
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:1609–1624
https://doi.org/10.1007/s11554-019-00914-6

ORIGINAL RESEARCH PAPER

Fast color quantization using MacQueen’s k‑means algorithm

Skyler Thompson1 · M. Emre Celebi1  · Krizia H. Buck1

Received: 22 May 2019 / Accepted: 6 September 2019 / Published online: 16 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Color quantization (CQ) is an important operation with many applications in computer graphics and image processing and
analysis. Clustering algorithms have been extensively applied to this problem. However, despite its popularity as a general
purpose clustering algorithm, k-means has not received much attention in the CQ literature because of its high computational
requirements and sensitivity to initialization. In this paper, we propose a novel CQ method based on an online k-means for-
mulation due to MacQueen. The proposed method utilizes adaptive and efficient cluster center initialization and quasirandom
sampling to attain deterministic, high speed, and high-quality quantization. Experiments on a diverse set of publicly available
images demonstrate that the proposed method is significantly faster than the more common batch k-means formulation due
to Lloyd while delivering nearly identical results.

Keywords  Color quantization · Clustering · MacQueen k-means · Lloyd k-means

1  Introduction

Given an input image, CQ involves the reduction of the
number of distinct colors ( N′ ) in the image to K ( ≪ N′ )
with minimum possible distortion. CQ is a challenging prob-
lem as most real-world images contain tens of thousands
of colors. Recent applications of CQ include compression,
segmentation, text localization/detection, color analysis,
watermarking, non-photorealistic rendering, and content-
based retrieval (for specific references, the reader is referred
to our earlier work [8]).

A large number of CQ methods have been developed over
the past four decades. These methods can be categorized into
two groups: preclustering (hierarchical clustering) methods
and postclustering (partitional clustering) methods [7]. The
former methods recursively find nested clusters either in a
top-down (divisive) or bottom-up (agglomerative) fashion.
In contrast, the latter ones find all the clusters simultane-
ously as a partition of the data and do not impose a hierarchi-
cal structure [32]. Compared to preclustering methods, post-
clustering methods generally produce better results, that is,
lower distortion, but are computationally more demanding.

Popular preclustering methods include median-cut [27],
octree [22], variance-based method [59], binary splitting
[40], greedy orthogonal bipartitioning [61], center-cut [33],
RWM-cut [66], and the more recent methods proposed by
Celebi et al. [8] and Ueda et al. [56]. On the other hand,
postclustering algorithms adapted to CQ include maximin
[63], k-means [9, 10, 29, 30, 57], k-harmonic means [21],
competitive learning [11, 12], fuzzy c-means [47, 60], rough
c-means [50], and self-organizing maps [16, 17, 64].

Recent CQ methods are typically based on metaheuristics
or a hybrid of metaheuristics and preclustering/postcluster-
ing methods. These methods cast CQ as a global optimiza-
tion problem, which they then solve by means of a variety
of physics- or nature-inspired metaheuristics. Metaheuristics
applied to CQ to date include physics-inspired single-solu-
tion-based metaheuristics such as simulated annealing [42]
as well as nature-inspired population-based metaheuristics
such as evolutionary algorithms (genetic algorithms [51],
evolution strategies [24], differential evolution [31, 48, 54],
etc.) and swarm intelligence algorithms (particle swarm
optimization [39], ant colony optimization [43, 44], artificial
bee colony optimization [41], artificial fish swarm optimiza-
tion [20], etc.). These methods are more powerful than pre-
clustering/postclustering methods in that they can optimize
nonsmooth, nonconvex objective functions. Unfortunately,
these “black-box” methods have several major disadvan-
tages. First they are generally randomized. Second, they

 *	 M. Emre Celebi
	 ecelebi@uca.edu

1	 Department of Computer Science, University of Central
Arkansas, Conway, AR, USA

http://orcid.org/0000-0002-2721-6317
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00914-6&domain=pdf

1610	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

have several parameters that are often difficult to fine tune
(initial/final temperature, cooling schedule, population size,
crossover/mutation probability, etc.) Third, due to the vast
search space in CQ applications, they often require a large
number of iterations, which renders them computationally
demanding (they can be orders of magnitude slower than
k-means). We should, however, mention that some of the
recent studies on metaheuristics-based CQ report signifi-
cantly reduced computational requirements [44].

In this paper, we present an effective and efficient clus-
tering method for CQ. The rest of the paper is organized as
follows. Section 2 describes two variants of the k-means
clustering algorithm and the proposed k-means based CQ
method. Section 3 presents the experimental setup and com-
pares the proposed method to other CQ methods. Finally,
Section 4 gives the conclusions.

2 � k‑means clustering for CQ

In this section, we first describe two common variants of
the k-means clustering algorithm, one due to Lloyd and the
other due to MacQueen. We then elaborate on the proposed
CQ method based on MacQueen’s k-means algorithm.

2.1 � Lloyd’s k‑means algorithm

Lloyd’s algorithm [35] is perhaps the most common cluster-
ing algorithm in scientific and engineering applications [14].
Commonly referred to as (batch) k-means, Lloyd’s algorithm
starts with a data set1 X = {�1,… , �N} ⊆ ℝ

D and a posi-
tive integer value K, which denotes the desired number of
clusters. In the context of CQ, the parameters N, D, and K
correspond, respectively, to the number of pixels in the input
image, number of color channels (which is typically three),
and number of colors desired by the user. The algorithm then
assigns each data point � ∈ X to the closest cluster, thereby
minimizing the sum of error (SE) given by

where d(�, {�1,… , �K}) denotes the Bregman divergence of
� to the nearest center in {�1,… , �K} , that is

(1)SE =
∑

�∈X

d(�, {�1,… , �K}),

d(�, {�1,… , �K}) = min
i∈{1,…,K}

d(�, �i).

Bregman divergences are a family of nonmetric dissimilar-
ity functions that include the squared Euclidean distance
( �2

2
 ), squared Mahalanobis distance, Kullback–Leibler

divergence, and Itakura–Saito divergence. In practice, the
most popular Bregman divergence is the squared Euclidean
distance, in which case the SE is called the sum of squared
error (SSE). For any Bregman divergence, it can be shown
that the optimal center �i for cluster Ci is given by the cen-
troid (or center of mass) of the cluster [1], that is

where ni denotes the cardinality of cluster Ci , that is, the
number of points that belong to Ci.

The pseudocode for the k-means algorithm is given
below. Starting with a set of K centers, the algorithm alter-
nates between two steps. First, each point is assigned to the
nearest cluster. Each cluster center is then recomputed to be
the centroid of all points that belong to that cluster. Together,
these two steps are referred to as a “Lloyd iteration”. These
iterations continue until cluster memberships of points no
longer change.

