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Abstract—A wavelet network (WN) is a feed-forward neural
network that uses wavelets as activation functions for the neurons
in its hidden layer. By predetermining the wavelet positions and
dilations, the WN can turn into a linear regression model. The
common approach for the construction of these WN families is
to use least-squares type algorithms. In this paper, we propose a
novel approach by formulating a WN as a sparse linear regression
problem, which we call a sparse wavelet network (SWN). In this
WN, the problem of calculating the unknown inner parameters
of the network becomes that of finding the sparse solution of an
under-determined system of linear equations. Our sparse solution
algorithm is a non-convex sparse relaxation approach inspired by
smoothed L0 (SL0), a distinguished sparse recovery algorithm.
The proposed SWN can be applied as a tool for the prediction
and identification of dynamical systems.

Index Terms—Wavelet network, sparse representation, non-
convex regularization, system identification.

I. INTRODUCTION

SPARSE modeling is a flourishing interdisciplinary field of
research that bridges signal processing, machine learning,

and statistics. It is particularly advantageous in selecting or
constructing a small set of predictive variables in cases where
the aim is to find the input and output of a system relationship
[1]. Building on sparse modeling, in this paper, we propose
a novel wavelet network (WN) that has the potential to be
used in various areas, for example, in engineering disciplines
[2]–[5].

The inherent time-frequency localization property of the
wavelet basis makes them more effective than other basis
functions. This insight inspired the concept of WNs by using
wavelets as the basic components of a traditional neural
network [6]–[9]. Depending on the types of wavelets and
network training scheme used, there are different categories of
WNs [10]. The adaptive wavelet network (AWN) is a primitive
type of WN that takes advantage of the continuous wavelet
transform for the formation of the network building blocks
and a gradient type algorithm for model training [11]. Model
initialization and training complications often limit AWNs to
low dimensional applications [6].
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A WN is called fixed grid wavelet network (FGWN) if it
originates from the discrete wavelet transform with predefined
network inner parameters (the wavelet shifts and scales) [11].
The FGWNs basically act by using various model structures
or different parameter estimation algorithms [12]. Substantial
techniques for modifying and improving the efficiency of
FGWNs have been created in the literature. For example, in [6]
multiscale wavelet decomposition was applied as the model
construction and the orthogonal least-squares algorithm was
applied for computing the network outer parameters. Li et
al. extended the model structure based on multi-wavelet basis
functions and refined the associated regression using a block
least mean squares method [8] and an ultra-orthogonal forward
regression algorithm aided by mutual information [12].

As a linear regression model, the output vector of an FGWN
can be represented as the multiplication of a wavelet matrix
and the coefficient vector. The common approach for finding
the coefficient vector is based on greedy strategies such as
forward selection which are highly suboptimal [13]. Since the
construction of the wavelet matrix is based on the positions
and dilations of wavelet coefficients, in order to simplify
computational complexity, the FGWN regression problem may
be considered as an optimization equation and equivalently
as an under-determined systems of linear equations (USLE).
Considering the sparse solution of a USLE taken from the
corresponding FGWN, which is equivalent to the hidden layer
weights, a network with low inner dimension is achieved. This
procedure might be useful for high dimensional problems. In
the current study, we take an FGWN as a sparse linear regres-
sion problem, which we refer to as a sparse wavelet network
(SWN). Our proposed algorithm for finding the sparse solution
is based on the graduated non-convexity (GNC) method and
in particular, the smoothed `0 norm (SL0 algorithm) which
is an effective and fast approach [14]. This letter is a major
contribution to the literature on WN for at least two reasons:
(i) sparse modeling of the WN which brings about a network
with simple internal structure one that is easy to implement;
(ii) analyzing the convergence of the SL0 method using `0
norm approximation with a non-convex but gradient-Lipschitz
function.

