
Chapter 3
Linear, Deterministic, and Order-Invariant
Initialization Methods for the K-Means
Clustering Algorithm

M. Emre Celebi and Hassan A. Kingravi

Abstract Over the past five decades, k-means has become the clustering algorithm
of choice in many application domains primarily due to its simplicity, time/space
efficiency, and invariance to the ordering of the data points. Unfortunately, the
algorithm’s sensitivity to the initial selection of the cluster centers remains to be its
most serious drawback. Numerous initialization methods have been proposed to
address this drawback. Many of these methods, however, have time complexity
superlinear in the number of data points, which makes them impractical for large
data sets. On the other hand, linear methods are often random and/or sensitive
to the ordering of the data points. These methods are generally unreliable in that
the quality of their results is unpredictable. Therefore, it is common practice to
perform multiple runs of such methods and take the output of the run that produces
the best results. Such a practice, however, greatly increases the computational
requirements of the otherwise highly efficient k-means algorithm. In this chapter,
we investigate the empirical performance of six linear, deterministic (non-random),
and order-invariant k-means initialization methods on a large and diverse collection
of data sets from the UCI Machine Learning Repository. The results demonstrate
that two relatively unknown hierarchical initialization methods due to Su and Dy
outperform the remaining four methods with respect to two objective effectiveness
criteria. In addition, a recent method due to Erişoğlu et al. performs surprisingly
poorly.
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3.1 Introduction

Clustering, the unsupervised classification of patterns into groups, is one of the
most important tasks in exploratory data analysis [59]. Primary goals of clustering
include gaining insight into, classifying, and compressing data. Clustering has a
long and rich history in a variety of scientific disciplines including anthropology,
biology, medicine, psychology, statistics, mathematics, engineering, and computer
science. As a result, numerous clustering algorithms have been proposed since the
early 1950s [58].

Clustering algorithms can be broadly classified into two groups: hierarchical and
partitional [59]. Hierarchical algorithms recursively find nested clusters either in a
top-down (divisive) or bottom-up (agglomerative) fashion. In contrast, partitional
algorithms find all the clusters simultaneously as a partition of the data and do not
impose a hierarchical structure. Most hierarchical algorithms have time complexity
quadratic or higher in the number of data points [111] and therefore are not suitable
for large data sets, whereas partitional algorithms often have lower complexity.

Given a data set X D fx1; x2; : : : ; xN g � R
D , i.e., N points (vectors) each with

D attributes (components), hard partitional algorithms divide X into K exhaustive
and mutually exclusive clusters C D fC1; C2; : : : ; CKg; SK

iD1 Ci D X ; Ci \
Cj D ¿ for 1 � i ¤ j � K. These algorithms usually generate clusters by
optimizing a criterion function [48]. The most intuitive and frequently used criterion
function is the Sum of Squared Error (SSE) given by
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denote the centroid of cluster Ci (with cardinality jCi j) and the Euclidean (`2) norm
of vector xj D .xj1; xj 2; : : : ; xjD/, respectively.

The number of ways in which a set of N objects can be partitioned into K non-
empty groups is given by Stirling numbers of the second kind
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which can be approximated by KN =KŠ It can be seen that a complete enumeration
of all possible clusterings to determine the global minimum of (3.1) is clearly
computationally prohibitive except for very small data sets. In fact, this non-
convex optimization problem is proven to be NP-hard even for K D 2 [4, 30]
or D D 2 [79, 106]. Consequently, various heuristics have been developed to
provide approximate solutions to this problem [102]. Most of the early approaches
[12, 39, 53, 61, 77, 78, 98, 100] were simple procedures based on the alternating
minimization algorithm [28]. In contrast, recent approaches are predominantly
based on various metaheuristics [29, 94] that are capable of avoiding bad local
minima at the expense of significantly increased computational requirements. These
include heuristics based on simulated annealing [70], evolution strategies [10], tabu
search [3], genetic algorithms [85], variable neighborhood search [51], memetic
algorithms [90], scatter search [89], ant colony optimization [50], differential
evolution [91], and particle swarm optimization [91]. Among all these heuristics,
Lloyd’s algorithm [77], often referred to as the (batch) k-means algorithm, is the
simplest and most commonly used one. This algorithm starts with K arbitrary
centers, typically chosen uniformly at random from the data points. Each point is
assigned to the nearest center and then each center is recalculated as the mean of
all points assigned to it. These two steps are repeated until a predefined termination
criterion is met. K-means can be expressed in algorithmic notation as follows:

