than the more common choice p = 1 , as empirically 
demonstrated by Darken and Moody [18] and later by Wu and 
Yang [62]. As for the sampling fraction parameter f, for any 
given p value, Table 1 shows that mean MSE ranks monotoni-
cally decrease with increasing f. This again is not surprising 
since, in general, the more input pixels are used, the better the 
learning. In summary, (p, f ) = (0.5, 1) seems to be the best 
parameter combination for the proposed CQ method both from 
a theoretical and empirical perspective.

3.2 � Comparison of CQ methods

Two variants of the proposed method were compared to 15 
well-known CQ methods, namely popularity (POP) [27], 
median-cut (MC) [27], modified popularity (MPOP) [5], 
octree (OCT) [22], variance-based method (WAN) [59], 
greedy orthogonal bipartitioning (WU) [61], center-cut (CC) 
[33], radius-weighted mean-cut (RWM) [66], pairwise clus-
tering (PWC) [58], split and merge (SAM) [6], Cheng and 

Yang (CY) [15], variance-cut (VC) [8], variance-cut with 
Lloyd iterations (VCL) [8], self-organizing map (SOM) [17], 
and modified maxmin (MMM) [63]. Among these, POP, 
MC, MPOP, OCT, WAN, WU, CC, RWM, PWC, SAM, CY, 
and VC are preclustering methods, whereas VCL, SOM, and 
MMM are postclustering methods. The descriptions of these 
CQ methods can be found in our earlier work [8, 10].

Two variants of each of Lloyd’s and MacQueen’s algo-
rithms were implemented:

•	 Batch k-means (BKM) [10]: This method is an adaptation 
of Lloyd’s k-means clustering algorithm (with maximin 
initialization) to CQ. We examine two variants: one-pass 
BKM (denoted by BKM1 ) and convergent BKM (denoted 
by BKM). BKM1 is nothing but the batch version of Mac-
Queen’s algorithm where the set of image pixels is pre-
sented to the algorithm exactly once (hence the qualifier 
‘one-pass’). On the other hand, multi-pass convergent 
BKM performs Lloyd iterations until cluster member-
ships of points no longer change (hence the qualifier 
‘convergent’).

•	 MacQueen k-means with pseudorandom sampling 
( MKMp ): The proposed method with maximin initiali-
zation and pseudorandom sampling using the MT19937 
(Mersenne Twister) generator. In each iteration, a pseu-
dorandom data point is presented to the algorithm by 
generating an unbiased pseudorandom integer in the 
range [1, N] using an efficient algorithm due to Lemire 
[34], which avoids integer divisions with high probabil-
ity.

•	 MacQueen k-means with quasirandom sampling 
( MKMq ): The proposed method with maximin initializa-
tion and quasirandom sampling using a Sobol’ sequence. 
Based on the theoretical and empirical arguments 
detailed in Sect. 3.1, the adjustable parameters of both 
MKM variants were set to (p, f ) = (0.5, 1) . Note that with 
f = 1 , MKM variants are in fact one-pass algorithms just 
like BKM1.

Table 2 compares the effectiveness (quality) of the CQ 
methods. The best (lowest) MSE values are shown in bold. 
For, MKMq , which is the only randomized CQ method, we 
give MSE values in the format ms , where m and s, respec-
tively, denote the mean and standard deviation MSE’s over 
100 independent runs. The following observations are in 
order:

Table 1   Rank comparison of 
the parameter combinations

p f Mean Std

0.5 0.25 9.5 2.8
0.50 4.8 2.1
0.75 2.9 1.3
1.00 1.4 0.8

0.6 0.25 10.6 2.8
0.50 6.6 1.7
0.75 5.4 2.4
1.00 3.4 2.3

0.7 0.25 14.1 3.1
0.50 9.8 2.1
0.75 7.8 2.2
1.00 7.4 3.3

0.8 0.25 17.5 2.9
0.50 14.3 1.9
0.75 13.0 2.5
1.00 11.6 2.7

0.9 0.25 20.7 1.7
0.50 17.7 1.8
0.75 17.3 1.9
1.00 16.5 2.6

1.0 0.25 23.4 1.2
0.50 22.0 1.5
0.75 21.6 1.5
1.00 20.7 1.7
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Table 2   MSE comparison of the CQ methods