II. STRUCTURE OF SWN
Assume that the observations of input-output data pairs are

as {(x(p), y(p)) : x(p) ∈ Rn, y(p) ∈ R, p = 1, . . . , P}. The pth
output sample of the WN is given by [15]:

y(p) =
m∑
i=1

θi

∣∣∣D1/2
i

∣∣∣ψ(Dix
(p) −Bti) =

m∑
i=1

θiψ
(p)
i (1)

where m is the number of wavelons (wavelet neurons) in the
hidden layer, θi are the weights between the hidden layer
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and output, ψ ∈ L2(Rn) is the mother wavelet function,
Di = diag(di), di ∈ Rn is the scale parameter vector of
the wavelets, ti ∈ Rn is the shift parameter vector of the
wavelets, and B = diag(b), b ∈ Rn is the discretization
factor. Considering the total number of samples, the network
output vector y ∈ RP given in matrix form as:

y =
m∑
i=1

θiψi = Wθ (2)

where W = [ψ1 . . .ψm] is called the wavelet matrix (dic-
tionary). The vectors ψi = [ψ

(1)
i . . . ψ

(P )
i ]T are regressors

(atoms) and θ = [θ1 . . . θm]T is the coefficient vector.

A. The Wavelet Matrix

According to the multiscaling wavelet frame theorem [16],
the wavelet matrix constitutes a multidimensional frame and
has significant characteristics by the following elementary
lemma and corollary.

Lemma 1: If the columns of W = [ψ1 . . .ψm] are frames,
with frame bounds A > 0, B < ∞, then inequalities
AI � WWT � BI hold. For a tight frame A = B and
thus WWT = AI.

Proof: See, for example, [17].
Corollary 1: The wavelet matrix W is full row rank.

Proof: The matrix W is full row rank if and only if
{∀f ∈ RP , fW = 0 =⇒ f = 0}. The condition fW = 0
implies fWWT = 0, which in turn implies f = 0 because
the WWT in invertible according to Lemma 1.

B. The Coefficient Vector

Since the wavelet matrix is full row rank, the USLE
extracted from the FGWN has infinitely many solutions. We
are interested in seeking its sparsest solution of the coefficient
vector. The sparsity of the coefficient vector affects the internal
structure of the WN. The sparser the coefficient vector, the
less the network’s computational complexity. A WN with too
many hidden layer nodes is slower, may cause training to
diverge, or lead to overfitting, which would reduce the network
generalizability [18]. On the other hand, having too few hidden
units, results in large training and generalization errors due to
underfitting and high statistical bias [6]. Therefore, we should
look for a coefficient vector that has an acceptable error and
as much sparsity as possible.

Finding the proper solution of vector θ can be cast as a
constrained optimization problem as follows:

min
θ
‖θ‖0 subject to ‖y −Wθ‖2 ≤ ε (3)

where ε is a predefined error tolerance.
Our strategy for solving (3) is based on the non-convex

sparse regularization technique. These methods are part of the
GNC family and are often significantly slower than greedy
algorithms [19]. A fast GNC technique which is based on
smoothed `0 norm (SL0) with reasonable computing time is
proposed in [14]. Inspired by the SL0 method, we propose a
mathematical framework for finding the sparsest solution of
the USLE (2) as the coefficient vector of the SWN.

III. FINDING A SPARSE SOLUTION

A. Non-convex Regularization

The strategy of the SL0 algorithm is based on the definition
of a smoothing parameter σ ≥ 0 and approximates the
smoothed `0 norm with a non-convex function ‖·‖σ as ‖θ‖0 =
limσ→0 ‖θ‖σ . In this way, the sparsity is induced gradually by
decreasing the smoothing parameter, so the nonconvexity of
the smooth function increases without getting trapped in local
minima [20].

The function ‖θ‖σ : Rn → R parameterized by σ ≥ 0 is
defined as

f(θ) = ‖θ‖σ =
m∑
i=1

(1− fσ(θi)) (4)

where the one variable function fσ(·) has the following
properties:

P1) lim
σ→0

fσ(θi) =

{
1 ; if θi = 0

0 ; if θi 6= 0

P2) f ′σ(θi) is gradient-Lipschitz with constant M/σ2, where
M is a positive constant. Hence the second derivative of
fσ(θi) is bounded (i.e. ∀θi ∈ R : |f ′′(θi)| ≤M/σ2).

With the definition of ‖θ‖σ , the sparsest solution of (3) is in
the form

θ∗ = arg min
θ∈Cε

{
f(θ) = ‖θ‖σ

}
(5)

where Cε = {θ : ‖y −Wθ‖ ≤ ε}.

B. The Final Algorithm

The function f in the form of (4) is gradient-Lipschitz
through the following Lemma.

Lemma 2: If fσ(θi) is gradient-Lipschitz with constant
L then ‖θ‖σ in the form of (4) is gradient-Lipschitz with
constant L.