1. Choose the initial set of centers c1; c2; : : : ; cK arbitrarily.
2. Assign point xj (j 2 f1; 2; : : : ; N g) to the nearest center with respect to `2

distance, that is

xj 2 CO{ ” O{ D arg min
i2f1;2;:::;Kg

�
�xj � ci

�
�2

2
:

3. Recalculate center ci (i 2 f1; 2; : : : ; Kg) as the centroid of Ci , that is

ci D 1

jCi j
X

xj 2Ci

xj :

4. Repeat steps 2 and 3 until convergence.

K-means is undoubtedly the most widely used partitional clustering algorithm
[15, 17, 41, 48, 58, 59, 86, 110, 111]. Its popularity can be attributed to several
reasons. First, it is conceptually simple and easy to implement. Virtually every
data mining software includes an implementation of it. Second, it is versatile, i.e.,
almost every aspect of the algorithm (initialization, distance function, termination
criterion, etc.) can be modified. This is evidenced by hundreds of publications
over the last fifty years that extend k-means in a variety of ways. Third, it has
a time complexity that is linear in N , D, and K (in general, D � N and
K � N ). For this reason, it can be used to initialize more expensive clustering
algorithms such as expectation maximization [82], fuzzy c-means [16, p. 35],
DBSCAN [31], spectral clustering [27, 108], ant colony clustering[84], and particle
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swarm clustering [105]. Furthermore, numerous sequential [34,35,49,63,66,72,92]
and parallel [5, 14, 26, 46, 57, 71, 74, 109] acceleration techniques are available in
the literature. Fourth, it has a storage complexity that is linear in N , D, and K.
In addition, there exist disk-based variants that do not require all points to be stored
in memory [20, 38, 62, 88]. Fifth, it is guaranteed to converge [97] at a quadratic
rate [18]. Finally, it is invariant to data ordering, i.e., random shufflings of the data
points.

On the other hand, k-means has several significant disadvantages. First, it
requires the number of clusters, K, to be specified in advance. The value of this
parameter can be determined automatically by means of various internal/relative
cluster validity measures [6, 9, 107]. Second, it can only detect compact,
hyperspherical clusters that are well separated. This can be alleviated by using
a more general distance function such as the Mahalanobis distance, which permits
the detection of hyperellipsoidal clusters [80, 81]. Third, due its utilization of
the squared Euclidean distance, it is sensitive to noise and outlier points since
even a few such points can significantly influence the means of their respective
clusters. This can be addressed by outlier pruning [112] or by using a more robust
distance function such as the city-block (`1) distance [37, 60, 99]. Fourth, due to
its gradient descent nature, it often converges to a local minimum of the criterion
function [97]. For the same reason, it is highly sensitive to the selection of the initial
centers [25]. Adverse effects of improper initialization include empty clusters,
slower convergence, and a higher chance of getting stuck in bad local minima [23].
Fortunately, except for the first two, these drawbacks can be remedied by using an
adaptive initialization method (IM).

A large number of IMs have been proposed in the literature [23, 25, 32, 54, 93].
Unfortunately, many of these have time complexity superlinear in N [1, 2, 8, 21,
53, 65, 68, 73, 75, 95], which makes them impractical for large data sets (note that
k-means itself has linear time complexity). In contrast, linear IMs are often random
and/or order-sensitive [7, 11, 19, 39, 61, 78, 100, 104], which renders their results
unreliable. In this study, we investigate the empirical performance of six linear,
deterministic (non-random), and order-invariant k-means IMs on a large and diverse
collection of data sets from the UCI Machine Learning Repository.

