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Abstract
This article analyzes various color quantization methods using multiple image quality assessment indices. Experiments 
were conducted with ten color quantization methods and eight image quality indices on a dataset containing 100 RGB color 
images. The set of color quantization methods selected for this study includes well-known methods used by many researchers 
as a baseline against which to compare new methods. On the other hand, the image quality assessment indices selected are 
the following: mean squared error, mean absolute error, peak signal-to-noise ratio, structural similarity index, multi-scale 
structural similarity index, visual information fidelity index, universal image quality index, and spectral angle mapper index. 
The selected indices not only include the most popular indices in the color quantization literature but also more recent ones 
that have not yet been adopted in the aforementioned literature. The analysis of the results indicates that the conventional 
assessment indices used in the color quantization literature generate different results from those obtained by newer indices 
that take into account the visual characteristics of the images. Therefore, when comparing color quantization methods, it is 
recommended not to use a single index based solely on pixelwise comparisons, as is the case with most studies to date, but 
rather to use several indices that consider the various characteristics of the human visual system.

Keywords Color quantization · Image quality assessment · Image processing · Color image

1 Introduction

There are numerous image processing operations that require 
the use of an image quality assessment (IQA) index to evalu-
ate the quality of the images generated. These include image 
compression, filtering, segmentation, fusion and color quan-
tization. Image quality is subjective in nature, as different 

people may perceive the same image differently. There are 
two types of IQA indices: subjective indices and objec-
tive indices. Subjective indices are based on the opinion of 
human observers, while objective indices use mathematical 
models.

Historically, objective IQA indices were primarily based 
on simple mathematical measurements, such as the distance 
between the corresponding pixels in the original and the 
modified images. One such IQA index is the mean squared 
error (MSE), which is by far one of the most widely used 
due to its computational simplicity. However, simple IQA 
indices like MSE do not always reflect the image distortions 
perceived by the human visual system (HVS). For example, 
two images may be considered by a human observer to be 
nearly identical, but their MSE may be large [1]. For this 
reason, more elaborate objective IQA indices have been 
proposed over the past three decades that attempt to model 
the mechanisms of the HVS [2, 3]. Objective IQA indices 
can be divided into two groups: full-reference indices [4] 
and no-reference indices [2, 5]. In the former, the original 
image is available for comparison with the modified image. 
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In contrast, in the latter, the quality of the modified image is 
predicted without having access to the original image.

MSE falls into the category of full-reference indices. 
Other well-known IQA indices in this group include the 
mean absolute error (MAE) and the peak signal-to-noise 
ratio (PSNR). Newer IQA indices in this group attempt to 
capture visual features of the image that are important to a 
human observer. Among these IQA indices are the structural 
similarity index (SSIM), the multi-scale structural similar-
ity index (MS-SSIM), and the visual information fidelity 
index (VIF).

Color quantization (CQ) is a common image processing 
operation that not only has practical applications in itself, 
but is also a preprocessing step for various other image pro-
cessing techniques [6]. Articles dealing with CQ methods 
generally use MSE to evaluate the error of the resulting 
images. MAE and PSNR are also used, although less fre-
quently. There are many articles that use only MSE as the 
IQA index [7–17]. There are a few articles that use only 
PSNR [18, 19]. Some articles employ both MSE and PSNR 
[20, 21], or MSE and MAE [22–25]. It is uncommon to 
find articles that use HVS-based IQA indices to compare 
CQ methods, although there are only a few such articles in 
the recent literature. For example, several articles use SSIM 
[26–28].

Recent studies on image quality demonstrate the need to 
use HVS-based IQA indices to better interpret the quality 
of the images from a human perspective, since such indices 
can measure the image quality consistently with subjective 
evaluations [3, 4, 29–31]. For this reason, it is interesting 
to compare the results of CQ methods using not only the 
traditional IQA indices, but also newer IQA indices that take 
into account the HVS characteristics.

The objective of this article is to compare the results 
obtained with the three most common IQA indices in CQ 
(MSE, MAE and PSNR) to the results obtained with more 
recent IQA indices. As a result of the study, it will be pos-
sible to determine if these three IQA indices are adequate to 
assess the quality of a new CQ method or if they should be 
complemented with newer and more elaborate IQA indices 
that are less common in the current CQ literature. For this 
purpose, this article evaluates eight IQA indices to compare 
the effectiveness of ten CQ methods.

The CQ methods selected for this study are the following: 
Median-cut (MC) [32], Octree (OC) [33], Variance-based 
method (WAN) [17], Binary splitting (BS) [34], Greedy 
orthogonal bi-partitioning method (WU) [35], Neuquant 
(NQ) [36], Adaptive distributing units (ADU) [7], Variance-
cut (VC) [22], WU combined with Ant-tree for color quan-
tization (ATCQ), (WUATCQ) [37] and BS combined with 
iterative ATCQ (BSITATCQ) [38]. On the other hand, the 
IQA indices selected are the following: MSE, MAE, PSNR, 
SSIM, MS-SSIM, VIF, the universal image quality index 

(UQI) and the spectral angle mapper index (SAM). With the 
exception of WUATCQ and BSITATCQ, these CQ meth-
ods are classical and many authors use them as benchmarks 
against new CQ methods. WUATCQ and BSITATCQ were 
included in the analysis because they are methods that try 
to improve the solution obtained by two classical methods 
(WU and BS, respectively). The articles that describe both 
methods compare them with the originals using only MSE, 
so it seems interesting to compare them using other IQA 
indices. On the other hand, the selected IQA indices are 
popular in the image processing literature due in part to their 
publicly available implementations. Therefore, the selected 
IQA indices can be easily used by other researchers.

The experiments in this study were performed on images 
from the publicly available CQ100 dataset [39], which 
includes 100 color images. The results generated in this 
study will be published in the upcoming version of CQ100. 
Since the chosen CQ methods are deterministic, these results 
may be used by other researchers to assess the effectiveness 
of new CQ methods.

There are several articles that compare various IQA indi-
ces, but do not consider the specific problem of CQ. This 
includes articles that compare the results of several IQA 
indices when considering image acquisition and recon-
struction strategies [40], image restoration [41], and train-
ing deep neural networks for several low-level vision tasks 
[42]. However, there is a recent work that compares several 
IQA indices calculated on quantized images [43]. The said 
article compares nine IQA indices (PSNR, UQI, SSIM, MS-
SSIM, VIF, noise quality index, signal-to-noise ratio (SNR), 
VSNR, weighted SNR) applied to distorted images obtained 
from two datasets and shows that PSNR outperforms SSIM. 
The research described in [43] is different from the proposal 
presented in this article, since it used subjective scores of the 
distorted images (provided by human observers) to evaluate 
the results obtained by IQA indices.

Since many IQA indices have been proposed over the 
years [44], it is necessary to choose some of them to carry 
out our study. The best would be to use the indices that 
have generated the best results for the image processing 
task under consideration, but there is no clear information 
on this [45]. As an example, the results presented in [46] 
compare MSE, PSNR, UQI, and SSIM, among other IQA 
indices, and show that there is no index that generates good 
results for all the types of distortions that can be present in 
an image. Therefore, as there is no universal set of indices 
suitable for CQ, we have used several criteria to make the 
selection. On one hand, we have selected indices that are 
commonly used when applying various image processing 
techniques. On the other hand, a higher priority was given 
to indices with publicly available implementations, which 
makes it easier for other researchers to compare their results 
with ours. In addition, because in the CQ operation both 
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the original image and the one resulting from processing 
are available, we consider that it is interesting to apply full-
reference quality indices. After considering this first set of 
general criteria, more specific criteria were considered to 
choose the specific indices.

MSE, MAE, and PSNR are the most used indices in the 
literature regarding CQ, so it is necessary to consider them. 
While these three indices are based on a pixel-by-pixel com-
parison between the original and the quantized image, the 
other selected indices use other information. SSIM, UQI, 
and MS-SSIM quantify the extent to which the image struc-
ture has been distorted; VIF is based on the mutual informa-
tion between the original and quantized images; while SAM 
compares image spectra.

