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Abstract Malignant melanoma is the deadliest form of
skin cancer, and has, among cancer types, one of the most
rapidly increasing incidence rates in the world. Early diag-
nosis is crucial, since if detected early, its cure is simple.
In this paper, we present an effective approach to melanoma
identification from dermoscopic images of skin lesions based
on ensemble classification. First, we perform automatic bor-
der detection to segment the lesion from the background
skin. Based on the extracted border, we extract a series of
colour, texture and shape features. The derived features are
then employed in a pattern classification stage for which we
employ a novel, dedicated ensemble learning approach to
address the class imbalance in the training data and to yield
improved classification performance. Our classifier com-
mittee trains individual classifiers on balanced subspaces,
removes redundant predictors based on a diversity measure
and combines the remaining classifiers using a neural net-
work fuser. Experimental results on a large dataset of der-
moscopic skin lesion images show our approach to work
well, to provide both high sensitivity and specificity, and our
presented classifier ensemble to lead to statistically better
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recognition performance compared to other dedicated clas-
sification algorithms.
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1 Introduction

Malignant melanoma is the deadliest form of skin can-
cer, and has, among cancer types, one of the most rapidly
increasing incidence rates in the world. For example, in the
United States 76,690 cases and 9,480 deaths are predicted
for 2013 alone [24]. Early diagnosis of melanoma is partic-
ularly important since melanoma can be cured with a simple
excision if detected early.

Dermoscopy has become one of the most important tools
in diagnosing melanoma and other pigmented skin lesions. It
is a non-invasive skin imaging technique that involves optical
magnification, along with optics to minimise surface reflec-
tion, making subsurface structures more easily visible when
compared to conventional clinical images [2]. This in turn
reduces screening errors and provides greater differentia-
tion between difficult lesions such as pigmented Spitz nevi
and small, clinically equivocal lesions [25]. However, der-
moscopy may also lower the diagnostic accuracy in the hands
of inexperienced dermatologists [3]. Thus, in order to min-
imise diagnostic errors resulting from the difficulty and sub-
jectivity of visual interpretation, computerised image analy-
sis techniques are highly sought after [11].

Computer-aided approaches to diagnose melanoma typi-
cally proceed in three main stages: border detection, feature
extraction and classification [6]. In this paper, we also follow
this strategy, but pay particular attention to the final stage,
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i.e. the pattern classification task. We first perform automatic
border detection using a variant of the JSEG image segmen-
tation algorithm. Based on the obtained lesion definition, we
then extract a set of shape features, while colour and tex-
ture features are calculated based on a division of the image
into clinically significant regions using a Euclidean distance
transform.

The obtained features are then employed in a pattern clas-
sification stage. For this, typically a (single) classifier is
trained and applied. In this paper however, in order to pro-
vide improved and more robust performance, we use a mul-
tiple classifier system rather than relying on a single predic-
tor. Our proposed novel ensemble approach to classification
is carefully constructed for this purpose. In particular, we
address the present class imbalance which stems from the
fact that far fewer malignant samples are available for train-
ing compared to benign cases. We do this by training indi-
vidual classifiers on subspaces that are balanced, and com-
bine their decisions using a neural network fuser. Redundant
classifiers are removed, based on a fuzzy diversity measure,
to arrive at a less complex classification system that at the
same time delivers improved recognition performance. The
selected classifiers are then combined using a trained fuser
implemented using neural networks. Experimental results on
a large dataset of 564 skin lesion images show our approach
to work well, giving a sensitivity of 93.76 % coupled with a
specificity of 93.84 %, and also confirm our approach to sta-
tistically outperform several state-of-the-art ensemble clas-
sifiers dedicated to imbalanced classification.

The remainder of the paper is organised as follows. Sec-
tion 2 explains how we segment the lesion from the back-
ground and defines the features that we extract. Section 3
then presents in detail our ensemble approach for skin lesion
classification and hence melanoma identification. Section 4
gives experimental results, while Sect. 5 concludes the paper.

2 Segmentation and feature extraction

Automated border detection is typically the first step in the
automated analysis of dermoscopy images [7] and is crucial
for two main reasons. First, the border structure provides
important information for accurate diagnosis, since clinical
features, such as asymmetry and border irregularity, can be
calculated directly from the border. Second, the extraction
of other important clinical features such as atypical pigment
networks, globules, and blue-white areas, critically depends
on the accuracy of border detection.