1.	 Let {�1,… , �K} be the initial set of centers.
2.	 For each i ∈ {1,… ,K} , set cluster Ci to be the set of

points in X that are closer in terms of d to �i than they
are to any other center, that is,

3.	 For each i ∈ {1,… ,K} , set the center �i of cluster Ci to
be the centroid of all points in Ci using Eq. (2).

4.	 Repeat Lloyd iterations, that is, steps (2) and (3), until
convergence.

The most crucial aspect of k-means is step 1, that is, ini-
tialization. A common way to determine the initial cluster
centers is to select K points uniformly at random from X
and take these as the initial cluster centers. Unfortunately,
k-means is relatively sensitive to initialization [13]. Some of
the negative effects of improper initialization include empty
clusters, slower convergence, and a higher probability of
getting stuck at a poor local minimum.

2.2 � MacQueen’s k‑means algorithm

MacQueen [36] proposed an online formulation of the batch
k-means algorithm. The two k-means algorithms are similar
in the sense that each point is assigned to the cluster repre-
sented by the nearest center to that point. The algorithms,
however, differ in the way the cluster centers are recom-
puted. The online algorithm updates the nearest center after

(2)�i =
1

ni

∑

�∈Ci

�,

Ci =
{

� ∈ X : d(�, �i) ≤ d(�, �𝚤), for all 𝚤 ≠ i
}

.

1  Strictly speaking, in practice, data sets are not implemented as
sets, but as sequences, where elements are ordered and duplicates are
allowed. This is especially true for image data sets, which are often
stored and accessed in raster order.

1611Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

the presentation of each point, whereas the batch algorithm
updates all centers after the presentation of the entire set
of points.

The pseudocode for the online k-means algorithm is given
below. It can be seen that, unlike the batch algorithm, this
algorithm does not generate the centroidal Voronoi diagram
itself, but approximate positions of its generators [19]. This
allows the algorithm to achieve O(DK) per-iteration time
complexity, compared to the O(NDK) time complexity of
batch k-means. Therefore, depending on the number of itera-
tions, the online algorithm can be significantly faster than
the batch one.

1.	 Let {�1,… , �K} be the initial set of centers and
n1 = ⋯ = nK = 1.

2.	 Select a random point �r from X and find the nearest
center �i to this point, that is,

 where d(⋅, ⋅) denotes a Bregman divergence as in
Lloyd’s algorithm.

3.	 Update the nearest center and the cardinality of the cor-
responding cluster

 This ensures that center �i now accurately represents the
centroid (mean) of all points, including �r , assigned to
the corresponding cluster Ci.

4.	 Repeat steps (2) and (3) until convergence.

Note that the random presentation of points reduces the
sensitivity of the algorithm to the order in which the points
are processed. In this regard, random presentation has
been shown to be superior to cyclic presentation (that is,
�1, �2,… , �N , �1, �2,… ) [2]. In fact, cyclic presentation is
likely to introduce bias into the learning procedure especially
in redundant data sets such as image data. Online k-means can
be considered as a noisy version of batch k-means [3] and this
stochastic noise helps the online algorithm escape from poor
local minima more easily.

The online k-means algorithm can also be viewed as an
instance of the competitive learning paradigm [25, 46], which
is closely related to neural networks. In a basic competitive
learning algorithm, we have a randomly distributed set of
units that compete for the right to respond to a given subset of
inputs [46]. After the presentation of each input, the unit that
most closely matches the input (typically in the �2 sense) is
declared as the winner and is moved towards the input. Since
only the winner unit is adapted, this kind of learning scheme is
termed hard competitive learning. Let �(t) be the input at time

i ← argmin
𝚤∈{1,…,K}

d(�r, �𝚤),

�i ← (ni�i + �r)∕(ni + 1),

ni ← ni + 1.

t ( t = 1, 2,… ) and �(t) be the corresponding nearest (winner)
unit according to the �2 distance. The adaptation equation for
�
(t) is given by

where � ∈ [0, 1] is the learning rate, which is typically a
monotonically decreasing function of time. The larger the
� value, the more emphasis is given to the new input (this
is more obvious in Eq. 5) and hence the faster the learning.
Very large values of � , however, may prevent the algorithm
from converging. In general, � is chosen to satisfy the Rob-
bins–Monro conditions

 These conditions ensure that the learning rate decreases
fast enough to suppress the noise, but not too fast to avoid
premature convergence. Under mild regularity conditions,
the algorithm converges almost surely to a local minimum
[53, pp. 95–125]. Note that, unlike its batch counterpart, this
algorithm does not need to process the entire data set to con-
verge. In Sect. 3, we introduce a sampling fraction f ∈ (0, 1]
parameter that can be used to control the proportion of data
points that participate in learning.

Rearranging the terms in Eq. (3), we obtain

which indicates that the new center �(t+1) is a convex combi-
nation of the old center �(t) and the input �(t) . In other words,
values of � in [0, 1] move � along the line segment joining
� and �.

The choice �(t) = (1 + t)−p with p ∈ (0.5, 1] guarantees
converge [53, p. 109]. The value p = 1 gives us the most
popular rate in the stochastic approximation literature,
�(t) = 1∕(1 + t) , which coincides with MacQueen’s choice.2
This rate gives the fastest asymptotic convergence for K = 1
[65]. In practice, however, other rates (e.g., p = 0.5 [18,
62]) can lead to faster convergence for finite data sets [53,
pp. 95–125], especially when K > 1.

Let us elaborate on the computational requirements
of Lloyd’s and MacQueen’s algorithms in terms of their

(3)�
(t+1) = �

(t) + �(t)(�(t) − �
(t)),

(4a)lim
t→∞

�(t) = 0,

(4b)
∞
∑

t=1

�(t) = ∞,

(4c)
∞
∑

t=1

𝜂(t)2 < ∞.

(5)�
(t+1) = �(t)�(t) + (1 − �(t))�(t),

2  In MacQueen’s algorithm, each unit has its own learning rate,
which quantifies the number of times that unit won the competition.