As noted above, SSIM is the index used in some CQ arti-
cles that are not limited to the use of MSE, MAE, or PSNR. 
SSIM has received a lot of attention since its inception and 
several variants have been proposed that attempt to improve 
it. This index has produced good results in various image 
processing operations and has been shown to improve MSE 
and PSNR results [47]. On the other hand, the UQI index is 
a particular case of the SSIM index, which can be calculated 
with lower computational cost. Therefore, it is interesting 
to check if UQI generates results similar to those of SSIM, 
since this would allow the use of an index that can be cal-
culated more quickly, which would allow it to be integrated 
more efficiently in CQ-related applications. The results 
published by several authors indicate that UQI outperforms 
MSE and PSNR for several types of image distortions [4, 
48]. As far as MS-SSIM is concerned, it is an improved ver-
sion of SSIM calculated at a variety of scales and considers 
a wider range of viewing distances. Furthermore, various 
authors concluded that it generates better results than SSIM 
[49].

VIF has been tested across a wide variety of image dis-
tortion types, showing good results. In addition, several 
researchers concluded that VIF generates better results than 
PSNR, MS-SSIM, SSIM, and UQI [50–52]. A distinctive 
property of VIF over other IQA indices is that it can handle 
cases where the distorted image is visually superior to the 
original image [42].

Spectral information is considered an important aspect 
of human vision [53]. As noted above, SAM determines 
the spectral similarity between the original and quantized 
images. This index is widely used in hyperspectral image 
analysis, computer vision, and remote sensing applications. 
The popularity of this index is mainly due to its simplicity 
and geometrical interpretability. It can be computed easily 
and quickly, and it is insensitive to illumination.

The main contribution of this article is the comparison 
of several CQ methods (including very popular methods) 
using a large test set and several IQA indices that take into 
account different image characteristics. The article compares 

the results of ten CQ methods, using eight IQA indices and 
a test set with 100 images. The tests carried out allow us to 
conclude that the most widely used IQA index in the CQ 
literature, the MSE index, does not generate results com-
parable to those obtained by the other indices analyzed. 
Therefore, it seems appropriate that when evaluating new 
CQ methods, several IQA indices are used to compare them 
with existing CQ methods. On the other hand, to help other 
researchers in the comparison of CQ methods, the IQA 
index of the quantized images generated by each CQ method 
(32000 values in total) is included as supplementary mate-
rial to the article and will also be published in the upcoming 
version of CQ100.

The rest of the article is organized as follows. Section 2 
briefly describes the CQ methods considered in the article, 
while Sect. 3 describes the IQA indices that will be used. 
Then, Sect. 4 discusses the experimental results and finally 
Sect. 5 presents the conclusions of the investigation.

2  Color quantization methods

Consider a color image whose pixels are distributed over 
H rows and W columns. If the RGB color space is used 
to represent the image, each pixel pij , with i ∈ [1,H] and 
j ∈ [1,W] , is defined by three integer values from the inter-
val [0, 255] that represent the amount of red (R), green (G) 
and blue (B) color of the pixel: pij = (Rij,Gij,Bij).

The goal of a CQ method is to obtain a new image, called 
a quantized image, that has a limited number of distinct 
colors, q, but is visually as similar as possible to the original 
image. In other words, while the dimensions of the two 
images are identical, the size or number of colors of the 
palette used to represent the original image is much larger 
than the size of the palette used to represent the quantized 
image. Let p�

ij
= (R�

ij
,G�

ij
,B�

ij
) denote the pixel of the quan-

tized image in row i and column j, with i ∈ [1,H] and 
j ∈ [1,W] , that is, p′

ij
 occupies in the quantized image the 

same position as pij in the original image.
Most of the CQ methods described below are divisive 

methods. In general, they are fast methods that perform suc-
cessive divisions of the color space. They apply an iterative 
process to divide the color space into q regions and add 
a color to the quantized palette representing each of these 
regions. The methods differ mainly in the region selected for 
the next split, the splitting axis and the splitting point used.

2.1  The median‑cut method

MC generates a quantized palette where each color repre-
sents approximately the same number of pixels in the origi-
nal image [32]. Each iteration of the splitting process splits 
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the region with the most pixels to obtain two new regions. 
The selected region is divided along the longest axis at the 
median point. When the splitting process is complete, the 
centroids of the resulting regions define the colors of the 
quantized palette.

2.2  The octree method

OC uses an octree structure to define the quantized palette 
[33]. The nodes of this tree can have 8 children and the tree 
needs to include a maximum of 8 levels to store the colors 
of an RGB image. This method includes two stages. The first 
stage uses the original image pixels to build the tree. The 
second stage merges the leaves of the tree that represent a 
few pixels, and this operation continues until the number of 
leaves equals the size of the quantized palette.

2.3  The variance‑based method

WAN is based on the same idea as MC, but uses a differ-
ent criterion to select the region to split and also considers 
different splitting axis and splitting point [17]. The selected 
region is the one with the largest weighted variance. This 
region is divided along the axis with the least weighted sum 
of projected variances at the point that minimizes the mar-
ginal squared error.

2.4  The binary splitting method

BS uses a binary tree to define the colors of the quantized 
palette [34]. Each iteration selects the leaf node with the 
highest distortion and creates two children for that node, 
distributing the parent’s pixels between the two. The process 
ends when the number of leaves in the tree reaches q. The 
average color of the pixels associated with each leaf defines 
a color of the quantized palette.

2.5  The greedy orthogonal bi‑partitioning method

This method applies the same idea as WAN but the splitting 
axis considered is different. WU uses the axis that minimizes 
the sum of the variances of both sides to divide the selected 
region [35].

2.6  The neuquant method

NQ is based on the use of a one-dimensional self-organizing 
feature map [36]. This neural network includes as many neu-
rons as the size of the quantized palette. The image pixels 

are used to train this neural network. The final weights of 
the network define the quantized palette.

2.7  The variance‑cut method

VC applies the binary splitting strategy like MC, WAN, 
BS, and WU [22]. In each iteration, this method selects the 
region with the largest sum of squared errors. That region 
is then divided along the coordinate axis with the largest 
variance. In this case, the splitting point is the mean point. 
When the splitting process is complete, the centroids of the 
final set of regions define the colors of the quantized palette.

2.8  The adaptive distributing units method

ADU is a clustering-based method that applies competitive 
learning [7]. The centroid of each cluster defines a color of 
the quantized palette. All pixels in the image initially define 
a single cluster, so the quantized palette only includes one 
color. The method applies an iterative process that increases 
the number of clusters and, therefore, the size of the quan-
tized palette, until a palette of desired size is obtained. In 
each iteration, a pixel of the original image is associated 
with the closest color in the current quantized palette. 
When the number of pixels associated with a color reaches 
a threshold, a new color is added to the palette.

2.9  WU combined with ATCQ

WUATCQ [37] is a two-stage method that applies a swarm-
based algorithm (ATCQ) to improve the quantized palette 
obtained by WU. ATCQ is a CQ method that represents 
each pixel of the original image by an ant and builds a tree 
where the ants progressively connect, taking into account 
the similarity between their color and the color of the tree 
node they are trying to connect to. The second level nodes 
of the resulting tree define the colors of the quantized palette 
[12]. WUATCQ first applies the WU method, resulting in a 
quantized palette. Next, the ATCQ operations are applied, 
but using a tree whose second level nodes initially represent 
the colors of the quantized palette generated by WU.

2.10  BS combined with ITATCQ

BSITATCQ [38] is another two-stage method where the iter-
ative variant of ATCQ (ITATCQ) is applied to the quantized 
palette generated by BS. In this case, the methods used in 
the two stages use a tree structure to carry out the quanti-
zation process. ITATCQ applies a first phase in which the 
ATCQ operations define an initial tree. An iterative process 
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is then applied to improve the quality of the quantized pal-
ette, where all ants are disconnected from the tree and then 
reconnected [21].

3  Image quality assessment indices

This section describes the IQA indices that are used in this 
study to compare the results of the selected CQ methods. All 
of them are full-reference IQA indices.

3.1  Mean squared error

The MSE compares each pixel of the original image to the 
corresponding pixel in the quantized image (Eq. 1). The 
interval for this error is [0, 3 × 2552] . The smaller the MSE 
value, the better the quantized image. The error is zero when 
the original and quantized images are exactly the same [54, 
55].