Proof: See [20].
A gradient-Lipschitz function has an elementary but important
property which is expressed through the descent lemma as
follows:

Lemma 3 (descent lemma [21]): Assume that f : domf →
R is gradient-Lipscitz function with constant L > 0. Then for
any two vectors θ,θk ∈ domf

f(θ) ≤ f(θk) +∇T f(θk)(θ − θk) +
1

2γ
‖θ − θk‖22 (6)

where γ ∈ (0, 1/L] and domf express the domain of the
function f . The right hand side of (6) is called the upper-
bound of f(θ) at the point θk and it is shown by f̄(θ,θk).
The minimum upper-bound is attained when γ = 1/L.

Proof: See, for example, [21].
As it stands, f̄(θk,θk) = f(θk). Therefore, instead of mini-

mizing f , we can minimize its upper-bound. Thus, the iterative
solution algorithm for (5) is θk+1 = argminθ∈Cε f̄(θ,θk).
Considering (4), we have

θk+1 = arg min
θ∈Cε

{
‖θk‖σ+∇T ‖θk‖σ (θ−θk)+

1

2γ
‖θ − θk‖22

}
(7)
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equivalently

θk+1 = arg min
θ∈Cε

1

2

∥∥θ − θ̄k∥∥22 (8)

where θ̄k = θk − γ∇‖θk‖σ . So, the final solution to find
the sparse solution of USLE (2), which is summarized in
Algorithm 1, can be obtained.

Algorithm 1 The Sparse Solution of Coefficient Vector
Input: y, W, M , σ0, σmin, 0 < c < 1, K, γ, ε

initialization : θ = 0, σ = σ0

1: while σ > σmin do
2: for k = 1, 2, · · · ,K do
3: θ = θ − γ∇‖θ‖σ
4: θ = argminθ∈Cε

1
2

∥∥θ − θ̄
∥∥2

2
5: end for
6: σ = cσ
7: γ = (σ2/M)γ
8: end while

Output: θ

Remark 1: In Algorithm 1, σ0, σmin, and c are the initial
value, the final value, and the reduction factor for σ, respec-
tively, K is the number of inner-loop iterations, and γ is the
learning rate.

Remark 2: Since f̄ : Cε × Cε → R satisfies f̄(θ,θk) ≥
f(θ), f̄(θk,θk) = f(θk) for θ,θk ∈ Cε, f̄(θ,θk) is so-called
majorization function of f(θ) [22]. Therefore, our algorithm
is a type of majorization-minimization algorithms [21].

Remark 3: According to the proximal operator definition,
(8) can be rewritten as θk+1 = proxγg(θk), where g is an
indicator function. So, our method can be considered as a
proximal method for non-convex optimization [20].

C. Convergence Analysis

We will now assess the bound of the parameter γ to
guarantee convergence of the iterations in (7) through the
following theorem.

Theorem 1: Let f(θ) = ‖θ‖σ . Then, the sequence {θk}
in (8) converges to a stationary point of f . To guarantee
convergence, parameter γ should satisfy

0 < γ ≤ σ2

M
. (9)

Proof: According to (7), the iterations θk+1 can be
written as the associated algorithm

θk+1 = argmin
θ

{
∇T ‖θk‖σ (θ−θk)+

1

2γ
‖θ − θk‖22

}
. (10)

Since θk+1 is the minimizer of (10)

∇T ‖θk‖σ (θk+1 − θk) +
1

2γ
‖θk+1 − θk‖22 ≤ 0. (11)

On the other hand, by (6) for minimum upper-bound of f(θ)
at the point θk, we have

‖θk+1‖σ ≤ ‖θk‖σ+∇T ‖θk‖σ (θk+1−θk)+
L

2
‖θk+1 − θk‖22

(12)
where L is the Lipschitz constant of the ∇‖θ‖σ and according
to Lemma 2, L = M/σ2.

Adding (11) and (12) results in

f(θk+1) ≤ f(θk)− (
1

2γ
− M

2σ2
) ‖θk+1 − θk‖22 (13)

which implies that the sequence {f(θk)}∞0 is decreasing if
0 < γ ≤ σ2/M . Since f is bounded from below (‖θ‖σ ≈
‖θ‖0) and decreasing, we conclude that {f(θk)}∞0 converges.