The rest of the chapter is organized as follows. Section 3.2 presents an overview
of linear, deterministic, and order-invariant k-means IMs. Section 3.3 describes the
experimental setup. Section 3.4 presents and discusses the experimental results.
Finally, Sect. 3.5 gives the conclusions.

3.2 Linear, Deterministic, and Order-Invariant K-Means
Initialization Methods

In this study, we focus on IMs that have time complexity linear in N . This is because
k-means itself has linear complexity, which is perhaps the most important reason
for its popularity. Therefore, an IM for k-means should not diminish this advantage
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of the algorithm. Accordingly, the following six linear, deterministic, and order-
invariant IMs are investigated.

The maximin (MM) method [47] chooses the first center c1 arbitrarily from the
data points and the remaining .K � 1/ centers are chosen successively as follows.
In iteration i (i 2 f2; 3; : : : ; Kg), the i th center ci is chosen to be the point with
the greatest minimum `2 distance to the previously selected .i � 1/ centers, i.e.,
c1; c2; : : : ; ci�1. This method can be expressed in algorithmic notation as follows:

1. Choose the first center c1 arbitrarily from the data points.
2. Choose the next center ci (i 2 f2; 3; : : : ; Kg) as the point x O| that satisfies

O| D arg max
j 2f1;2;:::;N g

�

min
k2f1;2;:::;i�1g

�
�xj � ck

�
�2

2

�

:

3. Repeat step 2 .K � 1/ times.

Despite the fact that it was originally developed as a 2-approximation to the
K-center clustering problem,1 MM is commonly used as a k-means initializer.2 In this
study, the first center is chosen to be the centroid of X given by

Nx D 1

N

NX

j D1

xj : (3.5)

Note that c1 D Nx gives the optimal SSE when K D 1.
Katsavounidis et al.’s method (KK) [67] is identical to MM with the exception

that the first center is chosen to be the point with the greatest `2 norm,3 that is, the
point x O| that satisfies

O| D arg max
j 2f1;2;:::;N g

�
�xj

�
�2

2
: (3.6)

The PCA-Part (PP) method [101] uses a divisive hierarchical approach based
on Principal Component Analysis (PCA) [64]. Starting from an initial cluster that
contains the entire data set X , the method successively selects the cluster with the
greatest SSE and divides it into two subclusters using a hyperplane that passes

1 Given a set of N points in a metric space, the goal of K-center clustering is to find K

representative points (centers) such that the maximum distance of a point to a center is minimized
[52, p. 63]. A polynomial-time algorithm is said to be a ı-approximation algorithm for a
minimization problem if for every instance of the problem it delivers a solution whose cost is
at most ı times the cost of the optimal solution (ı is often referred to as the “approximation ratio”
or “approximation factor”) [55, p. xv].
2Interestingly, several authors including Thorndike [103], Casey and Nagy [22], Batchelor and
Wilkins [13], Kennard and Stone [69], and Tou and Gonzalez [104, pp. 92–94] had proposed similar
(or even identical) methods decades earlier. Gonzalez [47], however, was the one to prove the
theoretical properties of the method.
3This choice was motivated by a vector quantization application.
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through the cluster centroid and is orthogonal to the principal eigenvector of the
cluster covariance matrix. This iterative cluster selection and splitting procedure is
repeated .K � 1/ times. The final centers are then given by the centroids of the
resulting K subclusters. This method can be expressed in algorithmic notation as
follows:

1. Let Ci be the cluster with the greatest SSE and ci be the centroid of this cluster.
In the first iteration, C1 D X and c1 D Nx.

2. Let p be the projection of ci on the principal eigenvector vi of Ci , i.e., p D ci �vi ,
where ‘�’ denotes the dot product.

3. Divide Ci into two subclusters Ci1 and Ci2 according to the following rule: For
any xj 2 Ci , if xj � vi � p, then assign xj to Ci1 ; otherwise, assign it to Ci2 .

