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1. Introduction

The Minkowski ðLpÞ metric is inarguably one of the most com-
monly used quantitative distance (dissimilarity) measures in sci-
entific and engineering applications. The Minkowski distance
between two vectors x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) in the
n-dimensional Euclidean space, Rn, is given by

Lpðx; yÞ ¼
Pn
i¼1
jxi � yij

p
� �1=p

: ð1Þ

Three special cases of the Lp metric are of particular interest,
namely, L1 (city-block metric), L2 (Euclidean metric), and L1
(chessboard metric). Given the general form (1), L1 and L2 can
be defined in a straightforward fashion, while L1 is defined as

L1ðx; yÞ ¼max
16i6n
jxi � yij:

The Minkowski metric enjoys the property of being translation
invariant, i.e., Lpðx; yÞ ¼ Lpðxþ z; y þ zÞ for all x; y; z 2 Rn. Since in
many applications the data space is Euclidean, the most natural
choice of metric is L2, which has the added advantage being isotro-
pic (rotation invariant). For example, when the input vectors stem
from an isotropic vector field, e.g., a velocity field, the most appro-
priate choice is to use the L2 metric so that all vectors are pro-
cessed in the same way, regardless of their orientation (Barni
ll rights reserved.
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et al., 1995). However, L2 has the drawback of a high computa-
tional cost due to the multiplication and square root operations.
As a result, L1 and L1 are often used as alternatives. Although
these metrics are computationally more efficient, they deviate
from L2 significantly.

Due to the translation invariance of Lp, it suffices to consider
DpðxÞ ¼ Lpðx;0Þ, i.e., the distance from the point x to the origin.
Therefore, in the rest of the paper, we will consider approximations
to Dp(x) rather than Lpðx; yÞ.

Let eD, defined on Rn, be an approximation to D2 (Euclidean
norm). We assume that eD is a continuous and absolutely homoge-
neous function. Recall that eD is called absolutely homogeneous (of
degree one) if eDðkxÞ ¼ jkjeDðxÞ 8k 2 R; 8x 2 Rn:

We note that all variants of eD we consider in this paper satisfy
these assumptions. As a measure of the quality of the approxima-
tion of eD to D2 we define the maximum relative error (MRE) as

eeDmax ¼ sup
x2Rnnf0g

eDðxÞ � D2ðxÞ
��� ���

D2ðxÞ
: ð2Þ

Using the homogeneity of D2 and eD, (2) can be written as

eeDmax ¼ sup
x2Sn�1

2

eDðxÞ � 1
��� ���; ð3Þ

where Sn�1
2 ¼ fx 2 Rn : D2ðxÞ ¼ 1g is the unit hypersphere of Rn with

respect to the Euclidean norm. Furthermore, by the continuity of eD,
we can replace the supremum with maximum in (3) and write
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Fig. 1. Maximum relative errors for D and D .
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eeDmax ¼ max
x2Sn�1

2

eDðxÞ � 1
��� ���: ð4Þ

We will use (4) as the definition of MRE throughout.
Mukherjee (2011) recently introduced a class of distance func-

tions called weighted t-cost distances that generalize m-neighbor
(Das et al., 1987), octagonal (Das et al., 1987), and t-cost (Das
et al., 1992) distances. He proved that weighted t-cost distances
form a family of metrics and derived an approximation for the
Euclidean norm in Zn. Here we briefly review the t-cost norm.

The t-cost norm (Das et al., 1992) defines two points in the rect-
angular grid as neighbors when their respective hypercubes (or
hypervoxels) share a hyperplane of any dimension. The cost asso-
ciated with these points can be at most t, 1 6 t 6 n, such that if two
consecutive points on a shortest path share a hyperplane of dimen-
sion r, the distance between them is taken as min(t,n � r). There
are n distinct t-cost norms defined by

DtðxÞ ¼
Pt

i¼1
xðiÞ; 1 6 t 6 n;

where x(i) is the i-th absolute largest component of x, i.e.,
(x(1),x(2), . . . ,x(n)) is a permutation of (jx1j, jx2j, . . . , jxnj) such that
x(1) P x(2) P � � �Px(n). The MRE of this norm is given by Das et al.
(1992)

eDt
max ¼max

ffiffi
t
p
� 1;1� tffiffiffi

n
p

� �
:

Mukherjee generalized the t-cost norm as follows (Mukherjee,
2011):

DMðxÞ ¼ max
16t6n

fwtDtðxÞg;

where wt’s are non-negative real constants. Based on this weighted
norm, he then derived an approximation for D2 using the following
weight assignment: wt ¼ 1

ffiffi
t
p

for 1 6 t 6 n. Note that DM consis-
tently underestimates D2 and the corresponding MRE is given by
Mukherjee (2011)

eDM
max ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ð
ffiffi
i
p
�

ffiffiffiffiffiffiffiffiffiffi
i� 1
p

Þ2
q : ð5Þ

In a recent study (Celebi et al., 2011), we examined various
Euclidean norm approximations in detail and compared their aver-
age and maximum errors using numerical simulations. Here we
show that two of those approximations, namely Barni et al.’s norm
(Barni et al., 1995, 2000) and Seol and Cheun’s norm (Seol and
Cheun, 2008), are viable alternatives to DM.