3.2  Peak signal‑to‑noise ratio

The PSNR of a quantized image can be computed from its 
MSE by Eq. 2. Larger values of this error correspond to 
quantized images more similar to the original image. In the 
numerator of the logarithm function’s argument, the value 
255 represents the dynamic range of the pixel values for an 
8-bit-per-channel RGB image [55].

3.3  Mean absolute error

MAE is computed by Eq. 3. It is based on the calculation of 
the absolute value of the difference between the correspond-
ing pixels in the original and the quantized images [55]. The 
quantized image is more similar to the original as this error 
approaches zero. The interval for this error is [0, 3 × 255].

(1)

MSE = 1
WH

H
∑

i=1

W
∑

j=1
||pij − p′ij||

2
2 =

1
WH

H
∑

i=1

W
∑

j=1
(Rij − R′

ij)
2

+ (Gij − G′
ij)

2 + (Bij − B′
ij)

2

(2)PSNR = 10 log10

(
2552

MSE∕3

)

(3)
MAE = 1

WH

H
∑

i=1

W
∑

j=1
||pij − p′ij||1 =

1
WH

H
∑

i=1

W
∑

j=1

|Rij − R′
ij| + |Gij − G′

ij| + |Bij − B′
ij|

3.4  Universal image quality index

The UQI models any image distortion as a combination 
of three factors: loss of correlation, luminance distortion 
and contrast distortion [48]. It is computed by Eq. 4, where 
x̄ and �x are the average color and the standard deviation, 
respectively, of the pixels in the original image; ȳ and �y 
represent the same quantities, but for the pixels of the quan-
tized image; �xy is the correlation coefficient between the 
two images. This index takes values in the range [−1, 1] . The 
value 1 is obtained when both images are the same.

The developers of the index proposed to apply it to local 
regions of the image. With this purpose, a sliding window 
of size B × B is used to compute the index for the pixels 
inside that window. This sliding window operates in raster 
fashion. Therefore, the overall index is computed by Eq. 5, 
where UQIk is the local index computed within the sliding 
window at step k and W denotes the total number of steps.

3.5  Structural similarity index measure

SSIM is computed by Eq. 6, based on the differences in the 
luminance (l), the contrast (c) and the structure (s) between 
the original and quantized images [47]. The index values 
range from 0 (completely different images) to 1 (identical 
images).

where � , � and � are positive constants that define the rela-
tive importance of each component. The values of l, c and s 
are computed by Eqs. 7, 8 and 9, respectively, where sym-
bols x̄ , �x , ȳ , �y and �xy have the same meanings as in UQI. 
In addition, T1 , T2 and T3 are positive constants introduced 
to avoid instabilities. The authors of the index proposed the 
following values for these constants [47]: T1 = (0.01L)2 , 
T2 = (0.03L)2 , T3 = T2∕2 , � = � = � = 1 , where L rep-
resents the dynamic range of the pixel values and it is set 
to 255 for 8-bit-per-channel RGB images. SSIM was pro-
posed by the same authors that developed the UQI index. 
As can be observed, Eq. 4 is a special case of Eq. 6 with 
T1 = T2 = T3 = 0 and � = � = � = 1.

(4)UQI =

(
𝜎xy

𝜎x𝜎y

)(
2x̄ȳ

x̄2 + ȳ2

)(
2𝜎x𝜎y

𝜎2
x
+ 𝜎2

y

)

(5)UQI =
1

W

W∑
k=1

UQIk

(6)SSIM = l� ⋅ c� ⋅ s�

(7)l =

(
2x̄ȳ + T1

x̄2 + ȳ2
y
+ T1

)
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The authors of the index proposed a mean SSIM index 
(MSSIM) to assess the overall quality of the entire image 
[47]. This is computed in the same raster fashion as UQI. 
Then, the index for the entire image is computed by Eq. 10, 
where W is the number of windows processed in the image 
and SSIMk is the SSIM index computed within the sliding 
window k.

3.6  Multi‑scale structural similarity index

The MS-SSIM [49] is based on SSIM and calculates lumi-
nance, contrast, and structure on multiple scales. SSIM is a 
single-scale index, while MS-SSIM is a multi-scale index 
based on the idea that the correct scale depends on viewing 
conditions. For this reason, MS-SSIM simulates different 
spatial resolutions by iterative downsampling and weighting 
the values of the three SSIM components at different scales.

MS-SSIM is computed on several scales of the images 
(Eq. 11). Each scale is obtained by downscaling the original 
and quantized images by a power of two followed by suitable 
filtering to avoid aliasing. The original image corresponds 
to the case with j = 1 , and the highest scale corresponds to 
the case with j = M . In other words, j = 1 represents the 
original resolution of the image, while M corresponds to 
the lowest resolution considered (the number of times the 
image is downsampled). The global error is then obtained by 
combining the measurements at different scales.

where lM denotes the luminance component, which is calcu-
lated for the highest scale only, while cj and sj represent con-
trast component and structure component at the j-th scale, 
respectively. The parameters �M , �j , �j control the relative 
importance of each component. The authors recommend 
�M = �j = �j for all j, to simplify parameter selection. They 
also suggest normalizing the cross-scale settings such that ∑M

j=1
�j = 1 . The best results presented by the authors were 

obtained for M = 2 . A value of the index closer to 1 indi-
cates better image quality, whereas a value closer to 0 indi-
cates poorer quality.

(8)c =

(
2�x�y + T2

�2
x
+ �2

y
+ T2

)

(9)s =

(
�xy + T3

�x�y + T3

)

(10)MSSIM =
1

W

W∑
k=1

SSIMk

(11)MS-SSIM = (lM)
�M

⋅

M∏
j=1

(cj)
�j
⋅ (sj)

�j

3.7  Visual information fidelity

The VIF index is based on the idea that the IQA problem 
can be viewed as an information fidelity problem [50]. 
This IQA index quantifies the information present in the 
original image and how much of this information can be 
extracted from the quantized image.

VIF uses three models to measure the visual informa-
tion: the Gaussian scale mixture model, the distortion 
model, and the HVS model. To calculate the index, the 
images are first decomposed into several sub-bands and 
each sub-band is analyzed in blocks. The visual informa-
tion is measured by computing mutual information in the 
different models in each block and each sub-band. The 
final value of the IQA index is computed by integrating 
visual information for all the blocks and all the sub-bands.

VIF is computed on multiple sub-bands that are com-
pletely independent of each other with respect to the 
parameters of the Gaussian and distortion models. It is 
computed by Eq. 12, where k is the sub-band index and b 
is the block index.

where I(Ckb,Ekb) (Eq. 13) and I(Ckb,Fkb) (Eq. 14) represent 
the information that could ideally be extracted by the brain 
from a particular sub-band and block in the original and the 
quantized images, respectively. Ckb represents the original 
image in a sub-band and block, while Ekb and Fkb denote 
the cognitive output of the original and quantized images 
extracted from the brain, respectively. They are created by 
applying the HVS model in one sub-band and block to the 
original and the quantized images, respectively.

where �2
N

 , �2
vkb

 , gkb , s2kb , and CU must be estimated in advance. 
The HVS parameter �2

N
 (the variance of the visual noise) can 

be adjusted based on trial-and-error to get the optimum VIF 
estimation, but it can also be set to the constant value 2, as 
proposed in [50]. On the other hand, s2

kb
CU can be estimated 

from the local variance of the original image pixels based on 
maximum likelihood criteria by Eq. 15, where �r

kb
 is the 

standard deviation of the original image in the block b at the 
sub-band k.

(12)VIF =

∑
k∈sub−band

∑
b I(Ckb,Fkb)∑

k∈sub−band

∑
b I(Ckb,Ekb)

(13)I(Ckb,Ekb) =
1

2
log2

(
1 +

s2
kb
CU

�2
N

)

(14)I(Ckb,Fkb) =
1

2
log2

(
1 +

g2
kb
s2
kb
CU

�2
vkb

+ �2
N

)
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The distortion channel parameter gkb and �2
vkb

 can be esti-
mated using simple linear regression based on the coeffi-
cients of the original and quantized image bands by Eqs. 16 
and 17, respectively, where �rd

kb
 is the covariance of the origi-

nal image and the quantized image in the block b at the sub-
band k.