1612	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

floating-point operation (FLOP) counts. As mentioned ear-
lier, from asymptotic analysis, we know that one iteration of
Lloyd’s algorithm has the same time complexity, O(NDK) ,
as one sweep of MacQueen’s algorithm (a ‘sweep’ is one
pass through the data set, that is, the successive presenta-
tion of N data points). In step (2) of Lloyd’s algorithm, for
each data point, we compute K �2

2
 distances, find the small-

est distance using K comparisons (CMPs), and update the
running sum associated with the nearest center along each
dimension using D additions (ADDs). It is easy to see that
an �2

2
 computation involves D subtractions (SUBs), D multi-

plications (MULs), and (D − 1) ADDs. Hence, assuming that
ADD and SUB have the same cost, an �2

2
 computation costs

(2D − 1) ADDs and D MULs. Totaling for N data points, we
see that step (2) of Lloyd’s algorithm involves NDK MULs,
N(2DK + D − K) ADDs, and NK CMPs. Step (3) involves
dividing the running sum associated with each center by its
respective cluster size along each dimension, which costs
DK divisions (DIVs). Therefore, one iteration of Lloyd’s
algorithm involves DK DIVs, NDK MULs, N(2DK + D − K)
ADDs, and NK CMPs. Now, let us examine the FLOP counts
for one sweep of MacQueen’s algorithm. In one iteration,
we select a data point (SEL), compute K �2

2
 distances, find

the smallest distance using K CMPs, determine the learning
rate using exponentiation (EXP), and perform adaptation
using 2D ADDs and D MULs. Therefore, one sweep of Mac-
Queen’s algorithm involves N EXPs, N SELs, ND(K + 1)
MULs, N(2DK + 2D − K) ADDs, and NK CMPs. This
means that one sweep of MacQueen’s algorithm costs an
additional N EXPs, N SELs, ND MULs, ND ADDs, minus
DK DIVs, over one iteration of Lloyd’s algorithm. Since in
CQ applications we have D = 3 and K ≪ N , the contribu-
tion of DIVs is negligible. Therefore, we conclude that, in a
CQ application, one sweep of MacQueen’s algorithm costs
roughly N EXPs, N SELs, 3N MULs, and 3N ADDs more
than one iteration of Lloyd’s algorithm. Unfortunately, it is
difficult to appreciate the practical implications of this analy-
sis as the actual CPU time requirements of these FLOPs
depend on the CPU architecture and the numerical algo-
rithms used for EXP and SEL. In Sect. 3, we compare the
two algorithms empirically with respect to CPU time.

2.3 � Proposed CQ method

In this section, we describe the proposed CQ method based
on MacQueen’s k-means algorithm. We would like to devise
an effective, efficient, and deterministic CQ method. In other
words, we would like our CQ method to produce high-
quality results using as little CPU time as possible. We also
would like the method to be deterministic so that it would
need to be executed only once. We first address the initializa-
tion issue and then elaborate upon the sampling issue.

As mentioned earlier, the simplest initialization method
involves random selection of the cluster centers. This can be
done very efficiently, but the method is not only randomized,
but also unreliable. For example, there is no mechanism to
avoid choosing centers that are too close to each other. In
this study, we explore a well-known alternative to random
selection, namely the maximin method [23]. This method
selects the first center arbitrarily from the data points and
the remaining (K − 1) centers are chosen successively as fol-
lows. In iteration i ( i ∈ {2,… ,K} ), the ith center is chosen to
be the point with the greatest minimum distance to the previ-
ously selected (i − 1) centers, that is, C(i−1) = {�1,… , �i−1} .
In other words, �i is chosen to be �j∗ ∈ X with index

where d(�j, C
(i−1)) is the distance between point �j and its

nearest center among the previously chosen (i − 1) centers,
that is

In many cases, the first center �1 is chosen randomly, but this
would render the entire method randomized. A convenient
and deterministic alternative is to use the mean data point,
that is,

Now that the first center is chosen deterministically, maxi-
min becomes completely deterministic. Note that the solu-
tion to Eq. (6) may not be unique and, thus, for maximin to
be deterministic, a deterministic tie-breaking strategy must
be used. Perhaps the most common tie-breaking strategy is
selecting the smallest index that satisfies Eq. (6), which is
computationally very convenient. We should mention that
ties are a nuisance that plague many clustering algorithms
including Lloyd’s [52] and MacQueen’s algorithms.

A very interesting property of maximin is that the
method selects exactly one center from each of the K clus-
ters if the data set is composed of compact and separated
clusters, that is, if each of the possible intra-cluster dis-
tances is less than each of the possible inter-cluster ones
[26]. This can be expressed mathematically as follows:

where d(⋅, ⋅) is a metric.

(6)j∗ = argmax
j∈{1,…,N}

d
(

�j, C
(i−1)

)

,

(7)d
(

�j, C
(i−1)

)

= min
𝚤∈{1,…,i−1}

d(�j, �𝚤).

(8)�1 ←
1

N

N
∑

j=1

�j.

(9)
mini,𝚤∈{1,…,K},

i≠𝚤

min
�∈Ci,�

�∈C𝚤
d(�, ��)

maxi∈{1,…,K} max
�,��∈Ci

d(�, ��)
> 1,

1613Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

This greedy initialization method was originally devel-
oped as a 2-approximation to the discrete k-center cluster-
ing problem, which is defined as follows. Given a set X
of N points in a metric space, find K representative points
(centers) such that the maximum distance of any point to
its nearest center is minimized. It is NP-hard to approxi-
mate this problem to within a factor of less than 2 [28].
Therefore, maximin is the best possible polynomial-time
approximation algorithm for this problem.

The pseudocode for the maximin method is given
below. It is easy to see that the method has O(NDK) time
complexity.

1.	 Let �1 be the first center chosen arbitrarily and
d1 = ⋯ = dN = ∞ , where dj denotes the distance of �j
to its nearest center at any given time. Set the index of
the next center to be determined in step 3 as i ← 2.

2.	 Initialize the maximum distance between any point
and its nearest center as dmax ← −∞ (at the end of this
step, the following will hold dmax = max(d1,… , dN) ).
For each j ∈ {1,… ,N} , if d(�j, �i−1) < dj , then update
the distance of �j to its nearest center as follows
dj ← d(�j, �i−1) . Update dmax and the index of the corre-
sponding point if necessary: if dmax < dj , then dmax ← dj
and j∗ ← j.

3.	 Set the new center as follows �i ← �j∗ and increment i by
one.

4.	 Repeat steps (2) and (3) a total of (K − 1) times.

Now that we have an efficient and deterministic initiali-
zation method at hand, let us turn to the issue of sampling.
Due to their online formulation, clustering algorithms such
as MacQueen’s algorithm are generally more adaptive
and thus more likely to escape poor local minima when
compared to batch algorithms such as Lloyd’s algorithm.
The online nature of such clustering algorithms, however,
presents two drawbacks. First, these algorithms are order
dependent, that is, different presentation orders of the input
data points induce different partitions. Second, stochastic
selection of the input data points renders these algorithms
randomized, that is, each run could potentially generate
different clustering results. We avoid these problems by
substituting the pseudorandom sampling scheme used in
MacQueen’s algorithm with quasirandom sampling. More
specifically, we sample the pixel data by means of a qua-
sirandom Sobol’ sequence [4]. A quasirandom sequence is
a sequence of D-dimensional points that fill ℝD more uni-
formly than uncorrelated pseudorandom points [45]. This
is illustrated in Fig. 1, where the top row shows three pseu-
dorandom sequences with increasing lengths generated by
the popular MT19937 generator [37] and the bottom row
shows the corresponding quasirandom Sobol’ sequences. It
is clear that the pseudorandom sequences show clumping,
resulting in rather uneven coverage of the sampled region
(this would bias the online learning process), whereas the
quasirandom sequences produce a significantly more uni-
form point distribution. It is important to note that, despite

(a) Random sequence (210 pts) (b) Random sequence (211 pts) (c) Random sequence (212 pts)

(d) Sobol’ sequence (210 pts) (e) Sobol’ sequence (211 pts) (f) Sobol’ sequence (212 pts)

Fig. 1   Comparison of pseudorandom (a–c) and quasirandom sampling (d–f)

1614	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

their name, quasirandom sequences are indeed completely
deterministic. To summarize, the proposed quasirandom
sampling scheme imposes a deterministic order on the input
data points, thereby rendering MacQueen’s algorithm both
deterministic and order independent.