In our approach, we perform automated border detec-
tion using the technique from [5] which in turn is based on
the JSEG algorithm [10]. Following a pre-processing step
to smooth the image and a colour quantisation stage, the
image is thresholded to arrive at an approximate outline of

the lesion. This is further refined using region growing on
a local homogeneity channel and colour-based region merg-
ing. Finally, in a post-processing step, background regions
and isolated areas are removed and the remaining regions
merged to give the final segmentation.

From the segmented lesion area, we then extract a series
of features including shape, colour and texture features,
where some of the colour and texture features are calculated
based on the definition of three significant image regions—
lesion, inner and outer periphery—which are obtained using
a Euclidean distance transform. In particular, the following
descriptors are extracted (for details see [6]):

• Shape features: lesion area; aspect ratio of lesion;
two asymmetry features; compactness; maximum lesion
diameter; eccentricity; solidity; equivalent diameter; rec-
tangularity and elongation of the object-oriented bound-
ing box.

• Colour features: mean and standard deviation of each
channel in RGB, rgb, HSV, l1l2l3 and CIEL*u*v* colour
spaces; ratios and differences of mean and standard devi-
ation from the different image regions for all colour
spaces; two colour asymmetry features each for R, G,
and B channels; centroidal distances for each channel
of all colour spaces; CIEL*u*v* L1 and L2 histogram
distances between the different image regions.

• Texture features: maximum probability, energy, entropy,
dissimilarity, contrast, inverse difference, inverse differ-
ence moment, and correlation of the normalised gray-
level co-occurrence matrix [13] (averages over the four
major orientations); ratios and differences of the same co-
occurrences features from the different image regions.

In total, we end up with 11 shape features, 354 colour features
and 72 texture features for each image.

3 Melanoma classification

3.1 Pattern classification

A pattern classification algorithm� maps the feature spaceX
to the set of class labels M. Typically, for melanoma analysis
a single classifier is employed for this decision making stage.

In contrast, in this paper we propose the use of a multiple
classifier system (MCS), also referred to as ensemble classi-
fiers, for enhanced and more robust classification. MCSs can
improve the performance of the best base classifier, since they
can exploit the strengths and eliminate the weaknesses of the
individual classifiers [19] as illustrated for a toy problem in
Fig. 1.

Assume that we have n classifiers {�(1), �(2), . . . , �(n)}.
For a given object x ∈ X , each individual classifier makes
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Fig. 1 Decision areas of three different classifiers for a dichotomy toy
problem

Fig. 2 Schematic of a multiple classifier system

a decision for class i ∈ M = {1, . . . , M} based on the
values of discriminants. Let F (l)(i, x) denote a function that
is assigned to class i for a given value of x , and that is used
by the l-th classifier �(l). The combined ensemble classifier
�, illustrated in Fig. 2, makes a decision based on [29]

� (x) = i if F̂ (i, x) = max F̂ (k, x)
k∈M

, (1)

where

F̂ (i, x) =
n∑

l=1

w(l)F (l) (i, x) and
n∑

i=1

w(l)(i) = 1. (2)

The weights can be set dependent on the classifier and class
number: weight w(l)(i) is assigned to the l-th classifier and
the i-th class.

The novel ensemble approach to classification that we
present in this paper is carefully constructed and adapted
to the problem at hand in order to lead to improved perfor-
mance not only compared to single predictors but also in
comparison with other MCSs from the literature.

3.2 Imbalanced classification

In medical decision making problems such as the one we are
addressing in this paper, datasets are often predominantly

Fig. 3 Example of bias towards the majority class in linear classifi-
cation of an imbalanced problem. The established decision boundary
(line) would give poor prediction for minority class samples

composed of “normal” or benign examples with only a small
percentage of “abnormal” or malignant cases. This class
imbalance often presents a challenge for classification algo-
rithms [8]. Since the performance of classifiers is typically
evaluated and tuned based on overall classification accuracy,
this leads to predictors that are biased towards the major-
ity class as illustrated in Fig. 3, while in medical diagnosis
it is clearly the minority (malignant) class that is of higher
importance.