The index takes values in the interval [0, 1]. The quality of 
the quantized image is better as the error approaches 1. The 
value 0 indicates that all information from the original image 
has been lost, while the value 1 indicates that the images are 
the same.

3.8  Spectral angle mapper

SAM is an indicator of the spectral quality of the quantized 
image. It determines the spectral similarity between two spec-
tra (the reference spectrum and the image spectrum) by com-
puting the angle formed between the two spectra, which are 
treated as vectors in a space of dimensionality equal to the 
number of bands [56, 57]. SAM is computed by Eq. 18, where 
X is the test spectrum (i.e., quantized image) and Y the refer-
ence spectrum (i.e., original image). The angle � defines the 
similarity between the two spectra. The operation computes 
the arccosine of the dot product of the spectra and it can also 
be expressed as Eq. 19, where nb is the number of spectral 
bands.

The similarity between the images increases as the angle 
computed decreases. The angle � presents a variation any-
where between 0 and 90 degrees. If the equation is expressed 
as cos � , the value of the index ranges in [0, 1] and the best 
estimate takes values close to 1.

(15)s2
kb
CU = (�r

kb
)2

(16)gkb =
�rd
kb

(�r
kb
)2

(17)�2
vkb

=(�d
kb
)2 − g2

kb
(�r

kb
)2

(18)� = cos−1
(

X ⋅ Y

||X|| ⋅ ||Y||
)

(19)� = cos−1

⎛⎜⎜⎜⎝

∑nb

i=1
XiYi�∑nb

i=1
(Xi)

2
∑nb

i=1
(Yi)

2

⎞⎟⎟⎟⎠

4  Experimental results and discussion

This section presents various results of our experimen-
tal study. It has been divided into several subsections to 
give it a better structure. The first subsection describes 
the experiments performed and the remaining subsec-
tions describe the analysis of the results. First, various 
box plots are given, which allow analyzing the distribution 
of the results. Then, the mean values obtained for each 
CQ method and IQA index are analyzed. Next, a ranking 
of the methods is established, in order to determine if dif-
ferent IQA indices result in comparable rankings. Finally, 
statistical tests are performed to support the conclusions 
presented in the previous subsections.

4.1  Experiments

The experiments were carried out on the images included 
in the CQ100 dataset [58]. This is a large, diverse, and 
high-quality color image dataset collected in order to com-
pare CQ methods. The dataset includes 100 RGB images, 
each with dimensions 768 × 512 or 512 × 768 . Researchers 
can download the original images as well as the quantized 
images obtained by various CQ methods. The MSE values 
for all quantized images are also publicly available [39]. A 
table is included, as supplementary material to this article, 
with the names of the images and the number of distinct 
colors in each one (Online Resource 1). For thumbnails of 
the images in the dataset, see [58].

Table 1 lists the IQA indices used in the experiments, 
together with the ranges of those indices and the best 
value. It also shows the values of the parameters used in 
the experiments (whenever parameters are required). For 
SSIM, the calculated value is the average value obtained 
by Eq. 10, although SSIM is used to represent that value 
(instead of MSSIM) for simplicity. In general, the value 
calculated in the literature is the one obtained with the said 
equation and is usually referred to as SSIM. It should be 
noted that MSE and MAE are not necessarily comparable 
across images, as their values are unnormalized.

The ten CQ methods considered in the experiments are 
WU, BS, OC, MC, VB, VC, WAN, NQ, WUATCQ, BSI-
TATCQ. These are all deterministic methods, so the same 
result is obtained when applied to the same original image 
under identical settings.

The selected CQ methods were executed to generate 
quantized images with 32, 64, 128 and 256 colors, which 
are common palette sizes in the CQ literature. Therefore, 
each CQ method generated 400 quantized images, result-
ing in a total of 4000 quantized images. Then, the eight 
IQA indices were calculated for each quantized image. The 
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IQA index value for each image, CQ method, palette size, 
and IQA index are included as supplementary material to 
this article (Online Resource 1). The following subsections 
discuss the results obtained and summarize the data.

4.2  Box plots

This subsection analyzes the box plots of the results (Figs. 1, 
2, 3, 4). Each figure shows the results for a palette size and 
includes a subfigure for each IQA index. The figures exhibit 
some clear trends.

MC is the worst method and WAN is the second-worst 
method. The box corresponding to MC has the worst median, 
and 25th and 75th percentile in all subfigures. In the case of 
WAN, these three statistics are worse than the correspond-
ing ones for all methods except MC. On the other hand, 
the boxes corresponding to the BSITATCQ and WUATCQ 
methods are very similar in all the subfigures, so the three 
statistics obtained by these hybrid methods for each IQA 
index are very similar.

ADU is the best method. In general, the box correspond-
ing to the ADU method is the one with the smallest ampli-
tude (i.e., difference between the 75th and 25th percentiles) 
for all IQA indices except VIF so its results have the least 
dispersion. Certainly, ADU always has the box with the 
smallest amplitude for the MSE, MS-SSIM, and SAM indi-
ces, while for the other four indices the box has either the 
smallest or the second-smallest amplitude. ADU has the best 
median in most cases, being the second-best in the six cases 
in which it is not the best. In those six cases, the best median 
is obtained by BSITATCQ. Finally, it should be noted that 
in the case of the VIF index, MC has the least dispersion.

Among the four IQA indices for which the best result is 1, 
UQI and MS-SSIM are the ones that generate larger values 
and vary in a smaller interval (this especially in the case of 
MS-SSIM). This makes many of the boxes very small and 
therefore difficult to differentiate. In any case, it is clearly 
observed that the results obtained for UQI present an asym-
metrical distribution, but this does not occur with the results 

of MS-SSIM. Conversely, VIF is the IQA index that gener-
ates smaller values and varies over a larger interval.

4.3  Average results

Tables 2 and 3 summarize the results of the tables included 
in Online Resource 1. They show the average and standard 
deviation of each IQA index and CQ method for each palette 
size. The best average value obtained for each IQA index 
and palette size is underlined. Because a limited number of 
decimal places can be included in the tables, in some cases 
the same result is highlighted for multiple methods. In these 
cases, italics are used to identify the best of all these values 
(taking into account more decimals than those shown in the 
table).

It is clearly observed that MC generates the worst average 
results for all the IQA indices and palette sizes. In addition, 
it is observed that WAN is the second-worst method. On 
the contrary, ADU, BSITATCQ, WUATCQ and NQ are the 
subset of methods attaining the best results.

ADU is the method that generates the overall best results. 
This method is the best according to SSIM, MS-SSIM and 
VIF for all palette sizes; it is also the best for three palette 
sizes when MAE and UQI are considered (32, 64, and 256 
colors for MAE; 64, 128, and 256 colors for UQI). On the 
other hand, MSE indicates that ADU is the best only for 
the case with 32 colors and the second-best for the other 
palette sizes. The SAM index values are very similar (even 
almost the same) for the ADU, WUATCQ and BSITATCQ 
methods, which are the best methods according to this IQA 
index. Finally, ADU is the third-best method based on PSNR 
(for all four palette sizes).

BSITATCQ is the best according to MSE, PSNR and 
SAM for palettes with more than 32 colors; it is the second-
best based on PSNR and SAM for 32 colors, and the third-
best based on MSE for 32 colors. Based on VIF this is the 
second-best method for 32 colors, and the third-best method 
for the other palette sizes. MAE indicates that this is the 
third-best method for all palette sizes. For the other three 

Table 1  IQA indices used in 
the study and their ranges, best 
possible values, and parameters

IQA index Range Best Parameters

MSE [0, 3 × 2552] 0
MAE [0, 3 × 255] 0
PSNR [0, 48.13] 48.13
UQI [−1, 1] 1 Sliding window size = 8
SSIM [0, 1] 1 Sliding window size = 11, T1 = (0.01L)2 , T2 = (0.03L)2 , L = 255

MS-SSIM [0, 1] 1 Sliding window size = 11, #Scales=5
Weights for the scale = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
T1 , T2 and L with the same values defined for SSIM

VIF [0, 1] 1 Variance of the visual noise = 2
SAM [0, 1] 0
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Fig. 1  Box plots for 32-color 
images
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Fig. 2  Box plots for 64-color 
images
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Fig. 3  Box plots for 128-color 
images
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Fig. 4  Box plots for 256-color 
images
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IQA indices, BSITATCQ obtains results very similar to 
WUATCQ; the two methods share the second or third rank 
in many cases. The only case in which BSITATCQ is below 
the third rank corresponds to the UQI index and palette size 
of 256, where it ranks fourth.