There are various quasirandom sequences including
Korobov, Halton, Sobol’, Faure, Niederreiter, and Niederre-
iter–Xing. Among these, Sobol’ sequences are often preferred
in practice, especially in low dimensions, for several reasons
including their favorable uniformity properties, the existence
of efficient algorithms to generate them as well as the avail-
ability of high-quality implementations of such algorithms (in
R, GSL, MATLAB, Boost, NAG Library, etc.) As mentioned
earlier, we use Sobol’ sequences in the proposed method.
Since the theory and implementation of these sequences are
involved, the interested reader is referred to the relevant litera-
ture [4, 45] for further information.

3 � Experimental results and discussion

3.1 � Image set and parameter configuration

The proposed CQ method was tested on eight popular 24-bit
test images (Fig. 2). Baboon ( 512 × 512 ), Lenna ( 512 × 512 ),
and Peppers ( 512 × 512 ) are from the USC-SIPI Image Data-
base; Motocross ( 768 × 512 ) and Parrots ( 768 × 512 ) are from
the Kodak Lossless True Color Image Suite; and Goldhill
( 720 × 576 ), Fish ( 300 × 200 ), and Pills ( 800 × 519 ) are by
Lee Crocker, Luiz Velho, and Karel de Gendre, respectively.

In addition to K, which is a user-defined parameter in
nearly all CQ methods, the proposed method requires two
user-defined parameters: exponent p ∈ (0.5, 1] of the learn-
ing rate function and the sampling fraction f ∈ (0, 1] . These
parameters control the rate of learning (adaptation) and the
proportion of the input pixels that participate in learning
(steps 2 and 3 of MacQueen’s algorithm, whose pseudocode
is given in Sect. 2.2, are each executed Nf times), respectively.
To determine the best possible parameter combination for the
proposed CQ method, we considered 24 distinct possibilities:
p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} × f ∈ {0.25, 0.5, 0.75, 1} . For
each of the eight input images and K ∈ {32, 64, 128, 256}
value, we quantized the image using the proposed CQ method
separately with each of the 24 combinations of (p, f) values
and computed the MSE between the input and output images
in each case. We then ranked these 24 MSE values with the
(p, f) value producing the best, or lowest, MSE value attaining
a rank of 1 and the combination producing the worst, or high-
est, MSE value attaining a rank of 24. Finally, we computed
the mean and standard deviation of the MSE ranks across

8 × 4 = 32 combinations of input images and K values. Table 1
gives these rank statistics. It can be seen that (p, f) = (0.5, 1)
is the best combination attaining mean and standard deviation
ranks of 1.4 and 0.8, respectively, indicating that, this param-
eter combination almost always generates the lowest distor-
tion. This was not particularly surprising given that within the
allowable range of values for p, the fastest learning is given by

Fig. 2   Test images

1615Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

p = 0.5 and, for finite data sets and K > 1 , p = 0.5 may indeed
be better than the more common choice p = 1 , as empirically
demonstrated by Darken and Moody [18] and later by Wu and
Yang [62]. As for the sampling fraction parameter f, for any
given p value, Table 1 shows that mean MSE ranks monotoni-
cally decrease with increasing f. This again is not surprising
since, in general, the more input pixels are used, the better the
learning. In summary, (p, f) = (0.5, 1) seems to be the best
parameter combination for the proposed CQ method both from
a theoretical and empirical perspective.

3.2 � Comparison of CQ methods

Two variants of the proposed method were compared to 15
well-known CQ methods, namely popularity (POP) [27],
median-cut (MC) [27], modified popularity (MPOP) [5],
octree (OCT) [22], variance-based method (WAN) [59],
greedy orthogonal bipartitioning (WU) [61], center-cut (CC)
[33], radius-weighted mean-cut (RWM) [66], pairwise clus-
tering (PWC) [58], split and merge (SAM) [6], Cheng and

Yang (CY) [15], variance-cut (VC) [8], variance-cut with
Lloyd iterations (VCL) [8], self-organizing map (SOM) [17],
and modified maxmin (MMM) [63]. Among these, POP,
MC, MPOP, OCT, WAN, WU, CC, RWM, PWC, SAM, CY,
and VC are preclustering methods, whereas VCL, SOM, and
MMM are postclustering methods. The descriptions of these
CQ methods can be found in our earlier work [8, 10].

Two variants of each of Lloyd’s and MacQueen’s algo-
rithms were implemented:

•	 Batch k-means (BKM) [10]: This method is an adaptation
of Lloyd’s k-means clustering algorithm (with maximin
initialization) to CQ. We examine two variants: one-pass
BKM (denoted by BKM1 ) and convergent BKM (denoted
by BKM). BKM1 is nothing but the batch version of Mac-
Queen’s algorithm where the set of image pixels is pre-
sented to the algorithm exactly once (hence the qualifier
‘one-pass’). On the other hand, multi-pass convergent
BKM performs Lloyd iterations until cluster member-
ships of points no longer change (hence the qualifier
‘convergent’).

•	 MacQueen k-means with pseudorandom sampling
( MKMp ): The proposed method with maximin initiali-
zation and pseudorandom sampling using the MT19937
(Mersenne Twister) generator. In each iteration, a pseu-
dorandom data point is presented to the algorithm by
generating an unbiased pseudorandom integer in the
range [1, N] using an efficient algorithm due to Lemire
[34], which avoids integer divisions with high probabil-
ity.

•	 MacQueen k-means with quasirandom sampling
( MKMq ): The proposed method with maximin initializa-
tion and quasirandom sampling using a Sobol’ sequence.
Based on the theoretical and empirical arguments
detailed in Sect. 3.1, the adjustable parameters of both
MKM variants were set to (p, f) = (0.5, 1) . Note that with
f = 1 , MKM variants are in fact one-pass algorithms just
like BKM1.