Techniques that address the problems associated with
imbalanced datasets can in general be divided into data level
approaches, classifier level approaches and cost-sensitive
approaches. Data level approaches work, in a pre-processing
stage, directly on the data space, and attempt to re-balance the
class distributions, often through oversampling or undersam-
pling. Oversampling methods [8] however may also lead to
other problems, such as class distribution shift when running
too many iterations (since new artificial objects are being cre-
ated on the basis of previously introduced samples). Classifier
level approaches try to adapt existing algorithms to the prob-
lem of imbalanced datasets and bias them towards favouring
the minority class. One possibility is to perform one-class
classification, which can learn the concepts of the minor-
ity class by treating majority class objects as outliers [15].
Cost-sensitive approaches can use both data modifications
(by adding a specified cost to the misclassification) and mod-
ifications of the learning algorithms (to adapt them to the
possibility of misclassification) [23]. Here, a higher misclas-
sification cost is assigned for minority class objects and clas-
sification performed so as to reduce the overall learning cost.
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Ensemble classifiers addressing class imbalance typically
combine an MCS algorithm with one of the above techniques.
Examples of a combination of oversampling and classifier
ensembles are SMOTEBagging [28] and SMOTEBoost [9]
which introduce new objects into each of the bags/boosting
iterations separately. In contrast, in Underbagging [21] base
classifiers are trained on downsampled data sets to overcome
any existing class imbalance. IIvotes [4] is an approach which
fuses a rule-based ensemble with a SPIDER pre-processing
scheme so as to be more robust with respect to atypical data
distributions in minority classes and to automatically find
an optimal number of bags. A fusion of MCSs and one-
class classifiers constructed with respect to maintaining their
diversity has also been shown to be effective for imbalanced
classification [17]. Cost-sensitive MCSs are mostly based
on adjusting the object weights in a boosting scheme [26],
although ensembles based on cost-sensitive decision trees
have also been exploited [18]. EasyEnsemble [20] uses bag-
ging as the main concept; since for each of the bags AdaBoost
is employed as the base model, it can be viewed as an ensem-
ble of ensembles.

3.3 Ensemble classification of skin lesion features

In our ensemble approach, we address class imbalance by
training classifiers on balanced object subspaces [16]. We
thus construct an MCS that is dedicated to imbalanced clas-
sification, and proceed in four main steps:

1. Creation of a number of subspaces consisting of minority
class and under-sampled majority class objects.

2. Construction of a pool of classifiers by training a single
classifier on each of the subspaces. Optionally, a feature
selection algorithm can be employed in this stage which
is applied independently for each of the subspaces.

3. Diversity-based pruning of a pool of classifiers to select
complementary models for the committee.

4. Trained fusion of the outputs of the elementary classifiers.

In the following we explain these steps in detail.

3.3.1 Space partitioning

Using classical approaches, the majority class is typically
identified well, while classification for the minority class
is often poor. In our approach, we address this problem
by object space division where we first construct a num-
ber of balanced subspaces and then train one base classi-
fier on each subspace to create a pool of predictors �� =
{�(1), �(2), . . . , �(n)}.

We use space partitioning to balance the unfavourable
class distribution using a random undersampling method.
Each of the newly created subspaces contains a smaller num-

ber of objects, randomly drawn from the dataset, so that the
number of objects in each of the subspaces is equal for both
classes. Objects of the minority class are randomly sampled
and removed from the training set. Subspaces are then created
as long as there are objects in the majority set.

3.3.2 Classifier construction

Each of the generated subspaces forms the basis of one of
the classifiers in the committee. While in principle any clas-
sification algorithm can be used as base classifier, in this
paper we utilise support vector machines (SVMs) [27]. Each
SVM uses a polynomial kernel and we perform classifier tun-
ing [14] to obtain optimal parameters for the degree of the
polynomial (in the range [1; 6]) and the cost parameter (in
the range [0; 10]).

In addition, we perform feature selection for each of the
subspaces. Therefore, in each of the subspaces the derived
feature subsets may vary, leading to an increased over-
all diversity of the pool of classifiers. We employ the fast
correlation-based feature filter (FCBF) [30], which considers
the relations between features-classes and between pairs of
features. The algorithm first uses a ranking algorithm based
on the symmetric uncertainty coefficient index to estimate
class-feature relevance, and to identify a threshold coeffi-
cient for selecting predominant features. In the second part,
features that are redundant to the predominant features are
removed.

3.3.3 Classifier selection

Different base classifiers will have different areas of com-
petence and hence may provide different contributions to
the committee. Therefore, careful classifier selection should
be conducted in order to choose the most valuable individ-
ual models. This can be performed based on the ensemble’s
diversity as a decision criterion, so as to choose predictors that
are as different as possible from each other. This is motivated
by the fact, that adding similar classifiers to the committee
does not improve its quality but only increases its complex-
ity. On the other hand, diverse models might be mutually
supplementary and hence allow to exploit different areas of
competence.