4. Repeat steps 1–3 .K � 1/ times.

The Var-Part (VP) method [101] is an approximation to PP, where, in each
iteration, the covariance matrix of the cluster to be split is assumed to be diagonal.
In this case, the splitting hyperplane is orthogonal to the coordinate axis with the
greatest variance. In other words, the only difference between VP and PP is the
choice of the projection axis.

Figure 3.1 [24] illustrates VP on a toy data set with four natural clusters [96][68,
p. 100]. In iteration 1, the initial cluster that contains the entire data set is split into
two subclusters along the Y axis using a line (i.e., a one-dimensional hyperplane)
passing through the mean point (92:026667). Between the resulting two clusters, the
one above the line has a greater SSE. In iteration 2, this cluster is thus split along
the X axis at the mean point (66:975000). In the final iteration, the cluster with
the greatest SSE, i.e., the bottom cluster, is split along the X axis at the mean point
(41:057143). In Fig. 3.1d, the centroids of the final four clusters are denoted by stars.

The maxisum (MS) method [36] is a recent modification of MM. It can be
expressed in algorithmic notation as follows:

1. Determine the attribute with the greatest absolute coefficient of variation (ratio
of the standard deviation to the mean), that is, the attribute x:d1 that satisfies

d1 D arg max
d2f1;2;:::;Dg

ˇ
ˇ
ˇ
ˇ

sd

md

ˇ
ˇ
ˇ
ˇ ;

where

md D 1

N

NX

j D1

xjd

and

s2
d D 1

N � 1

NX

j D1

.xjd � md /2

denote the mean and variance of the d th attribute x:d , respectively.
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Fig. 3.1 Illustration of Var-Part on the Ruspini data set. (a) Input data set. (b) Iteration 1.
(c) Iteration 2. (d) Iteration 3

2. Determine the attribute with the least Pearson product-moment correlation with
x:d1 , that is, the attribute x:d2 that satisfies

d2 D arg min
d2f1;2;:::;Dg

NP

j D1

.xjd1 � md1/.xjd � md /

s
NP

j D1

.xjd1 � md1/
2

s
NP

j D1

.xjd � md /2

: (3.7)

Note that since we calculated the mean and standard deviation of each
attribute in step 1, the following expression can be used in place of (3.7) to save
computational time:

d2 D arg min
d2f1;2;:::;Dg

NX

j D1

�
xjd1 � md1

sd1

��
xjd � md

sd

�

: (3.8)
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3. Let Y D fy1; y2; : : : ; yN g � R
2 be the projection of X D fx1; x2; : : : ; xN g � R

D

onto the two-dimensional subspace determined in steps 1 and 2. In other words,
yj D �

xjd1 ; xjd2

�
for j 2 f1; 2; : : : ; N g.

4. Choose the first center c1 as the point farthest from the centroid Ny of Y with
respect to `2 distance, that is, the point y O| that satisfies

O| D arg max
j 2f1;2;:::;N g

�
�yj � Ny��2

2
:

5. Choose the next center ci (i 2 f2; 3; : : : ; Kg) as the point with the greatest
cumulative `2 distance from the previously selected .i � 1/ centers, that is, the
point y O| that satisfies

O| D arg max
j 2f1;2;:::;N g

i�1X

kD1

�
�yj � ck

�
�

2
:

6. Repeat step 5 .K � 1/ times.

Note that steps 1 and 2 above provide rough approximations to the first two PCs
and that steps 4 and 5 are performed in the two-dimensional subspace spanned by
the attributes determined in steps 1 and 2.

Clearly, MS is a derivative of MM. Differences between the two methods are as
follows:

• MM chooses the first center arbitrarily from the data points, whereas MS chooses
it to be the point farthest from the mean of the projected data set.

• MM chooses the remaining .K � 1/ centers iteratively based on their minimum
distance from the previously selected centers, whereas MS uses a cumulative
distance criterion. Note that while the selection criterion used in MM provides
an approximation guarantee of factor 2 for the K-center clustering problem (see
footnote 1 on page 83), it is unclear whether or not MS offers any approximation
guarantees.