Table 2 compares the effectiveness (quality) of the CQ
methods. The best (lowest) MSE values are shown in bold.
For, MKMq , which is the only randomized CQ method, we
give MSE values in the format ms , where m and s, respec-
tively, denote the mean and standard deviation MSE’s over
100 independent runs. The following observations are in
order:

Table 1   Rank comparison of
the parameter combinations

p f Mean Std

0.5 0.25 9.5 2.8
0.50 4.8 2.1
0.75 2.9 1.3
1.00 1.4 0.8

0.6 0.25 10.6 2.8
0.50 6.6 1.7
0.75 5.4 2.4
1.00 3.4 2.3

0.7 0.25 14.1 3.1
0.50 9.8 2.1
0.75 7.8 2.2
1.00 7.4 3.3

0.8 0.25 17.5 2.9
0.50 14.3 1.9
0.75 13.0 2.5
1.00 11.6 2.7

0.9 0.25 20.7 1.7
0.50 17.7 1.8
0.75 17.3 1.9
1.00 16.5 2.6

1.0 0.25 23.4 1.2
0.50 22.0 1.5
0.75 21.6 1.5
1.00 20.7 1.7

1616	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

Table 2   MSE comparison of the CQ methods

CQ K K K K

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

Baboon Fish Goldhill Lenna
POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3
MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3
MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8
OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6
WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7
WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4
CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2
RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2
PWC 469.4 308.8 206.7 128.8 201.5 130.9 93.1 69.4 193.8 125.1 88.9 70.9 186.9 108.0 78.8 65.0
SAM 464.9 293.9 188.8 119.8 198.5 120.1 74.0 48.5 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4
CY 465.9 280.9 187.3 117.7 193.8 112.5 72.0 44.8 186.3 121.6 72.2 46.4 166.4 97.6 62.5 41.9
VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9
VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6
SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9
MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5
BKM

1
505.0 341.7 218.2 138.2 242.5 139.9 87.3 48.9 250.9 149.3 90.6 61.5 192.9 124.1 72.2 48.1

BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3
MKM

p
375.3

1.4
236.4

.6
152.2

.3
98.2

.2
147.9

3.1
93.3

1.1
59.5

.5
37.0

.3
144.4

.7
84.1

.5
53.3

.2
35.6

.2
131.3

.5
75.2

.3
47.7

.2
31.4

.1

MKM
q

375.6 236.2 152.0 97.6 148.7 92.8 59.2 36.2 144.3 83.3 53.3 35.7 131.4 75.4 47.9 31.3
Motocross Parrots Peppers Pills

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3
MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4
MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1
OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9
WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7
WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0
CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4
RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6
PWC 243.2 161.2 101.5 78.0 349.4 205.1 125.8 86.0 344.8 183.7 121.1 80.0 283.4 169.3 110.5 75.6
SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7
CY 248.0 146.6 89.3 53.0 313.2 178.6 106.7 64.5 317.3 186.1 114.1 72.6 237.8 157.9 96.4 58.8
VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2
VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8
SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0
MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6
BKM

1
389.4 237.8 166.2 85.7 363.7 202.1 121.3 71.6 363.1 232.2 138.7 92.8 307.5 188.3 121.5 72.0

BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0
MKM

p
200.2

4.2
115.9

1.6
71.9

.9
45.0

.4
236.6

3.6
129.5

1.2
75.9

.7
45.2

.3
257.5

3.3
148.6

1.1
89.6

.4
57.6

.2
199.7

1.4
112.3

.6
67.3

.4
42.5

.2

MKM
q

194.3 116.7 72.7 44.6 241.2 127.2 75.9 44.3 258.3 148.9 89.4 57.6 199.0 112.0 67.3 42.4

1617Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

•	 Unsurprisingly, postclustering methods are generally
more effective than the preclustering methods.

•	 VC and VCL are generally more effective than the other
preclustering methods. Note that VCL is not a pure pre-
clustering method as it performs refinement using Lloyd
iterations after each split. This hybrid nature of VCL
allows it to outperform all preclustering methods.

•	 MKMp and MKMq have similar effectiveness and, in
most cases, BKM is slightly more effective than either
MKM variant. The MSE differences among the three
methods, however, are negligible. For example, when-
ever BKM is more effective, it outperforms either MKM
variant often by only a few units of MSE.

•	 Despite the fact that both BKM1 and MKM make a single
pass over the image doing roughly the same operations,
BKM1 performs among the worst, whereas MKM per-
forms either the best or a close second. As both methods
are initialized in the same manner, the only explanation
for the outstanding performance of MKM is its online
nature, which helps it learn faster and escape from poor
local minima more easily. Note that, as anticipated by the
FLOP counts given in Sect. 2.2, BKM1 is 1.3–2.9 times
faster than either MKM variant (data not shown). How-
ever, this relative efficiency of BKM1 in no way makes
up for its poor MSE performance.

Table 3 compares the efficiency (speed) of top three CQ
methods, namely BKM and the proposed MKMp and MKMq
methods, on the three most well known images in the CQ
literature (Baboon, Lenna, and Peppers, each with resolution
512 × 512 ). The remaining CQ methods are either preclus-
tering methods that trade effectiveness for efficiency (with
the exception of PWC, these methods take only a few mil-
liseconds of CPU time on a 512 × 512 image) or postclus-
tering methods (SOM, MMM, and BKM1 ) that are neither
particularly effective nor particularly efficient. Therefore,
we compare the efficiency of only the three most effective

CQ methods, which, unsurprisingly, are all postclustering
methods. For each K value ( ∈ {32, 64, 128, 256} ) and CQ
method, we give four values: initialization time in millisec-
onds (column ‘init’), clustering time in milliseconds (col-
umn ‘clust’), clustering time for BKM divided by that for
BKM, MKMp , or MKMq (column ‘cr’), and total time for
BKM divided by that for BKM, MKMp , or MKMq (column
‘tr’). As mentioned earlier, all three CQ methods use the
same initialization method, namely maximin. Nevertheless,
we give initialization time separately for each CQ method
so that the reader can judge the computational requirements
of initialization in comparison to those of clustering. All
methods were implemented in the C language (compiler: gcc
v8.2.0, CPU: Intel Core i7-6700 3.40 GHz). The time figures
were averaged over 100 independent runs. The following
observations are in order:

•	 Looking at the ratios of total times (column ‘tr’), we
observe that MKMp is slightly faster than MKMq as pseu-
dorandom sampling is slightly more efficient than quasir-
andom sampling. A few milliseconds of CPU time, how-
ever, is a small price to pay for achieving a deterministic
sampling scheme. Both MKM variants are significantly
faster than BKM (by a factor ranging from 27 to 131). In
general, the larger the K value, the more efficient MKM
is compared to BKM. On the other hand, if we focus
on the ratios of clustering times (column ‘cr’), MKM
variants become even more advantageous over BKM (by
a factor ranging from 41 to 300) as initialization time
accounts for a larger percentage of the total time for the
MKM variants.