NQ ranks between second and fourth in many cases. It 
is the best method only based on MAE for 128 colors and 
UQI for 32 colors. It is the second-best based on MAE and 
for the other palette sizes, and also based on UQI for 64 and 
128 colors, but the seventh-best based on this IQA index for 
256 colors. In addition, it is the second-best method for all 
palette sizes when considering SSIM and for three palette 
sizes when considering MS-SSIM and VIF (64, 128, and 
256 colors for MS-SSIM; 32, 64, and 128 colors for VIF). 
Indeed, NQ ranks the same as WUATCQ or BSITATCQ 

in some cases when considering the SSIM and MS-SSIM 
indices. The MSE and PSNR indices assign the worst value 
to this method (it ranks fifth for 32 colors and fourth for the 
rest of the palette sizes). Based on the SAM index, NQ is 
the second-best method for 128 colors (tied with ADU) and 
ranks third or fourth for the rest of the palette sizes.

WUATCQ oscillates between the second and fourth ranks 
in most cases, since it is the best method only based on 
PSNR and SAM for 32 colors. It is the second-best method 
based on PSNR and SAM for palettes with more than 32 
colors. It should be noted that based on the SAM index, 
this method generates results comparable to ADU and BSI-
ATCQ. On the other hand, WUATCQ is the second-best 
method based on the MSE index for 32 colors and the third-
best for the other palette sizes. It is the third-best method 

Table 2  Average and standard 
deviation of the IQA indices for 
each CQ method—32 and 64 
colors

IQA BS WU OC ADU VC WAN MC NQ WUAT. BSITAT.

32 colors
MSE av 435.65 425.64 469.55 357.36 385.96 542.58 666.64 408.94 360.19 362.10

de 296.59 261.12 297.89 217.93 245.21 340.90 361.53 246.03 235.09 233.72
MAE av 24.614 24.766 25.795 22.142 24.283 27.433 32.366 22.293 23.093 23.029

de 9.228 6.379 9.013 8.050 7.940 9.432 9.550 8.105 8.463 8.358
PSNR av 27.378 27.420 26.895 28.033 27.773 26.272 25.283 27.482 28.190 28.136

de 2.890 2.856 2.594 2.453 2.590 2.591 2.459 2.620 2.898 2.845
UQI av 0.946 0.946 0.946 0.955 0.936 0.929 0.913 0.956 0.951 0.951

de 0.051 0.049 0.045 0.041 0.084 0.082 0.087 0.039 0.046 0.046
SSIM av 0.858 0.856 0.854 0.881 0.866 0.834 0.802 0.879 0.873 0.873

de 0.065 0.065 0.066 0.057 0.060 0.071 0.076 0.058 0.060 0.060
MS- av 0.952 0.950 0.947 0.960 0.956 0.938 0.910 0.957 0.958 0.957
SSIM de 0.029 0.028 0.030 0.025 0.026 0.037 0.044 0.025 0.025 0.027
VIF av 0.414 0.408 0.406 0.441 0.427 0.393 0.368 0.439 0.430 0.433

de 0.074 0.075 0.072 0.074 0.074 0.072 0.064 0.076 0.077 0.077
SAM av 0.095 0.095 0.100 0.087 0.090 0.107 0.118 0.094 0.087 0.087

de 0.035 0.034 0.034 0.030 0.032 0.037 0.041 0.033 0.032 0.031
64 colors

MSE av 244.53 238.67 260.64 199.70 222.16 317.40 417.12 221.99 201.03 199.65
de 163.04 144.20 147.91 117.64 134.84 178.81 277.47 128.36 127.63 128.90

MAE av 18.205 18.414 18.961 16.273 18.477 20.853 25.378 16.306 17.138 16.940
de 6.982 6.810 6.952 6.002 5.908 6.812 7.768 6.062 6.342 6.306

PSNR av 29.951 29.998 29.485 30.610 30.153 28.595 27.464 30.186 30.777 30.801
de 3.066 3.046 2.757 2.630 2.574 2.640 2.672 2.779 3.039 3.023

UQI av 0.962 0.960 0.961 0.968 0.946 0.941 0.926 0.967 0.962 0.962
de 0.039 0.040 0.037 0.032 0.081 0.079 0.083 0.034 0.042 0.040

SSIM av 0.901 0.899 0.898 0.920 0.902 0.878 0.840 0.917 0.913 0.913
de 0.052 0.052 0.052 0.043 0.048 0.056 0.070 0.044 0.046 0.046

MS- av 0.971 0.970 0.969 0.977 0.972 0.961 0.937 0.976 0.975 0.975
SSIM de 0.019 0.019 0.019 0.016 0.017 0.023 0.037 0.016 0.016 0.017
VIF av 0.490 0.485 0.481 0.518 0.500 0.465 0.429 0.516 0.509 0.514

de 0.078 0.079 0.074 0.076 0.074 0.076 0.064 0.078 0.079 0.079
SAM av 0.071 0.071 0.074 0.065 0.068 0.082 0.092 0.069 0.065 0.064

de 0.027 0.026 0.026 0.023 0.025 0.030 0.033 0.025 0.024 0.024
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according to SSIM and the fourth-best method according to 
MAE and VIF. MS-SSIM indicates that this method is the 
fourth-best for 128 colors and the second-best for all other 
palette sizes. Finally, UQI indicates that this method is the 
third-best for palettes with less than 256 colors, but sharing 
this rank with other methods (BSITATCQ in all cases and 
BS, WU and OC in one case). This IQA index gives the 
worst result for 256 colors, since it indicates that WUATCQ 
is the sixth-best method.

Based on the above analysis, we can conclude that the 
quality assessment obtained when analyzing the MSE 
index does not coincide with that of the rest of the IQA 
indices. Next we will analyze a concrete example to show 
the differences. The detailed results included in Online 

Resource 1 indicate that the best MSE value (over the 100 
images) is obtained for shopping_bags image reduced to 
256 colors by the BS method ( MSE = 3.308 ). Figures 5 
and 6 show the quantized image with 256 colors obtained 
by the ten CQ methods. Each subfigure shows the values 
obtained for each of the eight IQA indices; the best value 
of each IQA index appears in bold. It can be seen that 
BS generates the best image according to MSE, PSNR, 
SAM, MS-SSIM and UQI. On the other hand, according 
to SSIM, VIF and MAE, the best image is generated by 
three different methods (NQ, BSITATCQ and OC, respec-
tively). Therefore, the best value of all IQA indices is not 
obtained by BS.

Table 3  Average and standard 
deviation of the IQA indices for 
each CQ method—128 and 256 
colors

IQA BS WU OC ADU VC WAN MC NQ WUAT. BSITAT.