• MM performs the distance calculations in the original D-dimensional space,
whereas MS works in a two-dimensional subspace. A serious drawback of the
projection operation employed in MS is that the method disregards all attributes
but two and therefore is likely to be effective only for data sets in which the
variability is mostly on two dimensions. Unfortunately, the motivation behind
this particular projection scheme is not given by Erişoğlu et al.

Interestingly, MS also bears a striking resemblance to a method proposed by
DeSarbo et al. [33] almost three decades earlier. The latter method differs from
the former in two ways. First, it works in the original D-dimensional space. Second,
it chooses the first two centers as the pair of points with the greatest `2 distance.
Unfortunately, the determination of the first two centers in this method leads to a
time complexity quadratic in N . Therefore, this method was not included in the
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experiments. More recently, Glasbey et al. [43] mentioned a very similar method
within the context of color palette design.

We also experimented with a modified version of the MS method (MS+), which
is identical to MS with the exception that there is no projection involved. In other
words, MS+ operates in the original D-dimensional space.

For a comprehensive overview of these methods and others, the reader is referred
to a recent article by Celebi et al. [25]. It should be noted that, in this study, we do
not attempt to compare a mix of deterministic and random IMs. Instead, we focus
on deterministic methods for two main reasons. First, these methods are generally
computationally more efficient as they need to be executed only once. In contrast,
random methods are inherently unreliable in that the quality of their results is
unpredictable and thus it is common practice to perform multiple runs of such
methods and take the output of the run4 that produces the best objective function
value. Second, several studies [24, 25, 101] demonstrated that despite the fact that
they are executed only once, some deterministic methods are highly competitive
with well-known and effective random methods such as Bradley and Fayyad’s
method [19] and k-means++ [7].

3.3 Experimental Setup

3.3.1 Data Set Descriptions

The experiments were performed on 24 commonly used data sets from the UCI
Machine Learning Repository [40]. Table 3.1 gives the data set descriptions. For
each data set, the number of clusters (K) was set equal to the number of classes (K 0),
as commonly seen in the related literature [2, 7, 21, 24, 25, 42, 54, 65, 87, 95, 101].

3.3.2 Attribute Normalization

Normalization is a common preprocessing step in clustering that is necessary to
prevent attributes with large variability from dominating the distance calculations
and also to avoid numerical instabilities in the computations. Two commonly used
normalization schemes are linear scaling to unit range (min-max normalization) and
linear scaling to unit variance (z-score normalization). Several studies revealed that
the former scheme is preferable to the latter since the latter is likely to eliminate
valuable between-cluster variation [44, 45, 83]. As a result, we used the min-max
normalization scheme to map the attributes of each data set to the Œ0; 1� interval.

4Each ‘run’ of a random IM involves the execution of the IM itself followed by that of the clustering
algorithm, e.g., k-means.
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Table 3.1 Data set descriptions (N : # points, D: # attributes, K0:
# classes)

ID Data Set N D K0

01 Breast cancer Wisconsin (original) 683 9 2

02 Breast tissue 106 9 6

03 Ecoli 336 7 8

04 Steel plates faults 1,941 27 7

05 Glass identification 214 9 6

06 Heart disease (Cleveland) 297 13 5

07 Ionosphere 351 34 2

08 Iris (Bezdek) 150 4 3

09 ISOLET 7,797 617 26

10 Landsat satellite (Statlog) 6,435 36 6

11 Letter recognition 20,000 16 26

12 Multiple features (Fourier) 2,000 76 10

13 Libras movement 360 90 15

14 Optical digits 5,620 64 10

15 Page blocks classification 5,473 10 5

16 Pen digits 10,992 16 10

17 Person activity 164,860 3 11

18 Image segmentation 2,310 19 7

19 Shuttle (Statlog) 58,000 9 7

20 Spambase 4,601 57 2

21 Vertebral column 310 6 3

22 Wall-following robot navigation 5,456 24 4

23 Wine 178 13 3

24 Yeast 1,484 8 10

3.3.3 Performance Criteria

The performance of the IMs was quantified using two effectiveness (quality) and
one efficiency (speed) criteria:

• Initial SSE (IS): This is the SSE value calculated after the initialization phase,
before the clustering phase. It gives us a measure of the effectiveness of an IM
by itself.