Summing (13) over all k ≥ 0 leads to
∞∑
k=0

{
(

1

2γ
− M

2σ2
) ‖θk+1 − θk‖22

}
≤ f(θ0)− f(θ∞). (14)

It is clear that right-hand side of (14) is finite and non-negative.
Necessarily, θk+1 → θk and therefore, {θk}∞0 converges.

Furthermore, since θk+1 is the minimizer of (10), we have

∇‖θk‖σ +
1

γ
(θk+1 − θk) = 0. (15)

Since θk+1 → θk, so ∇‖θk‖σ → 0. This means that as
k →∞, θk → θ∗ where θ∗ is a stationary point of f .

D. Tight Wavelet Frame

At each iteration of the algorithm, the following constrained
minimization problem needs to be solved:

min
θ

1

2

∥∥θ − θ̄∥∥2
2

subject to ‖y −Wθ‖2 ≤ ε (16)

where θ̄ = θ−γ∇‖θ‖σ and ε denotes the error tolerance. To
solve (16), we derive the Lagrangian with multiplier λ in the
form

L(θ, λ) =
1

2

∥∥θ − θ̄∥∥2
2

+ λ(‖y −Wθ‖22 − ε
2). (17)

Karush-Kuhn-Tucker conditions imply the following optimal-
ity conditions:

θ∗ = (I + 2λ∗WTW)−1(θ̄ + 2λ∗WTy)

‖y −Wθ‖22 = ε2

λ∗ ≥ 0

(18)

and after substitutions, we obtain the following equation∥∥y −W(I + 2λ∗WTW)−1(θ̄ + 2λ∗WTy)
∥∥2
2

= ε2. (19)

Generally there is no closed-form solution for this nonlinear
equation, unless W is a tight frame.

According to Lemma 1, if a wavelet matrix is a tight frame
then WWT = AI. By applying the matrix inversion lemma,
we obtain: (I+2λ∗WTW)−1 = I−(2λ∗/(1+2λ∗A))WTW,
which by combining (19) and (18), leads to

λ∗ =
1

2A
max

{∥∥y −Wθ̄
∥∥
2

ε
− 1, 0

}
θ∗ = θ̄ +

2λ∗

1 + 2λ∗A
WT (y −Wθ̄)

. (20)

Since this approach simplifies the computations, in this study,
we consider only tight wavelet frames for the construction of
the WN wavelet matrix. It is worth mentioning that, if ε =
0 the final solution of the algorithm is given by θ̄ = θ −
γ∇‖θ‖σ . In this situation, the algorithm is indeed a gradient
descent with step-size γ (similar to SL0).
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IV. SIMULATION RESULTS

In WN equation (1), di = [ai1 , · · · , ain ]T ,b =
[b, · · · , b]T1×n with a > 1 and b > 0 are considered [16]. One
dimensional mother wavelet admissibility theorem for tight
wavelet frame [17] states that the frame bound is equal to

A =
2π

b ln a

∫∞
0
ω−1

∣∣∣ψ̂(ω)
∣∣∣2 dω, where ψ̂(ω) is the Fourier

transform of ψ(x). Since in the multidimensional case, the
wavelet function is the tensor product of one-dimensional
mother wavelets [16], the tight frame bound is nA, where
n is the WN input dimensionality. As is customary in the
WN literature, we use the Mexican hat as the mother wavelet
function in the construction of SWN. To take advantage of the
Mexican hat tight wavelet frame, we are confined to choose
{1 < a ≤ 20.25} [17, Ch. 3, p. 71] or {a = 2, 0 < b ≤ 0.75}
[17, Ch. 3, p. 76]. In our experiments, we used MATLAB 9.4
on a PC with Intel(R) Core(TM) i7 CPU 930 (2.80 GHz) and
12 GB RAM on a 64 bit Windows 10 operating system.

As an example, suppose the nonlinear two inputs, two
outputs system is given by

y
(p)
1 =

1

1 + (y
(p−1)
1 )2

(0.1y
(p−1)
1 + 0.9u

(p−2)
1 + 0.1u

(p−3)
2 )

y
(p)
2 =

1

1 + (y
(p−1)
2 )2

(0.5y
(p−1)
2 + 0.3u

(p)
1 + u

(p−1)
2 )

(21)

where, the pairs (u(p)1 , u
(p)
2 ) and (y(p)1 , y

(p)
2 ) are the input and

output samples, respectively. An additive independent and
identically distributed (i.i.d.) noise is also considered for both
system outputs where the noise term is uniformly distributed
in [−ε, ε]. For identifying this system, two SWN with n = 3
inputs and one output is formed. The inputs of the first SWN
are x