CQ K K K K

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna
POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3
MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3
MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8
OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6
WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7
WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4
CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2
RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2
PWC 469.4 308.8 206.7 128.8 201.5 130.9 93.1 69.4 193.8 125.1 88.9 70.9 186.9 108.0 78.8 65.0
SAM 464.9 293.9 188.8 119.8 198.5 120.1 74.0 48.5 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4
CY 465.9 280.9 187.3 117.7 193.8 112.5 72.0 44.8 186.3 121.6 72.2 46.4 166.4 97.6 62.5 41.9
VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9
VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6
SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9
MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5
BKM

1
505.0 341.7 218.2 138.2 242.5 139.9 87.3 48.9 250.9 149.3 90.6 61.5 192.9 124.1 72.2 48.1

BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3
MKM

p
375.3

1.4
236.4

.6
152.2

.3
98.2

.2
147.9

3.1
93.3

1.1
59.5

.5
37.0

.3
144.4

.7
84.1

.5
53.3

.2
35.6

.2
131.3

.5
75.2

.3
47.7

.2
31.4

.1

MKM
q

375.6 236.2 152.0 97.6 148.7 92.8 59.2 36.2 144.3 83.3 53.3 35.7 131.4 75.4 47.9 31.3
Motocross Parrots Peppers Pills

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3
MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4
MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1
OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9
WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7
WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0
CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4
RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6
PWC 243.2 161.2 101.5 78.0 349.4 205.1 125.8 86.0 344.8 183.7 121.1 80.0 283.4 169.3 110.5 75.6
SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7
CY 248.0 146.6 89.3 53.0 313.2 178.6 106.7 64.5 317.3 186.1 114.1 72.6 237.8 157.9 96.4 58.8
VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2
VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8
SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0
MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6
BKM

1
389.4 237.8 166.2 85.7 363.7 202.1 121.3 71.6 363.1 232.2 138.7 92.8 307.5 188.3 121.5 72.0

BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0
MKM

p
200.2

4.2
115.9

1.6
71.9

.9
45.0

.4
236.6

3.6
129.5

1.2
75.9

.7
45.2

.3
257.5

3.3
148.6

1.1
89.6

.4
57.6

.2
199.7

1.4
112.3

.6
67.3

.4
42.5

.2

MKM
q

194.3 116.7 72.7 44.6 241.2 127.2 75.9 44.3 258.3 148.9 89.4 57.6 199.0 112.0 67.3 42.4
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•	 Unsurprisingly, postclustering methods are generally 
more effective than the preclustering methods.

•	 VC and VCL are generally more effective than the other 
preclustering methods. Note that VCL is not a pure pre-
clustering method as it performs refinement using Lloyd 
iterations after each split. This hybrid nature of VCL 
allows it to outperform all preclustering methods.

•	 MKMp and MKMq have similar effectiveness and, in 
most cases, BKM is slightly more effective than either 
MKM variant. The MSE differences among the three 
methods, however, are negligible. For example, when-
ever BKM is more effective, it outperforms either MKM 
variant often by only a few units of MSE.

•	 Despite the fact that both BKM1 and MKM make a single 
pass over the image doing roughly the same operations, 
BKM1 performs among the worst, whereas MKM per-
forms either the best or a close second. As both methods 
are initialized in the same manner, the only explanation 
for the outstanding performance of MKM is its online 
nature, which helps it learn faster and escape from poor 
local minima more easily. Note that, as anticipated by the 
FLOP counts given in Sect. 2.2, BKM1 is 1.3–2.9 times 
faster than either MKM variant (data not shown). How-
ever, this relative efficiency of BKM1 in no way makes 
up for its poor MSE performance.