• Final SSE (FS): This is the SSE value calculated after the clustering phase. It
gives us a measure of the effectiveness of an IM when its output is refined
by k-means. Note that this is the objective function of the k-means algorithm,
i.e., (3.1).

• Number of Iterations (NI): This is the number of iterations that k-means
requires until reaching convergence when initialized by a particular IM. It is
an efficiency measure independent of programming language, implementation
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style, compiler, and CPU architecture. Note that we do not report CPU time
measurements since on most data sets that we tested each of the six IMs
completed within a few milliseconds (gcc v4.4.5, Intel Core i7-3960X 3.30GHz).

The convergence of k-means was controlled by the disjunction of two criteria:
the number of iterations reaches a maximum of 100 or the relative improvement
in SSE between two consecutive iterations drops below a threshold [76], i.e.,
.SSEi�1 � SSEi / =SSEi � �, where SSEi denotes the SSE value at the end of the
i th (i 2 f2; : : : ; 100g) iteration. The convergence threshold was set to � D 10�6.

3.4 Experimental Results and Discussion

Tables 3.2, 3.3, and 3.4 give the performance measurements for each method (the
best values are underlined). Since the number of iterations fall within Œ0; 100�, we
can directly obtain descriptive statistics such as minimum, maximum, mean, and
median for this criterion over the 24 data sets. In contrast, initial/final SSE values
are unnormalized and therefore incomparable across different data sets. In order
to circumvent this problem, for each data set, we calculated the percent SSE of
each method relative to the worst (greatest) SSE. For example, it can be seen from
Table 3.2 that on the Breast Cancer Wisconsin data set the initial SSE of MM is
498, whereas the worst initial SSE on the same data set is 596 and thus the ratio
of the former to the latter is 0:836. This simply means that on this data set MM
obtains 100.1 � 0:836/ � 16 % better initial SSE than the worst method, KK.
Table 3.5 gives the summary statistics for the normalized initial/final SSE’s obtained
in this manner and those for the number of iterations. As usual, min (minimum) and
max (maximum) represent the best and worst case performance, respectively. Mean
represents the average case performance, whereas median quantifies the typical
performance of a method without regard to outliers. For example, with respect to
the initial SSE criterion, PP performs, on the average, about 100 � 21:46 � 79 %
better than the worst method.

For convenient visualization, Fig. 3.2 shows the box plots that depict the
five-number summaries (minimum, 25th percentile, median, 75th percentile, and
maximum) for the normalized initial/final SSE’s calculated in the aforementioned
manner and the five-number summary for the number of iterations. Here, the
bottom and top end of the whiskers of a box represent the minimum and maximum,
respectively, whereas the bottom and top of the box itself are the 25th percentile
(Q1) and 75th percentile (Q3), respectively. The line that passes through the box
is the 50th percentile (Q2), i.e., the median, while the small square inside the box
denotes the mean.

With respect to effectiveness, the following observations can be made:

• VP and PP performed very similarly with respect to both initial and final SSE.
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Table 3.2 Initial SSE comparison of the initialization methods