In our approach, we do this based on a non-pairwise
(global) measure of diversity, in particular a fuzzy Shannon
diversity measure [12]. Assuming that there are n classifiers
in the pool, of which s classifiers correctly classify a given
training object x j , we can define a fuzzy membership func-
tion μx j = s

n for a given object, with 0 ≤ μx j ≤ 1. The
obtained membership function is given to a Shannon function
to measure its fuzziness and thus acts as a diversity measure
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DI VS(��) = {
(x j , μx j )|x j ∈ X

} →
∑

j

{−μx j ln(μx j )

−(1 − μx j ) ln(1 − μx j )
}
. (3)

The measure gives a value in the interval [0, 1], where 0 cor-
responds to identical classifiers and 1 to the highest possible
diversity respectively.

Diversity-based pruning is achieved via an exhaustive
search over all possible combinations of committee mem-
bers to identify the ensemble with maximal diversity.

3.3.4 Classifier fusion

Classifier fusion is an important aspect of classifier ensem-
bles, and the choice of fusion method, which is responsible
for the collective decision making process, is hence crucial.
In our approach, we make decisions based on discriminant
functions as indicated in Eq. (2) with the fusion method deter-
mining the weights w(l)(i) in there.

The trained fuser we employ is a neural fuser implemented
as a one-layer perceptron [29] as illustrated in Fig. 4. The
values of support functions given by each of the base classi-
fiers serve as input, while the output is the weighted support
for each of the classes. One perceptron fuser is constructed
for each of the classes, and may be trained with any stan-
dard procedure used in neural network learning (we use the
Quickprop algorithm). The input weights established during
the learning process are then the weights assigned to each of
the base classifiers.

4 Experimental results

In our experiments, we use a dataset of 564 skin lesion images
which was originally introduced in [6]. The samples stem
from three university hospitals (University of Graz, Uni-
versity of Naples and University of Florence) [2] and from
the Sydney Melanoma Unit [22]. All images are true-colour
images, with a typical resolution of 768 × 512 pixels, from
which the 437 features from Sect. 2 are extracted. Of the 564
cases, 88 are melanoma while the remaining 476 are benign,
justifying our dedicated approach to address class imbalance.

In order to put the obtained results into context, we have
also performed classification using a single SVM (of the same
type as used in our ensemble) and an SVM combined with
SMOTE [8] to address class imbalance.

For our proposed ensemble, we evaluate four different
configurations to be able to judge the significance of the var-
ious components of our algorithm:

• the ensemble without feature selection, without pruning
and using majority voting instead of the proposed neural
fuser (noFS,noPR,MV);

• the ensemble with feature selection, without pruning and
using majority voting (FS,noPR,MV);

• the ensemble with feature selection, with pruning and
using majority voting (FS,PR,MV);

• the proposed ensemble, i.e. with feature selection, pruning
and neural network based classifier fusion.

In addition, we implemented several classifier ensem-
bles that are dedicated to imbalanced classification, namely
SMOTEBagging [28], SMOTEBoost [9], IIvotes [4],

Fig. 4 Classifier fuser implemented as a one-layer perceptron
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EasyEnsemble [20] and Underbagging [21]. For all ensem-
bles, we use the same kind of base classifiers, i.e. support
vector machines with polynomial kernels.

A combined 5 × 2 cross-validation F test [1], with a sig-
nificance level of 0.05 and repeated ten times, was carried
out to assess statistical significance of the obtained results in
terms of sensitivity and overall accuracy. Since clearly there
is a trade-off between sensitivity and specificity (and hence
accuracy), to give an overall measure, a classifier is assumed
as statistically significantly better compared to another one
if one of the following is true:

• its sensitivity is statistically significantly better (as evalu-
ated by a 5 × 2 CV F test) and its overall accuracy is not
statistically significantly worse (again, as evaluated by a
5 × 2 CV F test);

• its overall accuracy is statistically significantly better (as
evaluated by a 5 × 2 CV F test) and its sensitivity is not
statistically significantly worse (again, as evaluated by a
5 × 2 CV F test).

The results of our experimental comparison are given in
Table 1, which lists sensitivity (i.e. the probability that a
case identified as malignant is indeed malignant), specificity
(i.e. the probability that a case identified as benign is indeed
benign) and overall classification accuracy (i.e. the percent-
age of correctly classified patterns) for each approach. In
addition, we provide the results of the statistical significance
test in Table 2.