128 colors
MSE av 140.70 137.86 149.38 115.37 133.64 193.93 248.93 120.42 115.86 113.50

de 89.89 82.57 87.02 66.18 75.70 104.05 124.42 72.60 72.17 72.03
MAE av 13.680 13.875 14.132 12.182 14.391 16.310 20.106 12.145 12.883 12.674

de 5.239 5.080 5.301 4.500 4.339 4.942 5.540 4.611 4.741 4.756
PSNR av 32.401 32.416 31.965 33.022 32.308 30.721 29.557 32.944 33.202 33.323

de 3.233 3.138 2.909 2.730 2.486 2.625 2.495 2.984 3.125 3.213
UQI av 0.971 0.970 0.970 0.976 0.954 0.948 0.936 0.974 0.970 0.970

de 0.032 0.034 0.031 0.027 0.078 0.079 0.079 0.030 0.038 0.035
SSIM av 0.932 0.931 0.930 0.946 0.928 0.910 0.871 0.944 0.941 0.941

de 0.039 0.038 0.039 0.031 0.038 0.045 0.063 0.033 0.033 0.034
MS- av 0.983 0.982 0.982 0.987 0.983 0.976 0.958 0.986 0.985 0.986
SSIM de 0.012 0.011 0.013 0.009 0.011 0.014 0.022 0.010 0.010 0.010
VIF av 0.562 0.558 0.555 0.592 0.567 0.533 0.486 0.590 0.584 0.589

de 0.080 0.078 0.076 0.075 0.071 0.076 0.065 0.077 0.079 0.079
SAM av 0.054 0.054 0.056 0.050 0.053 0.064 0.073 0.050 0.049 0.049

de 0.021 0.020 0.020 0.018 0.019 0.024 0.026 0.019 0.019 0.019
256 colors

MSE av 82.32 80.72 86.03 67.36 83.11 123.57 165.19 73.50 67.95 65.96
de 51.14 47.24 48.77 36.66 42.75 64.49 79.81 41.71 41.19 39.82

MAE av 10.375 10.625 10.618 9.188 11.489 13.131 16.366 9.368 9.856 9.658
de 4.021 3.834 4.036 3.457 3.186 3.645 4.265 3.504 3.603 3.561

PSNR av 34.754 34.718 34.406 35.352 34.282 32.635 31.307 35.049 35.507 35.666
de 3.340 3.102 3.058 2.767 2.314 2.512 2.421 2.924 3.118 3.221

UQI av 0.979 0.976 0.977 0.982 0.960 0.952 0.944 0.969 0.975 0.976
de 0.025 0.030 0.027 0.023 0.069 0.079 0.077 0.058 0.035 0.032

SSIM av 0.955 0.953 0.954 0.965 0.947 0.932 0.895 0.961 0.961 0.961
de 0.027 0.026 0.028 0.020 0.028 0.037 0.055 0.023 0.022 0.023

MS- av 0.990 0.990 0.990 0.993 0.989 0.985 0.969 0.992 0.992 0.992
SSIM de 0.007 0.007 0.007 0.005 0.006 0.009 0.018 0.005 0.006 0.005
VIF av 0.631 0.626 0.627 0.660 0.628 0.597 0.545 0.654 0.652 0.659

de 0.078 0.073 0.075 0.071 0.066 0.072 0.063 0.073 0.075 0.076
SAM av 0.042 0.041 0.043 0.038 0.042 0.051 0.059 0.040 0.038 0.037

de 0.017 0.016 0.016 0.014 0.015 0.019 0.022 0.015 0.015 0.015
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4.4  Ranking of the methods

To better understand the global results obtained, a ranking 
can be established to order the methods, taking into account 

the objective quality of the images generated by each of 
them. For this, the eight IQA indices calculated for the 
quantized images generated by each CQ method were ana-
lyzed independently. Furthermore, the results obtained for 

Fig. 5  shopping_bags image with 256 colors
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each palette size were considered independently. An index 
between 1 and 10 was assigned to the results generated by 
the ten CQ methods for an image, where 1 represents the 
method that produces the best result and 10 the method that 
produces the worst result. In the event that several methods 
generate exactly the same result for an image, they are all 
assigned the same index (for example, if two methods gener-
ate the best result in the set, they are both assigned an index 
of 1, and the second-best method is then assigned an index 
of 3). This process was applied for each of the 100 images.

Table 4 shows the average rank obtained for the set of 100 
images considering each palette size independently and also 
the average value for the four palette sizes. The table does 
not show integers between 1 and 10, but real values, with the 
aim of being able to determine if multiple methods obtain 
a close value in the ranking. An attempt has been made to 
place the columns of the table in ascending order, so that the 
interpretation of the results is easier. Figure 7 shows the rank 
of each method for each IQA index and palette size. Ten 

integer values are used in the subfigures to plot the results, 
so that the order assigned to the ten CQ methods can be seen 
more clearly. In addition, Fig. 8 shows the overall results for 
each IQA index and each CQ method, without separating the 
results by the palette size.

Table 4 shows that BSITATCQ is the best method accord-
ing to MSE, PSNR and SAM, but ADU is the best method 
according to the other five IQA indices. The values for ADU 
and BSITATCQ are very close with respect to MSE and 
PSNR for 32 and 64 colors, but the difference increases for 
SAM for all the palette sizes.

Based on the MSE and PSNR values, the second-best 
method is ADU for the two largest palettes; however, 
WUATCQ is the second-best method for the two smallest 
palettes. WUATCQ is also the second-best according to 
SAM and UQI. On the other hand, NQ is the second-best 
method according to MAE, SSIM, and VIF. In the case of 
MS-SSIM, WUATCQ is the second-best for 32 colors, but 
BSITATCQ is the second-best for all other palette sizes. 

Fig. 6  shopping_bags image with 256 colors
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For cases (palette sizes and IQA indices) not listed above, 
the third rank is attained by one of the following methods: 
ADU, BSITATCQ, WUATCQ, and NQ.

For all the IQA indices, MC is the worst method and 
WAN is the second-worst. In addition, OC is the third-
worst method for all IQA indices but UQI, in which case 
it is the seventh method. On the other hand, for 256 colors, 

OC achieves results similar to those of WU for MAE, UQI, 
SSIM, and VIF.

Table 4 shows that in some cases the ranks obtained by 
various methods are very similar. For example, the second-
best and third-best methods identified by SAM (WUATCQ 
and ADU, respectively) have ranks that exceed 2 but do not 
reach 3. In order to show a summary of the ranking of CQ 
methods for each IQA index showing a clear order for the ten 

Table 4  Ranking of each CQ 
method for each IQA index (c: 
number of distinct colors. The 
label ‘all’ represents the average 
of the four ranks corresponding 
to 32, 64, 128, and 256 colors)

IQA index l ADU BSITAT. WUAT. NQ VC WU BS OC WAN MC

MSE 32 2.36 2.23 2.26 5.49 4.14 5.93 6.09 7.64 8.94 9.92
64 2.32 2.11 2.25 4.91 4.82 5.92 6.05 7.70 8.97 9.95
128 2.51 1.81 2.60 3.74 5.62 6.01 6.11 7.65 9.02 9.93
256 2.45 1.54 2.68 4.25 6.23 5.72 5.84 7.37 8.99 9.93
all 2.41 1.92 2.45 4.60 5.20 5.90 6.02 7.59 8.98 9.93

MAE 32 1.62 3.44 3.54 2.01 5.66 6.32 5.99 7.58 8.88 9.96
64 1.61 3.25 3.74 1.89 6.13 6.34 5.78 7.38 8.91 9.97
128 1.74 3.18 3.87 1.63 6.55 6.37 5.57 7.20 8.94 9.95
256 1.41 3.13 4.04 2.16 7.20 6.47 5.19 6.53 8.94 9.93
all 1.60 3.25 3.80 1.92 6.39 6.38 5.63 7.17 8.92 9.95

PSNR 32 2.36 2.23 2.26 5.49 4.14 5.93 6.09 7.64 8.94 9.92
64 2.32 2.11 2.25 4.91 4.82 5.92 6.05 7.70 8.97 9.95
128 2.51 1.81 2.60 3.74 5.62 6.01 6.11 7.65 9.02 9.93
256 2.45 1.54 2.68 4.25 6.23 5.72 5.84 7.37 8.99 9.93
all 2.41 1.92 2.45 4.60 5.20 5.90 6.02 7.59 8.98 9.93

UQI 32 2.49 3.77 3.12 3.53 5.37 5.96 5.39 6.97 8.64 9.76
64 2.25 3.68 3.06 3.42 6.50 5.69 5.29 6.57 8.72 9.82
128 2.20 3.58 3.28 3.35 6.94 5.71 5.14 6.16 8.87 9.76
256 2.10 3.58 3.25 4.24 7.34 5.65 4.56 5.70 8.97 9.61
all 2.26 3.65 3.18 3.64 6.54 5.75 5.10 6.35 8.80 9.74

SIM 32 1.88 3.49 3.59 2.44 4.45 6.89 6.33 7.11 8.95 9.87
64 1.60 3.27 3.42 2.46 5.41 6.66 6.29 7.00 8.97 9.92
128 1.56 3.19 3.53 2.38 6.17 6.49 6.04 6.73 8.96 9.95
256 1.46 2.96 3.32 3.11 6.71 6.62 5.81 6.10 8.96 9.95
all 1.63 3.23 3.47 2.60 5.69 6.67 6.12 6.74 8.96 9.92