Table 3   CPU time comparison of the k-means based CQ methods (‘init’: initialization time (msec); ‘clust’: clustering time (msec); ‘cr’: cluster-
ing time for BKM divided by that for BKM, MKM

p
 , or MKM

q
 ; ‘tr’: total time for BKM divided by that for BKM, MKM

p
 , or MKM

q
)

Image CQ 32 64 128 256

init clust cr tr init clust cr tr init clust cr tr init clust cr tr

Baboon BKM 39 4413 1 1 76 14249 1 1 146 27196 1 1 283 40378 1 1
MKM

p
37 54 82 49 73 73 195 98 144 111 246 107 283 200 202 84

MKM
q

37 64 69 44 73 83 171 92 144 122 223 103 283 200 202 84
Lenna BKM 38 4319 1 1 75 9259 1 1 147 26378 1 1 283 32952 1 1

MKM
p

36 52 82 49 72 73 127 64 143 109 241 105 283 200 165 69
MKM

q
36 63 68 44 72 84 111 60 143 122 217 100 283 200 165 69

Peppers BKM 36 2610 1 1 74 6259 1 1 147 33127 1 1 284 30275 1 1
MKM

p
37 54 48 29 71 72 87 44 143 110 300 131 284 198 153 63

MKM
q

36 63 41 27 72 83 76 41 143 122 272 126 284 198 153 63

Table 4   Number of iterations
for BKM

Image 32 64 128 256

Baboon 186 336 346 269
Lenna 193 221 338 220
Peppers 120 149 428 203

1618	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

Fig. 3   Baboon output images ( K = 32)

Fig. 4   Pills output images ( K = 128)

1619Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

Fig. 5   Peppers output images ( K = 64)

1620	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

•	 For BKM, initialization time is negligible compared to
clustering time. For MKM, this is not the case; in fact,
for K ≥ 64 , initialization takes longer than clustering.
The contribution of initialization to the run time of
MKM can be minimized using a faster initialization
method. For example, preclustering methods such as
MC, WAN, and WU are extremely fast, requiring only a
few milliseconds on a 512 × 512 image. However, these
methods achieve such impressive efficiency by means
of heavily optimized integer arithmetic-based imple-
mentations and, consequently, they are applicable for
only 8-bit CQ applications, that is, K ∈ {1,… , 256} .
Our adopted initialization method (maximin), on the
other hand, involves no implementation tricks and
thus can be used for arbitrary bit-depth CQ, that is,
K ∈ {1,… ,N�}.

•	 With regard to scalability, the maximin exhibits clearly
linear behavior with respect to K. In other words, the
initialization time roughly doubles when K is doubled.
MKM exhibits sublinear behavior in K, that is, when K
is doubled, for example, the clustering time increases
by a factor of less than two. Finally, BKM’s scalability
is unpredictable. In some cases, doubling K increases
the clustering time by a factor of more than five (Pep-
pers, K = 64 → 128 ), whereas in other cases the clus-
tering time even decreases with increasing K (Peppers,
K = 128 → 256 ). This unpredictable behavior stems
from fact that, for a given image and K value, the number
of Lloyd iterations required by BKM cannot be predicted
in advance; it depends on various factors including the
distribution of colors in the image and the initial centers.
Table 4 gives the numbers of Lloyd iterations for BKM.
These values explain the unpredictable computational
requirements of BKM. For example, clustering Peppers
using BKM takes ≈ 33.1 sec. for K = 128 and ≈ 30.3 sec.
for K = 256 . From K = 128 to K = 256 , the number of
clusters double, but, as Table 4 shows, the number of
iterations drops to less than half. This is why BKM is
slightly slower for K = 128 than it is for K = 256.

•	 For a given K value, the execution time of BKM varies
wildly among the three images, all of which have the
same number of pixels. For example, for K = 64 , cluster-
ing Baboon with BKM takes ≈ 14.2 s, whereas clustering
Peppers with the same method takes ≈ 6.3 s. For K = 128 ,
however, the situation is reversed: clustering Peppers takes
longer than that of Baboon ( ≈ 33.1 s vs. ≈ 27.2 s, respec-
tively). As mentioned earlier, these discrepancies can be
explained by the differences in the number of iterations
(given in Table 4). By contrast, for a particular K value,
the execution time of both MKM variants is nearly con-
stant across the three images since both variants are imple-
mented as one-pass algorithms.

Fig. 6   Peppers error images ( K = 64)

Figures 3, 5 and 4 show sample quantization results for
close-up parts of the Baboon, Peppers, and Pills images,
respectively. Figures 7, 6 and 8 show the full-scale error
images for the respective images. The error image for a par-
ticular CQ method was obtained by taking the pixelwise abso-
lute difference between the original and quantized images. For

1621Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

better visualization, pixel values of the error images were mul-
tiplied by 4 and then negated. It can be seen that the proposed
MKM method performs exceptionally well in allocating repre-
sentative colors to various image regions, resulting in minimal
distortion (false contours, flat regions, color shifts, and color
loss) and consequently cleaner error images. Together with
the MSE results given in Table 2, these output images indicate
that the proposed method and the well-known BKM method
produce very similar results both quantitatively (numerically)
and qualitatively (visually). The proposed method is signifi-
cantly faster than the BKM method as the former is a one-pass
approach, whereas the latter can require a few hundred passes
to converge. Both methods are, however, easier to implement
compared to many preclustering/postclustering methods.

4 � Conclusions and future work

In this paper, an effective and efficient CQ method3 was
introduced. The method comprises cluster center initializa-
tion using the maximin method followed by color cluster-
ing using MacQueen’s k-means algorithm. Detailed experi-
ments on a large set of test images showed that the proposed
method outperforms a large number of well-known CQ
methods with respect to error minimization. The presented
method is easy to implement and very efficient (requiring a
fraction of a second to quantize a 512 × 512 image to 256
colors), exhibiting a sublinear scaling behavior in the num-
ber of colors. The method involves two adjustable parame-
ters: exponent of the learning rate function and the sampling
fraction, which respectively control the rate of learning and
the proportion of input pixels used for learning. Unlike the
parameters of many existing competitive learning-based CQ
methods, these two parameters are not only intuitive, but also
easy to set (setting them to their theoretically optimal values
almost always gives the best results in practice). Future work
includes further acceleration of the proposed CQ method by
substituting the maximin initialization method with a more
efficient alternative without sacrificing effectiveness or for-
going determinism.