ID MM KK VP PP MS MS+

01 498 596 247 240 478 596

02 19 18 8 8 50 21

03 48 76 20 19 104 68

04 2; 817 3; 788 1; 203 1; 262 5; 260 4; 627

05 45 117 21 20 83 132

06 409 557 249 250 773 559

07 827 1; 791 632 629 3; 244 3; 390

08 18 23 8 8 42 42

09 221; 163 298; 478 145; 444 124; 958 368; 510 318; 162

10 4; 816 7; 780 2; 050 2; 116 7; 685 11; 079

11 5; 632 7; 583 3; 456 3; 101 12; 810 14; 336

12 4; 485 7; 821 3; 354 3; 266 7; 129 8; 369

13 1; 023 1; 114 628 592 1; 906 1; 454

14 25; 291 36; 691 17; 476 15; 714 43; 169 42; 213

15 635 2; 343 300 230 1; 328 7; 868

16 12; 315 16; 159 5; 947 5; 920 17; 914 16; 104

17 5; 940 7; 196 1; 269 1; 468 42; 475 50; 878

18 1; 085 1; 617 472 416 3; 071 1; 830

19 1; 818 14; 824 316 309 26; 778 28; 223

20 772 13; 155 782 783 5; 101 13; 155

21 37 103 23 20 83 103

22 11; 004 21; 141 8; 517 7; 805 19; 986 20; 122

23 87 185 51 53 153 212

24 115 261 77 63 209 658

• On 23 (out of 24) data sets, VP and PP obtained the two best initial SSE’s.
Therefore, in applications where an approximate clustering of the data set is
desired, these hierarchical methods should be used.

• On 23 data sets, either MS or MS+ obtained the worst initial SSE. In fact, on
one data set (#19, Shuttle), these methods gave respectively 86:7 and 91:3 times
worse initial SSE than the best method, PP.

• On 20 data sets, VP and PP obtained the two best final SSE’s. Since final SSE is
the objective function of k-means, from an optimization point of view, these two
methods are the best IMs.
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Table 3.3 Final SSE comparison of the initialization methods

ID MM KK VP PP MS MS+

01 239 239 239 239 239 239

02 7 7 7 7 11 10

03 19 20 17 18 40 20

04 1; 331 1; 329 1; 167 1; 168 1; 801 1; 376

05 23 23 19 19 31 22

06 249 249 248 243 276 253

07 826 629 629 629 629 629

08 7 7 7 7 7 7

09 135; 818 123; 607 118; 495 118; 386 174; 326 121; 912

10 1; 742 1; 742 1; 742 1; 742 1; 742 1; 742

11 2; 749 2; 783 2; 735 2; 745 4; 520 3; 262

12 3; 316 3; 284 3; 137 3; 214 3; 518 3; 257

13 502 502 502 486 783 530

14 14; 679 14; 649 14; 581 14; 807 21; 855 14; 581

15 230 295 227 215 230 310

16 5; 049 4; 930 4; 930 5; 004 7; 530 5; 017

17 1; 195 1; 195 1; 182 1; 177 1; 226 1; 192

18 433 443 410 405 745 446

19 726 658 235 274 728 496

20 765 765 778 778 778 765

21 23 23 19 19 23 23

22 7; 772 7; 772 7; 774 7; 774 7; 772 7; 772

23 63 49 49 49 49 49

24 61 61 69 59 60 63

• On 16 data sets, MS obtained the worst final SSE. In fact, on one data set (#19,
Shuttle), MS gave 3:1 times worse final SSE than the best method, VP.

• A comparison between Fig. 3.2a, b reveals that there is significantly less variation
among the IMs with respect to final SSE compared to initial SSE. In other words,
the performance of the IMs is more homogeneous with respect to final SSE. This
was expected because, being a local optimization procedure, k-means can take
two disparate initial configurations to similar (or, in some cases, even identical)
local minima. Nevertheless, as Tables 3.2 and 3.3 show, VP and PP consistently
performed well, whereas MS/MS+ generally performed poorly.

With respect to computational efficiency, the following observations can be
made:

• An average (or typical) run of KK lead to the fastest k-means convergence.
• An average (or typical) run of PP lead to the second fastest k-means convergence.
• An average run of MS lead to the slowest k-means convergence.
• A typical run of MM lead to the slowest k-means convergence.
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Table 3.4 Number of
iterations comparison of the
initialization methods