Table 3 compares the efficiency (speed) of top three CQ 
methods, namely BKM and the proposed MKMp and MKMq 
methods, on the three most well known images in the CQ 
literature (Baboon, Lenna, and Peppers, each with resolution 
512 × 512 ). The remaining CQ methods are either preclus-
tering methods that trade effectiveness for efficiency (with 
the exception of PWC, these methods take only a few mil-
liseconds of CPU time on a 512 × 512 image) or postclus-
tering methods (SOM, MMM, and BKM1 ) that are neither 
particularly effective nor particularly efficient. Therefore, 
we compare the efficiency of only the three most effective 

CQ methods, which, unsurprisingly, are all postclustering 
methods. For each K value ( ∈ {32, 64, 128, 256} ) and CQ 
method, we give four values: initialization time in millisec-
onds (column ‘init’), clustering time in milliseconds (col-
umn ‘clust’), clustering time for BKM divided by that for 
BKM, MKMp , or MKMq (column ‘cr’), and total time for 
BKM divided by that for BKM, MKMp , or MKMq (column 
‘tr’). As mentioned earlier, all three CQ methods use the 
same initialization method, namely maximin. Nevertheless, 
we give initialization time separately for each CQ method 
so that the reader can judge the computational requirements 
of initialization in comparison to those of clustering. All 
methods were implemented in the C language (compiler: gcc 
v8.2.0, CPU: Intel Core i7-6700 3.40 GHz). The time figures 
were averaged over 100 independent runs. The following 
observations are in order:

•	 Looking at the ratios of total times (column ‘tr’), we 
observe that MKMp is slightly faster than MKMq as pseu-
dorandom sampling is slightly more efficient than quasir-
andom sampling. A few milliseconds of CPU time, how-
ever, is a small price to pay for achieving a deterministic 
sampling scheme. Both MKM variants are significantly 
faster than BKM (by a factor ranging from 27 to 131). In 
general, the larger the K value, the more efficient MKM 
is compared to BKM. On the other hand, if we focus 
on the ratios of clustering times (column ‘cr’), MKM 
variants become even more advantageous over BKM (by 
a factor ranging from 41 to 300) as initialization time 
accounts for a larger percentage of the total time for the 
MKM variants.

Table 3   CPU time comparison of the k-means based CQ methods (‘init’: initialization time (msec); ‘clust’: clustering time (msec); ‘cr’: cluster-
ing time for BKM divided by that for BKM, MKM

p
 , or MKM

q
 ; ‘tr’: total time for BKM divided by that for BKM, MKM

p
 , or MKM

q
)

Image CQ 32 64 128 256

init clust cr tr init clust cr tr init clust cr tr init clust cr tr

Baboon BKM 39 4413 1 1 76 14249 1 1 146 27196 1 1 283 40378 1 1
MKM

p
37 54 82 49 73 73 195 98 144 111 246 107 283 200 202 84

MKM
q

37 64 69 44 73 83 171 92 144 122 223 103 283 200 202 84
Lenna BKM 38 4319 1 1 75 9259 1 1 147 26378 1 1 283 32952 1 1

MKM
p

36 52 82 49 72 73 127 64 143 109 241 105 283 200 165 69
MKM

q
36 63 68 44 72 84 111 60 143 122 217 100 283 200 165 69

Peppers BKM 36 2610 1 1 74 6259 1 1 147 33127 1 1 284 30275 1 1
MKM

p
37 54 48 29 71 72 87 44 143 110 300 131 284 198 153 63

MKM
q

36 63 41 27 72 83 76 41 143 122 272 126 284 198 153 63

Table 4   Number of iterations 
for BKM

Image 32 64 128 256

Baboon 186 336 346 269
Lenna 193 221 338 220
Peppers 120 149 428 203
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Fig. 3   Baboon output images ( K = 32)

Fig. 4   Pills output images ( K = 128)



1619Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

Fig. 5   Peppers output images ( K = 64)
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•	 For BKM, initialization time is negligible compared to 
clustering time. For MKM, this is not the case; in fact, 
for K ≥ 64 , initialization takes longer than clustering. 
The contribution of initialization to the run time of 
MKM can be minimized using a faster initialization 
method. For example, preclustering methods such as 
MC, WAN, and WU are extremely fast, requiring only a 
few milliseconds on a 512 × 512 image. However, these 
methods achieve such impressive efficiency by means 
of heavily optimized integer arithmetic-based imple-
mentations and, consequently, they are applicable for 
only 8-bit CQ applications, that is, K ∈ {1,… , 256} . 
Our adopted initialization method (maximin), on the 
other hand, involves no implementation tricks and 
thus can be used for arbitrary bit-depth CQ, that is, 
K ∈ {1,… ,N�}.