MS-SSIM 32 2.01 3.25 3.16 3.51 4.40 6.62 6.01 7.31 8.74 9.99
64 1.80 2.94 3.16 3.00 5.35 6.61 6.08 7.19 8.90 9.97
128 1.81 2.90 3.42 2.41 6.03 6.78 5.92 6.84 8.94 9.95
256 1.65 2.67 3.45 2.82 6.74 6.90 5.75 6.09 8.96 9.97
all 1.82 2.94 3.30 2.94 5.63 6.73 5.94 6.86 8.89 9.97

VIF 32 1.95 3.25 3.85 2.40 4.39 7.03 6.29 7.32 8.74 9.78
64 1.89 2.65 3.61 2.70 4.96 6.89 6.27 7.26 8.88 9.89
128 1.84 2.55 3.55 2.48 5.41 6.80 6.27 7.26 8.89 9.95
256 1.81 2.11 3.55 2.97 5.98 6.84 6.05 6.78 8.94 9.97
all 1.87 2.64 3.64 2.64 5.19 6.89 6.22 7.16 8.86 9.90

SAM 32 2.51 2.15 2.25 5.51 3.98 6.02 6.12 7.69 8.92 9.85
64 2.46 2.06 2.19 5.01 4.54 5.96 6.13 7.74 8.99 9.91
128 2.62 1.69 2.57 3.83 5.44 6.09 6.10 7.68 9.05 9.93
256 2.61 1.52 2.56 4.28 6.03 5.80 5.83 7.41 9.03 9.93
all 2.55 1.86 2.39 4.66 5.00 5.97 6.05 7.63 9.00 9.91
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Fig. 7  Rank of each CQ method 
for each IQA index (lower ranks 
are better)—results for each 
palette size

Fig. 8  Rank of each CQ method 
for each IQA index (lower ranks 
are better)
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CQ methods, Table 5 shows the ranking obtained consider-
ing the results of the 400 images generated by each method 
as a single set (that is, without grouping the images by pal-
ette size). The methods that rank second and third accord-
ing to VIF attain the same rank (2.64) in Table 4. NQ was 
assigned the best of both ranks because its rank is slightly 
lower (2.6375) than that of the other method (2.6400). In 
any case, for all practical purposes, we can consider both 
methods to have the same rank. The same is true for the 
same methods with respect to the MS-SSIM index. Table 5 
includes superscripts to mark the methods that attain similar 
ranks with respect to a certain IQA index, so they could have 
been assigned the same rank in the said ranking. Table 5 
and Fig. 8 summarize the classification of the CQ methods 
obtained for each IQA index analyzed.

The analysis of Table 5, Fig. 8, and the results included 
in the rows labeled ‘all’ in Table 4 allows us to interpret the 
final ranking and establish a clear order among the ten CQ 
methods analyzed:

• It is possible to identify two groups of IQA indices that 
generate the same ranking for the CQ methods: a group 
made up of SSIM, MS-SSIM, and VIF (we will call it 
group A), and a second group made up of MSE, PSNR, 
and SAM (we will call it group B). It can be observed 
that the methods that rank second and third according 
to the group-B indices could be interchanged, since the 
corresponding ranks are very similar.

  The rankings obtained for the other two IQA indices 
(MAE and UQI) are not directly comparable with any 
other, except for the two worst methods, which are the 
same for all IQA indices. The ranking defined for MAE 
is the same as for group-A indices except for ranks 5, 6, 
and 7. Although the ranking defined according to UQI 
shows more differences with the other IQA indices, the 

subset that defines the four best methods includes the 
same cases as for the other IQA indices.

• ADU, BSITATCQ, WUATCQ and NQ attain the best 
four ranks for all the IQA indices.

  ADU is the best method according to group A, but the 
second or third according to group B. BSITATCQ is the 
best method according to group B, but the third accord-
ing to group A. The second rank according to group A 
corresponds to NQ, but this method ranks fourth accord-
ing to group B. On the other hand, WUATCQ ranks bet-
ter according to the group-B indices (second and third) 
than the group-A indices (fourth). It is observed that 
ADU and BSITATCQ obtain very similar results for the 
IQA indices in group B, so we can consider both methods 
to have the same rank.

  Although both MAE and UQI indicate that ADU is 
the best method, the results of these two IQA indices for 
the next three ranks are not the same. Certainly, MAE 
generates the same results as group-A indices for the top 
four ranks.

• VC ranks the same (fifth) according to the IQA indices 
in groups A and B but it ranks worse according to MAE 
and UQI (between sixth and seventh).

• BS and WU share ranks sixth and seventh, respectively, 
according to the IQA indices in groups A and B. In the 
case of group B, it is observed that both methods gener-
ate very similar results and attain the same rank. In the 
case of group A, BS is better than WU and also for two 
of the IQA indices in this group (SSIM and MS-SSIM), 
the rank of WU is comparable to that of OC.

• OC ranks eighth according to all IQA indices except 
UQI, according to which it ranks seventh although with a 
result very similar to that of the method that ranks eighth 
(VC).

• MC and WAN attain the worst ranks (tenth and ninth, 
respectively) according to all the IQA indices.

Table 5  Ranking of methods for each IQA index (lower ranks are better)

A superscript is used to mark cases with similar ranking (0: same value, 1: difference less than 0.05, 2: difference less than 0.10, 3: difference 
less than 0.15, 4: difference less than 0.20)

rank MSE PSNR SAM MAE SSIM MS-SSIM VIF UQI

1 BSITAT. BSITAT. BSITAT. ADU ADU ADU ADU ADU
2 ADU1 ADU1 WUAT.4 NQ NQ NQ0 NQ0 WUAT.
3 WUAT.1 WUAT.1 ADU4 BSITAT. BSITAT. BSITAT. 0 BSITAT.0 NQ1

4 NQ NQ NQ WUAT. WUAT. WUAT. WUAT. BSITAT. 1

5 VC VC VC BS VC VC VC BS
6 WU3 WU3 WU2 WU1 BS BS BS WU
7 BS3 BS3 BS2 VC1 WU2 WU3 WU OC4

8 OC OC OC OC OC2 OC3 OC VC4

9 WAN WAN WAN WAN WAN WAN WAN WAN
10 MC MC MC MC MC MC MC MC
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4.5  Statistical analysis

A statistical analysis was performed to complete the discus-
sion of the results. The Friedman test was executed to deter-
mine if the applied CQ method has an effect on the objective 
quality of the quantized image. This test makes it possible to 
compare several related samples, indicating whether there 
are significant differences between any of the pairs of the 
samples. The test was applied independently to the results 
obtained for each of the eight IQA indices. The p-value used 
for the test was 0.05. Table 6 shows the test statistic obtained 
in each case. The significance obtained in all cases is 0, so 
it is not included in the table. This value indicates that the 
Friedman test is significant in all eight cases.

The Friedman test indicates that the quality of the quan-
tized image obtained is not the same for the ten CQ methods 
compared. This statement is true for any of the eight IQA 
indices considered. This means that at least two of the meth-
ods compared are significantly different, but the test does 
not indicate which ones. Therefore, it is necessary to carry 
out an additional test to determine which methods present 
differences. For this purpose, the Wilcoxon post-hoc test 
was conducted, with the Bonferroni correction to control the 
probability of occurrence of a type I error. Since we have 10 
CQ methods, it was necessary to compare 45 pairs of CQ 
methods for each IQA index. The test was significant for 
most of the 360 total cases that were evaluated. Therefore, 
to reduce the table size, only the corrected p-values associ-
ated with non-significant cases were included (Table 7). It 
can be seen that, for each IQA index, the differences are not 

significant for a number of method pairs ranging between 
3 and 6 cases. The smallest value corresponds to VIF and 
MAE. Rows 2–4 show cases for which only one IQA index 
shows no significant differences between two methods. Rows 
5–6 show pairs of methods with non-significant differences 
only regarding two IQA indices.

The differences between WAN and all other CQ methods 
are significant with respect to all IQA indices. The same is 
true for MC. When considering ADU, the differences are 
significant compared to all methods except BSITATCQ and 
WUATCQ regarding MSE, PSNR, and SAM, and compared 
to NQ regarding MAE. It can be observed that the differ-
ences are not significant for BSITATCQ and WUATCQ 
regarding all IQA indices except VIF. The same is true for 
BS and WU except for MS-SSIM and MAE indices.