ID MM KK VP PP MS MS+

01 8 7 4 4 7 7

02 7 6 6 7 9 4

03 14 12 17 7 4 10

04 25 16 11 42 12 12

05 6 5 6 5 7 6

06 12 10 3 4 11 16

07 3 6 3 3 7 6

08 6 5 4 4 12 19

09 32 36 82 45 34 81

10 53 17 28 27 24 33

11 72 63 100 83 91 65

12 37 32 14 25 31 29

13 13 7 17 11 18 16

14 36 24 16 22 29 17

15 27 18 25 15 30 12

16 19 17 13 17 22 29

17 31 31 100 63 91 53

18 31 9 10 18 16 22

19 22 8 30 16 14 9

20 5 5 9 10 11 5

21 11 10 10 9 8 10

22 24 14 20 8 20 19

23 9 7 5 7 7 8

24 73 43 33 21 71 49

In summary, our experiments showed that VP and PP performed very similarly
with respective to both effectiveness criteria and they outperformed the remaining
four methods by a large margin. The former method has a time complexity of
O.ND/, whereas the latter one has a complexity of O.ND2/ when implemented
using the power method [56]. Therefore, on high dimensional data sets, the former
method might be preferable. On the other hand, on low dimensional data sets, the
latter method might be preferable as it often leads to faster k-means convergence.
The main disadvantage of these two methods is that they are more complicated
to implement due to their hierarchical formulation. As for the remaining four
methods, when compared to MM, KK was significantly worse in terms of initial
SSE, slightly better in terms of final SSE, and significantly better in terms of
number of iterations. Interestingly, despite its similarities with MM, the most
recent method that we examined, i.e., MS, often gave the worst results. It was
also demonstrated that by eliminating the two-dimensional projection step, the
performance of MS can be substantially improved with respect to final SSE. This,
however, comes at the expense of a performance degradation with respect to initial
SSE. Consequently, in either of its forms, the MS method rediscovered recently by
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Table 3.5 Summary statistics for Tables 3.2, 3.3, and 3.4

Criterion Statistic MM KK VP PP MS MS+

IS Min 5:87 14:14 1:12 1:10 16:88 42:00

Q1 29:24 52:74 15:64 14:35 76:19 87:15

Median 41:95 72:04 20:78 19:26 94:71 100:00

Q3 53:57 89:42 33:07 32:69 100:00 100:00

Max 83:56 100:00 41:44 40:27 100:00 100:00

Mean 40:28 69:03 22:55 21:46 83:16 90:53

FS Min 47:50 50:00 32:28 37:64 74:19 50:00

Q1 67:11 66:25 63:87 62:85 100:00 69:03

Median 89:31 83:09 74:69 72:75 100:00 84:34

Q3 99:99 97:90 98:21 93:68 100:00 99:15

Max 100:00 100:00 100:00 100:00 100:00 100:00

Mean 83:21 81:56 76:23 75:77 96:46 82:68

NI Min 3:00 5:00 3:00 3:00 4:00 4:00

Q1 8:50 7:00 6:00 7:00 8:50 8:50

Median 20:50 11:00 13:50 13:00 15:00 16:00

Q3 31:50 21:00 26:50 23:50 29:50 29:00

Max 73:00 63:00 100:00 83:00 91:00 81:00

Mean 24:00 17:00 23:58 19:71 24:42 22:38

Erişoğlu et al. does not appear to outperform the classical MM method or the more
recent hierarchical methods VP and PP. This is not surprising given that MS can
easily choose two nearby points as centers provided that they each have a large
cumulative distance to all other centers [43].

3.5 Conclusions

In this chapter we examined six linear, deterministic, and order-invariant methods
used for the initialization of the k-means clustering algorithm. These included the
popular maximin method and three of its variants and two relatively unknown
divisive hierarchical methods. Experiments on a large and diverse collection of real-
world data sets from the UCI Machine Learning Repository demonstrated that the
hierarchical methods outperform the remaining four methods with respect to two
objective effectiveness criteria. These hierarchical methods can be used to initialize
k-means effectively, particularly in time-critical applications that involve large data
sets. Alternatively, they can be used as approximate clustering algorithms without
additional k-means refinement. Our experiments also revealed that the most recent
variant of the maximin method performs surprisingly poorly.
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a b

c

Fig. 3.2 Box plots for the performance criteria. (a) Normalized initial SSE. (b) Normalized final
SSE. (c) Number of iterations
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