•	 With regard to scalability, the maximin exhibits clearly 
linear behavior with respect to K. In other words, the 
initialization time roughly doubles when K is doubled. 
MKM exhibits sublinear behavior in K, that is, when K 
is doubled, for example, the clustering time increases 
by a factor of less than two. Finally, BKM’s scalability 
is unpredictable. In some cases, doubling K increases 
the clustering time by a factor of more than five (Pep-
pers, K = 64 → 128 ), whereas in other cases the clus-
tering time even decreases with increasing K (Peppers, 
K = 128 → 256 ). This unpredictable behavior stems 
from fact that, for a given image and K value, the number 
of Lloyd iterations required by BKM cannot be predicted 
in advance; it depends on various factors including the 
distribution of colors in the image and the initial centers. 
Table 4 gives the numbers of Lloyd iterations for BKM. 
These values explain the unpredictable computational 
requirements of BKM. For example, clustering Peppers 
using BKM takes ≈ 33.1 sec. for K = 128 and ≈ 30.3 sec. 
for K = 256 . From K = 128 to K = 256 , the number of 
clusters double, but, as Table 4 shows, the number of 
iterations drops to less than half. This is why BKM is 
slightly slower for K = 128 than it is for K = 256.

•	 For a given K value, the execution time of BKM varies 
wildly among the three images, all of which have the 
same number of pixels. For example, for K = 64 , cluster-
ing Baboon with BKM takes ≈ 14.2 s, whereas clustering 
Peppers with the same method takes ≈ 6.3 s. For K = 128 , 
however, the situation is reversed: clustering Peppers takes 
longer than that of Baboon ( ≈ 33.1 s vs. ≈ 27.2 s, respec-
tively). As mentioned earlier, these discrepancies can be 
explained by the differences in the number of iterations 
(given in Table 4). By contrast, for a particular K value, 
the execution time of both MKM variants is nearly con-
stant across the three images since both variants are imple-
mented as one-pass algorithms.

Fig. 6   Peppers error images ( K = 64)

Figures 3, 5 and 4 show sample quantization results for 
close-up parts of the Baboon, Peppers, and Pills images, 
respectively. Figures  7, 6 and 8 show the full-scale error 
images for the respective images. The error image for a par-
ticular CQ method was obtained by taking the pixelwise abso-
lute difference between the original and quantized images. For 
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better visualization, pixel values of the error images were mul-
tiplied by 4 and then negated. It can be seen that the proposed 
MKM method performs exceptionally well in allocating repre-
sentative colors to various image regions, resulting in minimal 
distortion (false contours, flat regions, color shifts, and color 
loss) and consequently cleaner error images. Together with 
the MSE results given in Table 2, these output images indicate 
that the proposed method and the well-known BKM method 
produce very similar results both quantitatively (numerically) 
and qualitatively (visually). The proposed method is signifi-
cantly faster than the BKM method as the former is a one-pass 
approach, whereas the latter can require a few hundred passes 
to converge. Both methods are, however, easier to implement 
compared to many preclustering/postclustering methods.

4 � Conclusions and future work

In this paper, an effective and efficient CQ method3 was 
introduced. The method comprises cluster center initializa-
tion using the maximin method followed by color cluster-
ing using MacQueen’s k-means algorithm. Detailed experi-
ments on a large set of test images showed that the proposed 
method outperforms a large number of well-known CQ 
methods with respect to error minimization. The presented 
method is easy to implement and very efficient (requiring a 
fraction of a second to quantize a 512 × 512 image to 256 
colors), exhibiting a sublinear scaling behavior in the num-
ber of colors. The method involves two adjustable parame-
ters: exponent of the learning rate function and the sampling 
fraction, which respectively control the rate of learning and 
the proportion of input pixels used for learning. Unlike the 
parameters of many existing competitive learning-based CQ 
methods, these two parameters are not only intuitive, but also 
easy to set (setting them to their theoretically optimal values 
almost always gives the best results in practice). Future work 
includes further acceleration of the proposed CQ method by 
substituting the maximin initialization method with a more 
efficient alternative without sacrificing effectiveness or for-
going determinism.

Fig. 7   Baboon error images ( K = 32)

3  The source code of the proposed method is available at https​://githu​
b.com/skyth​omp16​/MacQu​een-Color​-Quant​izati​on

https://github.com/skythomp16/MacQueen-Color-Quantization
https://github.com/skythomp16/MacQueen-Color-Quantization
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