UQI, SSIM, MS-SSIM, and VIF do not show significant 
differences for the pairs of methods WU-OC and NQ-BSI-
TATCQ, although the other IQA indices show the contrary. 
In addition, there are no significant differences between the 
methods for the pairs ADU-WUATCQ, ADU-BSITATCQ, 
and VC-NQ regarding MSE, PSNR, and SAM, but there are 
differences regarding the other five IQA indices. Regarding 
MSE and PSNR, the cases that show no significant differ-
ences correspond to the same pairs of CQ methods. On the 
other hand, the results of SAM are the same as those of MSE 
and PSNR except for the VC-WU pair.

We can see that the results of the statistical test for the 
IQA indices in group B defined in the previous section are 
very similar. The only difference is in the pair of methods 
VC-WU according to the SAM index. Regarding the indices 

Table 6  Friedman test results (400 valid cases, 9 degrees of freedom, and p-value 0 for all tests)

MSE MAE PSNR SAM SSIM MS-SSIM VIF UQI

3016.231 3136.419 3016.231 3024.308 2948.671 2903.731 3007.637 2342.081

Table 7  Corrected significance 
of the post-hoc test (only the 
pairs of methods that generate 
some non-significant result are 
given)

MSE PSNR SAM UQI SSIM MS-SSIM VIF MAE

NQ-ADU 1
OC-BS 0.177
OC-VC 1
BS-VC 1 1
NQ-WUATCQ 1 1
ADU-WUATCQ 1 1 1
ADU-BSITATCQ 1 1 0.053
VC-NQ 0.212 0.212 1
VC-WU 0.055 0.055 1
WU-OC 0.237 1 1 1
NQ-BSITATCQ 1 0.146 1 1
BS-WU 1 1 1 0.096 0.475 0.079
WUATCQ-BSI-

TATCQ
0.639 0.639 0.542 1 1 1 0.475
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in group A, the results are not so homogeneous, as can be 
seen in Table 7.

5  Conclusion

MSE is the most widely used IQA index in the CQ litera-
ture. MSE and its close relatives MAE and PSNR are con-
ventional IQA indices that are calculated based on a pixel-
by-pixel comparison between the original and quantized 
images. However, there are more recent IQA indices that 
take into account the HVS characteristics. Therefore, it is 
interesting to determine if the conventional IQA indices gen-
erate comparable results with those generated by these new 
IQA indices or if, on the contrary, it is necessary to combine 
several IQA indices for a more comprehensive analysis of 
CQ methods. With this purpose, this study compares images 
generated by ten CQ methods (WU, BS, OC, MC, VB, VC, 
WAN, NQ, WUATCQ, and BSITATCQ) using eight IQA 
indices (MSE, MAE, PSNR, UQI, SSIM, MS-SSIM, VIF, 
and SAM).

The results obtained indicate that the IQA index used 
determines the ranking of the CQ methods. It was observed 
that the results of the MSE index are comparable to those 
obtained with PSNR and SAM. On the other hand, the 
results obtained by the SSIM, MS-SSIM, and VIF indices 
are also comparable. However, the results of these two sets 
of IQA indices are different. On the other hand, the results 
obtained for MAE are comparable to a certain extent to those 
obtained by SSIM, MS-SSIM, and VIF, mainly with regard 
to the best and worst CQ methods determined by each IQA 
index. Finally, the results generated by UQI are not directly 
comparable to those of other IQA indices.

As a result of the analysis carried out it is recommended 
that the CQ studies not only include results from MSE, but 
also from other IQA indices that take into account the 
visual characteristics of the images, such as SSIM, MS-
SSIM, and VIF. It is important to use several IQA indices 
to determine if a given CQ method produces better results 
than the others.

Unlike what happens in other articles that analyze CQ 
methods, the results included in this article are calculated 
for a large set of quantized images (400 quantized images 
generated by each CQ method) and various IQA indices are 
used that take into account different characteristics of the 
images. The results generated in this study will be published, 
together with the original image set, in the upcoming ver-
sion of CQ100. This information will help other research-
ers to compare a new CQ method with the ten CQ methods 
considered in this article. Since the selected IQA indices 
are popular in the image processing literature, other authors 

can use the publicly available implementations to compute 
results for the new method and compare them to the results 
included in CQ100. This will speed up and simplify the work 
of other researchers in the comparison process.

MSE, MAE, and PSNR compare the original and 
quantized images pixelwise and do not take the HVS into 
account, so they do not always agree with human perception. 
It is reasonable to expect the results of PSNR to be com-
parable to those of MSE, since PSNR is calculated based 
on MSE. Although both MSE and MAE compare images 
pixelwise, MAE is less sensitive to outliers than MSE. The 
MSE calculation emphasizes large errors, while small errors 
have little effect. This is probably why the results of the two 
indices do not agree.

Unlike the aforementioned pixelwise indices, UQI, SSIM, 
and MS-SSIM consider changes in structural information 
taking into account three factors (loss of correlation, lumi-
nance distortion, and contrast distortion). Various studies 
show that SSIM performs remarkably well across a wide 
variety of image and distortion types, and the scores of this 
index are much more consistent with human perception than 
the MSE scores [50]. The SSIM index was proposed by the 
same authors as the UQI index as an improvement on the 
latter, and our study shows that these two indices do not gen-
erate comparable results when applied to the CQ problem. 
On the other hand, several studies indicate that the multi-
scale MS-SSIM performs better than the single-scale SSIM 
[49, 59]. This seems logical since images contain structures 
that occur over a range of spatial scales. In addition, the 
HVS decomposes visual data into multi-scale spatial chan-
nels in the early stages of image perception [59]. On the 
other hand, VIF is computed based on a statistical model for 
natural scenes, a model for image distortions, and an HVS 
model, which probably influences its greater correlation with 
subjective assessment scores. Several studies indicate that 
VIF generates better results than some of the other indices 
considered in our study, including UQI, SSIM, MS-SSIM, 
and PSNR [50–52].

Our experiments do not allow us to determine which 
of the IQA indices is the best for CQ. As discussed in the 
introduction, determining the best IQA index for a specific 
image processing operation is non-trivial, and thus studies 
carried out by different researchers present mixed results. If 
we limit our attention to the CQ operation considered in this 
study, we can compare our results with those presented in 
[43]. As mentioned in the introduction, the said article com-
pares several IQA indices calculated on quantized images, 
and concludes that the best results are provided by the VIF 
index, followed by MS-SSIM, SSIM, and PSNR, while the 
worst results are provided by UQI. The remaining IQA indi-
ces considered in both articles are different, so they cannot 
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be compared. Therefore, it is observed that our results are 
compatible to a certain extent with those presented in [43], 
since the three best indices identified in the said study show 
similar results according to our study. On the other hand, in 
our study the UQI index does not generate results compara-
ble to the rest of the IQA indices analyzed.

Therefore, taking into account our results and those 
presented in [43], we can suggest using MSE and VIF or 
MS-SSIM to evaluate CQ methods. On the one hand, VIF 
and MS-SSIM seem promising indices not only for CQ 
but also for other image processing operations. On the 
other hand, MSE allows comparisons with much of the 
published CQ literature.

Based on the results presented in the article, it can be 
concluded that it is necessary to use several IQA indi-
ces when comparing CQ methods. Using only one IQA 
index can lead to erroneous conclusions about the relative 
quality of the compared methods, so it is better to use 
several IQA indices. We also suggest that IQA indices 
with very high correlations should not be used together. 
However, if two IQA indices have a low correlation, we 
cannot automatically assume they can be used together 
in a CQ application because one of the indices (or even 
both) may be irrelevant for this application. In any case, 
to conclude whether a specific IQA index is relevant for 
CQ, it is necessary to perform subjective experiments to 
quantify how well the index agrees with the results of 
such experiments.

A future line of research to expand the work presented 
in this article will consist of conducting subjective experi-
ments to compare the results of those experiments with 
the results presented in this article. This information will 
allow us to suggest the most promising IQA indices for 
evaluating CQ methods.
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