Fig. 7   Baboon error images ( K = 32)

3  The source code of the proposed method is available at https​://githu​
b.com/skyth​omp16​/MacQu​een-Color​-Quant​izati​on

https://github.com/skythomp16/MacQueen-Color-Quantization
https://github.com/skythomp16/MacQueen-Color-Quantization

1622	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

References

	 1.	 Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with
Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

	 2.	 Bermejo, S., Cabestany, J.: The effect of finite sample size on
online K-means. Neurocomputing 48(1–4), 511–539 (2002)

	 3.	 Bottou, L.: Online learning and stochastic approximations. In:
Saad, D. (ed.) On-Line Learning in Neural Networks, pp. 9–42.
Cambridge University Press, Cambridge (1998)

	 4.	 Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s qua-
sirandom sequence generator. ACM Trans. Math. Softw. 14(1),
88–100 (1988)

	 5.	 Braudaway, G.W.: Procedure for optimum choice of a small num-
ber of colors from a large color palette for color imaging. In: Pro-
ceedings of the Electronic Imaging Conference, pp. 71–75 (1987)

	 6.	 Brun, L., Mokhtari, M.: Two high speed color quantization algo-
rithms. In: Proceedings of the 1st International Conference on
Color in Graphics and Image Processing, pp. 116–121 (2000)

Fig. 8   Pills error images
( K = 128)

1623Journal of Real-Time Image Processing (2020) 17:1609–1624	

1 3

	 7.	 Brun, L., Trémeau, A.: Color quantization. In: Sharma, G. (ed.)
Digital Color Imaging Handbook, pp. 589–638. CRC Press, Boca
Raton (2002)

	 8.	 Celebi, M.E., Wen, Q., Hwang, S.: An effective real-time color
quantization method based on divisive hierarchical clustering. J.
Real-Time Image Proc. 10(2), 329–344 (2015)

	 9.	 Celebi, M.E.: Fast color quantization using weighted sort-means
clustering. J. Opt. Soc. Am. A 26(11), 2434–2443 (2009)

	10.	 Celebi, M.E.: Improving the performance of K-means for color
quantization. Image Vis. Comput. 29(4), 260–271 (2011)

	11.	 Celebi, M.E., Wen, Q., Schaefer, G., Zhou, H.: Batch neural gas
with deterministic initialization for color quantization. In: Pro-
ceedings of the International Conference on Computer Vision
and Graphics, pp. 48–54 (2012)

	12.	 Celebi, M.E., Hwang, S., Wen, Q.: Color quantization using the
adaptive distributing units algorithm. Imaging Sci. J. 62(2), 80–91
(2014)

	13.	 Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of
efficient initialization methods for the K-means clustering algo-
rithm. Expert Syst. Appl. 40(1), 200–210 (2013)

	14.	 Celebi, M.E. (ed.): Partitional Clustering Algorithms. Springer,
Berlin (2015)

	15.	 Cheng, S., Yang, C.: Fast and novel technique for color quan-
tization using reduction of color space dimensionality. Pattern
Recogn. Lett. 22(8), 845–856 (2001)

	16.	 Chung, K.L., Huang, Y.H., Wang, J.P., Cheng, M.S.: Speedup of
color palette indexing in self-organization of Kohonen feature
map. Expert Syst. Appl. 39(3), 2427–2432 (2012)

	17.	 Dekker, A.: Kohonen neural networks for optimal colour quan-
tization. Network Comput. Neural Syst. 5(3), 351–367 (1994)

	18.	 Darken, C., Moody, J.: Fast adaptive K-means clustering: some
empirical results. In: Proceedings of the 1990 International Joint
Conference on Neural Networks, vol. 2, pp. 233–238 (1990)

	19.	 Du, Q., Wong, T.W.: Numerical studies of MacQueen’s K-means
algorithm for computing the centroidal Voronoi tessellations.
Comput. Math. Appl. 44(3–4), 511–523 (2002)

	20.	 El-Said, S.A.: Image quantization using improved artificial fish
swarm algorithm. Soft. Comput. 19(9), 2667–2679 (2015)

	21.	 Frackiewicz, M., Palus, H.: KM and KHM clustering techniques
for colour image quantisation. In: Tavares, J.M.R.S., Jorge,
R.M.N. (eds.) Computational Vision and Medical Image Pro-
cessing: Recent Trends. Springer, pp. 161–174 (2011)

	22.	 Gervautz, M., Purgathofer, W.: A simple method for color quan-
tization: octree quantization. In: Magnenat-Thalmann, N., Thal-
mann, D. (eds.) New Trends in Computer Graphics. Springer,
pp. 219–231 (1988)

	23.	 Gonzalez, T.F.: Clustering to minimize the maximum interclus-
ter distance. Theor. Comput. Sci. 38(2–3), 293–306 (1985)

	24.	 Gonzalez, A.I., Grana, M., Albizuri, F.X., D’Anjou, A., Torre-
aldea, F.J.: A near real-time evolution-based adaptation strategy
for dynamic color quantization of image sequences. Inf. Sci.
122(2–4), 161–183 (2000)

	25.	 Grossberg, S.: Competitive learning: from interactive activation
to adaptive resonance. Cogn. Sci. 11(1), 23–63 (1987)

	26.	 Hathaway, R.J., Bezdek, J.C., Huband, J.M.: Maximin initializa-
tion for cluster analysis. In: Proceedings of the 11th Iberoameri-
can Congress in Pattern Recognition, pp. 14–26 (2006)

	27.	 Heckbert, P.: Color image quantization for frame buffer display.
ACM SIGGRAPH Comput. Graph. 16(3), 297–307 (1982)

	28.	 Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location
problems. Discret. Appl. Math. 1(3), 209–215 (1979)

	29.	 Hu, Y.C., Lee, M.G.: K-means based color palette design
scheme with the use of stable flags. J. Electron. Imaging 16(3),
033003 (2007)

	30.	 Hu, Y.C., Su, B.H.: Accelerated K-means clustering algorithm
for colour image quantization. Imaging Sci. J. 56(1), 29–40
(2008)

	31.	 Hu, Z., Su, Q., Xia, X.: Multiobjective image color quantization
algorithm based on self-adaptive hybrid differential evolution.
Comput. Intell. Neurosci. 2016, 2450431 (2016)

	32.	 Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review.
ACM Comput. Surv. 31(3), 264–323 (1999)

	33.	 Joy, G., Xiang, Z.: Center-cut for color image quantization. Vis.
Comput. 10(1), 62–66 (1993)

	34.	 Lemire, D.: Fast random integer generation in an interval. ACM
Trans. Model. Comput. Simul. 29(1), 3:1–3:12 (2019)

	35.	 Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28(2), 129–136 (1982)

	36.	 MacQueen, J.: Some methods for classification and analysis of
multivariate observations. In: Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, pp. 281–
297 (1967)

	37.	 Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimen-
sionally equidistributed uniform pseudo-random number genera-
tor. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