Looking at the results, we can first of all notice that a
canonical approach to classification such as a standard SVM,
while leading to a reasonable overall classification accuracy,
is not appropriate for the problem at hand, as the rather low
sensitivity of only about 25 % demonstrates. Addressing the

Table 1 Classification results for all tested algorithms

Sensitivity Specificity Accuracy

SVM 25.84 92.63 82.09

SVM + SMOTE 91.34 92.25 92.10

SMOTEBagging 92.54 93.06 92.98

SMOTEBoost 91.85 92.89 92.73

IIVotes 93.05 93.56 93.48

EasyEnsemble 91.85 92.89 92.73

UnderBagging 93.39 93.12 93.16

Ensemble (noFS, noPR, MV) 87.24 86.36 86.50

Ensemble (FS, noPR, MV) 89.30 90.45 90.26

Ensemble (FS, PR, MV) 90.86 91.72 91.58

Proposed ensemble 93.76 93.84 93.83

Table 2 Results of statistical significance tests
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SVM − − − − − − − − − −
SVM+SMOTE + − − − + + −
SMOTEBagging + + + − + − + + + −
SMOTEBoost + − − − + + + −
IIVotes + + + + + + + + −
EasyEnsemble + − − − + + + −
UnderBagging + + + + + + + + −
Ensemble (noFS,noPR,MV) + − − − − − − − − −
Ensemble (FS,noPR,MV) + − − − − − − + − −
Ensemble (FS,PR,MV) + − − − − − + + −
Proposed ensemble + + + + + + + + + +

A + signifies that the algorithm listed in this row statistically outper-
forms the algorithm listed in this column, a − indicates a statistically
inferior performance

class imbalance through oversampling immediately leads to
significantly improved performance—combining an SVM
with SMOTE gives a sensitivity of about 91 % coupled with
a specificity of about 92 %.

Further improved performance is achieved through appli-
cation of ensemble techniques. All implemented approaches
from the literature, i.e. SMOTEBagging, SMOTEBoost, IIv-
otes, EasyEnsemble, and Underbagging, achieve both bet-
ter sensitivity and better specificity although the difference
is not always statistically significant. Of these approaches,
Underbagging performs best. This confirms that ensemble
classifiers indeed lead to better classification.

For our proposed ensemble, we first inspect the influence
of the various components of our approach. The ensemble
without feature selection or pruning and based on classifier
fusion using majority voting gives a sensitivity of 87.24 %
with a specificity of 86.35 % and thus, while performing bet-
ter than a single classifier, clearly lacks behind the other MCS
approaches.

Classification performance improves through application
of the integrated feature selection step. Feature selection thus
not only allows for less complex and hence more efficient
base classifiers (of the 437 features on average 74 are retained
as input for the classifiers) but also supports improved recog-
nition yielding a sensitivity of 89.30 % and a specificity of
90.45 %. This is due to identifying significant features but
also to the increased diversity of the ensemble since feature
selection is performed separately for each classifier; while the
average diversity of the ensemble without feature selection
was 0.526, afterwards it increased to 0.659.
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A further gain is obtained by employing a pruning stage to
remove redundant base classifiers. While the initial ensem-
ble comprises 11–13 classifiers (depending on the fold of
CV), the pruned ensembled consists of 6–7 predictors. At the
same time, sensitivity improves to 90.86 % and specificity to
91.72 %.

Clearly, the best classification results are achieved by the
full classifier that relies on an advanced trained fusion strat-
egy implemented as a neural network. The achieved sensitiv-
ity of 93.76 % and specificity of 93.84 % are both the highest
among all methods, while Table 2 shows that our method also
statistically outperforms all other approaches. This confirms
that each step of our carefully crafted ensemble is essential
for delivering good classification performance.

Overall, our experiments clearly demonstrate that a care-
fully constructed ensemble classifier provides a powerful
method for classifying skin lesion attributes, and that our pro-
posed approach, by effectively addressing the inherent class
imbalance and appropriate combination of feature selection,
classifier selection and classifier fusion, outperforms other
state-of-the-art classifier ensembles for this task.

5 Conclusions

In this paper, we have presented an effective method for
the automated identification of melanoma from dermoscopic
skin lesion images. We first segment the area of the lesion
using an approach based on thresholding, region growing and
region merging. Based on the delineated lesion area, we then
extract a set of shape features, while colour and texture fea-
tures are derived based on the definition of three clinically
important image areas obtained through a Euclidean distance
transform. Finally, the extracted features are analysed in a
pattern classification stage. For this, we employ a carefully
crafted ensemble classifier that addresses the encountered
class imbalance by training individual classifiers on balanced
subspaces. Non-contributing classifiers are removed based
on a fuzzy diversity measure, while the remaining predictors
are combined using a trained perceptron fuser. Based on a
dataset of 564 skin lesion images, our approach is shown to
work very well, giving a sensitivity of 93.76 % coupled with
a specificity of 93.84 %, while we further demonstrate that it
gives statistically better classification performance compared
to several state-of-the-art ensemble classifiers dedicated to
imbalanced classification.
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