(p)
1 = [y

(p−1)
1 , u

(p−2)
1 , u

(p−3)
2 ]T and the inputs of the

second SWN are x
(p)
2 = [y

(p−1)
2 , u

(p)
1 , u

(p−1)
2 ]T . 900 points

are used for training the network. Half of them are uniformly
distributed on [−1, 1] and the remaining are sinusoids of the
form 1.05 sin(πk/45).

u
(p)
1 =

{
sin (πp25 ) p < 250
0.5 250 ≤ p < 500
−0.5 500 ≤ p < 750
0.1(sin (πp25 ) + sin (πp32 ) + 2 sin (πp10 )) 750 ≤ p < 1000

(22)

u
(p)
2 =

{
0.6 sin (πp25 ) p < 250
0.3 250 ≤ p < 500
−0.3 500 ≤ p < 750
0.01(sin (πp25 ) + sin (πp32 ) + 20 sin (πp10 )) 750 ≤ p < 1000

(23)

The Mexican hat wavelet ψ(x) = (1 − x2)exp(−0.5x2)
for each dimension is computed for all input samples by
choosing a = 20.25, b = 2 and the scale levels over
the interval [−20, 20]. Since the Mexican hat is a com-
pactly supported wavelet by the support [−4, 4], it can be
shown that [6] the variation range for the shift parameter
is ti ∈ [−5, 36]. So, the number of wavelet frame bases is
range[−20, 20]× range[−5, 36] = 1722 and the frame bound
is A = 6π/ ln 2. For running Algorithm 1, we considered
fσ(θi) = exp(−(θi/σ)2), M = 2, σ0 = 0.5, σmin = 0.05,
c = 0.8, and γ = 0.1. The algorithm is terminated when
it reaches K = 15 or when a given noise level threshold
(ε = 0.1, 0.25) is met.

After SWN construction and determination of the coefficient
vector, (22) and (23) test signals are used for testing the
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Fig. 1. Test results of the proposed SWN for the actual and approximated
signals: (a) the output y1 and (b) the output y2.

TABLE I
RMSE COMPARISON OF SOME WNS OVER THE TESTING DATA

Noise Level (ε = 0.1) Noise Level (ε = 0.25)
Output 1 Output 2 Output 1 Output 2

WN Type wavelons RMSE wavelons RMSE wavelons RMSE wavelons RMSE

AWN [15] 52 0.094456 56 0.097132 49 0.098001 51 0.099985

FGWN [18] 40 0.022512 43 0.030467 35 0.031605 37 0.041413

FGWN [11] 23 0.022193 26 0.029117 19 0.027884 22 0.040955

FGWN [24] 22 0.021033 26 0.028111 19 0.026981 21 0.039826

SWN 15 0.015521 19 0.021266 12 0.021703 14 0.033379

performance of the SWN models. The performance of the
SWN outputs for the test signals are presented in Fig. 1.
The SWN performance was evaluated through simulations
and compared against several WN models using the same
training and testing procedure. The results in terms of the
number of network wavelons and root mean square error
(RMSE) between the actual and predicted output signals for
two different noise levels are given in Table I.

The AWN [15] is trained using the backpropagation algo-
rithm in the publicly available wavenet MATLAB Toolbox
[23]. In the FGWNs, instead of using the proposed algo-
rithm, the orthogonal least-squares method [11], [18] or the
D-optimality orthogonal matching pursuit algorithm [24] is
applied. It can be seen that the number of the proposed SWN
wavelons are much lower than the other methods, while at the
same time our models result in considerably smaller RMSE
for both system outputs. Here the sparsity concept is directly
fed to the model construction, which provides a parsimonious
model with good generalization performance.

V. CONCLUSION

In this letter, we made a novel contribution by looking at
wavelet networks from a sparse linear regression point of view
and proposed a sparse wavelet network (SWN). In an SWN,
the sparsity concept is equivalent to the number of hidden layer
neurons which are specified from the sparse solution of a linear
regression model. Our sparse solution algorithm is based on
`0 norm approximation with a non-convex gradient-Lipschitz
function. The function non-convexity can be controlled by
varying the smoothing parameter in each algorithm iteration
[14]. The proposed SWN has a solid mathematical founda-
tion with low complexity which can be utilized in practical
implementations.
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