	38.	 Müllner, D.: Fastcluster: fast hierarchical, agglomerative cluster-
ing routines for R and Python. J. Stat. Softw. 53(9), 1–18 (2013)

	39.	 Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Particle swarm
optimization for pattern recognition and image processing. In:
Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence
in Data Mining, pp. 125–151. Springer, Berlin (2006)

	40.	 Orchard, M., Bouman, C.: Color quantization of images. IEEE
Trans. Signal Process. 39(12), 2677–2690 (1991)

	41.	 Ozturk, C., Hancer, E., Karaboga, D.: Color image quantiza-
tion: a short review and an application with artificial bee colony
algorithm. Informatica 25(3), 485–503 (2014)

	42.	 Nolle, L., Schaefer, G.: Colour map design through optimiza-
tion. Eng. Optim. 39(3), 327–343 (2007)

	43.	 Perez-Delgado, M.L.: Colour quantization with ant-tree. Appl.
Soft Comput. 36, 656–669 (2015)

	44.	 Perez-Delgado, M.L., Gallego, J.A.R.: A two-stage method to
improve the quality of quantized images. J. Real-Time Image
Process. (2019) (in press)

	45.	 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:
Numerical Recipes, 3rd edn. Cambridge University Press, Cam-
bridge (2007)

	46.	 Rumelhart, D.E., Zipser, D.: Feature discovery by competitive
learning. Cogn. Sci. 9(1), 75–112 (1985)

	47.	 Schaefer, G., Zhou, H.: Fuzzy clustering for colour reduction in
images. Telecommun. Syst. 40(1–2), 17–25 (2009)

	48.	 Schaefer, G., Nolle, L.: Color quantization. In: Qing, A. (ed.) Dif-
ferential Evolution: Fundamentals and Applications in Electrical
Engineering, pp. 399–405. Wiley, New York (2009)

	49.	 Schaefer, G., Nolle, L.: A hybrid color quantization algorithm
incorporating a human visual perception model. Comput. Intell.
31(4), 684–698 (2015)

	50.	 Schaefer, G., Hu, Q., Huiyu, Z., Peters, J.F., Hassanien, A.E.:
Rough C-means and fuzzy rough C-means for colour quantisation.
Fundam. Inf. Emerg. Comput. 119(1), 113–120 (2012)

	51.	 Scheunders, P.: A genetic C-means clustering algorithm applied to
color image quantization. Pattern Recogn. 30(6), 859–866 (1997)

	52.	 Scitovski, R., Sabo, K.: Analysis of the K-means algorithm in
the case of data points occurring on the border of two or more
clusters. Knowl.-Based Syst. 57, 1–7 (2014)

	53.	 Spall, J.C.: Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. Wiley, Oxford (2003)

	54.	 Su, Q., Hu, Z.: Color image quantization algorithm based on self-
adaptive differential evolution. Comput. Intell. Neurosci. 2013,
231916 (2013)

1624	 Journal of Real-Time Image Processing (2020) 17:1609–1624

1 3

	55.	 Uchiyama, T., Arbib, M.: An algorithm for competitive learning in
clustering problems. Pattern Recogn. 27(10), 1415–1421 (1994)

	56.	 Ueda, Y., Koga, T., Suetake, N., Uchino, E.: Color quantization
method based on principal component analysis and linear dis-
criminant analysis for palette-based image generation. Opt. Rev.
24(6), 741–756 (2017)

	57.	 Valenzuela, G., Celebi, M.E., Schaefer, G.: Color quantization
using coreset sampling. In: Proceedings of the 2018 IEEE Inter-
national Conference on Systems, Man, and Cybernetics, pp.
2096–2101 (2018)

	58.	 Velho, L., Gomez, J., Sobreiro, M.V.R.: Color image quantiza-
tion by pairwise clustering. In: Proceedings of the 10th Brazilian
Symposium on Computer Graphics and Image Processing, pp.
203–210 (1997)

	59.	 Wan, S.J., Prusinkiewicz, P., Wong, S.K.M.: Variance-based color
image quantization for frame buffer display. Color Res. Appl. 15,
52–58 (1990)

	60.	 Wen, Q., Celebi, M.E.: Hard versus fuzzy C-means clustering
for color quantization. EURASIP J. Adv. Signal Process. 2011,
118–129 (2011)

	61.	 Wu, X.: Efficient statistical computations for optimal color quan-
tization. In: Arvo, J. (ed.) Graphics Gems, vol. II, pp. 126–133.
Academic Press, London (1991)

	62.	 Wu, K.L., Yang, M.S.: Alternative learning vector quantization.
Pattern Recogn. 39(3), 351–362 (2006)

	63.	 Xiang, Z.: Color image quantization by minimizing the maximum
intercluster distance. ACM Trans. Graph. 16(3), 260–276 (1997)

	64.	 Xiao, Y., Leung, C.S., Lam, P.M., Ho, T.Y.: Self-organizing map-
based color palette for high-dynamic range texture compression.
Neural Comput. Appl. 21(4), 639–647 (2012)

	65.	 Yair, E., Zeger, K., Gersho, A.: Competitive learning and soft
competition for vector quantizer design. IEEE Trans. Signal Pro-
cess. 40(2), 294–309 (1992)

	66.	 Yang, C.Y., Lin, J.C.: RWM-cut for color image quantization.
Comput. Graph. 20(4), 577–588 (1996)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

M. Emre Celebi  received his B.Sc. degree in Computer Engineering
from the Middle East Technical University (Ankara, Turkey) in 2002.
He received his M.Sc. and Ph.D. degrees in Computer Science and
Engineering from the University of Texas at Arlington (Arlington, TX,
USA) in 2003 and 2006, respectively. He is currently a Professor and
the Chair of the Department of Computer Science at the University of
Central Arkansas.

Dr. Celebi has actively pursued research in image processing/analy-
sis and data mining with an emphasis on medical image analysis, color
image processing, and partitional clustering. He has worked on several
projects funded by the US National Science Foundation and National
Institutes of Health and published nearly 150 articles in reputable jour-
nals and conference proceedings.

Dr. Celebi is an editorial board member of four international jour-
nals, reviews for over 110 international journals, and served on the
program committee of more than 130 international conferences. He has
been invited as speaker to several colloquia, workshops, and confer-
ences, is the organizer of several workshops, and the editor of several
journal special issues, books, and book series. He is a senior member
of the IEEE and SPIE.

	Fast color quantization using MacQueen’s k-means algorithm
	Abstract
	1 Introduction
	2 k-means clustering for CQ
	2.1 Lloyd’s k-means algorithm
	2.2 MacQueen’s k-means algorithm
	2.3 Proposed CQ method

	3 Experimental results and discussion
	3.1 Image set and parameter configuration
	3.2 Comparison of CQ methods

	4 Conclusions and future work
	References