Barni et al. (1995, 2000) formulated a generic approximation for
D2 as

DBðxÞ ¼ d
Pn
i¼1

aixðiÞ;

where a = (a1,a2, . . . ,an) and d > 0 are approximation parameters.
Note that a non-increasing ordering and strict positivity of the com-
ponent weights, i.e., a1 P a2 P � � �P an > 0 is a necessary and suffi-
cient condition for DB to define a norm (Barni et al., 2000).

Barni et al. showed that the minimization of (4) is equivalent to
determining the weight vector a and the scale factor d that solve
the following minimax problem:

min
a;d

max
x2V

DBðxÞ � 1j j;

where V ¼ fx 2 Rn : x1 P x2 P � � �P xn P 0; D2ðxÞ ¼ 1g. The opti-
mal solution and its MRE are given by

a�i ¼
ffiffi
i
p
�

ffiffiffiffiffiffiffiffiffiffi
i� 1
p

; d� ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1a�i
2

q ; eDB
max ¼ 1� d�: ð6Þ
Note the striking similarity between (5) and (6). Interestingly, a
similar but less rigorous approach had been published earlier by
Ohashi (1994). It should also be noted that several authors ap-
proached the problem from a Euclidean distance transform per-
spective and derived similar approximations for the 2- and 3-
dimensional cases, see for example (Borgefors, 1986; Verwer,
1991). Furthermore, computation of weighted (Chamfer) distances
in arbitrary dimensions on general point lattices is discussed in
(Fouard et al., 2007).

More recently, Seol and Cheun (2008) proposed an approxima-
tion of the form

Da;bðxÞ ¼ aD1ðxÞ þ bD1ðxÞ; ð7Þ

where a and b are strictly positive parameters to be determined by
solving the following 2 � 2 linear system

aE D2
1

� �
þ bEðD1D1Þ ¼ EðD2D1Þ;

aEðD1D1Þ þ bE D2
1

� �
¼ EðD2D1Þ;

where E(�) is the expectation operator.
Seol and Cheun estimated the optimal values of a and b using

100,000 n-dimensional vectors whose components are indepen-
dent and identically distributed, standard Gaussian random vari-
ables. In (Celebi et al., 2011), we demonstrated that a fixed
number of samples from the unit hypersphere gives biased esti-
mates for the MRE. The basic reason behind this is the fact that a
fixed number of samples fail to suffice as the dimension of the
space increases.

It is easy to see that DB and Da,b fit into the general form

eDðxÞ ¼Pn
i¼1

wixðiÞ;

which is a weighted D1 norm. For DB the weights are w1 = d⁄ and
wi–1 ¼ d�a�i , whereas for Da,b they are w1 = a + b and wi–1 = b.
Clearly, DB has a more elaborate design in which each component
is assigned a weight proportional to its ranking (absolute value).
However, this weighting scheme also presents a drawback in that
a full ordering of the component absolute values is required.

DB and Da,b can also be written as linear combinations of the D1

and D1 norms, as in (7). D1 overestimates the D2 norm, whereas
D1 underestimates it (Chaudhuri et al., 1992). Therefore, it is nat-
ural to expect a suitable linear combination of D1 and D1 to give an
approximation to D2 better than either of them (Rhodes, 1995).
Note that Rosenfeld and Pfaltz (1968) obtained a 2-dimensional
M B
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approximation by combining D1 and D1 nonlinearly as follows:eDðxÞ ¼maxðb2ðD1ðxÞ þ 1Þ=3c;D1ðxÞÞ.

2. Comparison of the Euclidean norm approximations

Due to their formulations, the MREs for DM and DB can be calcu-
lated analytically using (5) and (6), respectively. In Fig. 1 we plot
the theoretical errors for these norms for n 6 100. It can be seen
that DB is not only more accurate than DM, but also it scales signif-
icantly better.

The operation counts for each norm are given in Table 1 (ABS:
absolute value, COMP: comparison, ADD: addition, MULT: multi-
plication, SQRT: square root). The following conclusions can be
drawn:

. DB and DM have the highest computational cost due to the fact
that they require sorting of the absolute values of the vector
components.

. Da,b has the lowest computational cost among the approximate
norms. A significant advantage of this norm is that it requires
only two multiplications regardless of the value of n.

. Da,b can be used to approximate D2
2 (squared Euclidean norm)

using an extra multiplication. On the other hand, the computa-
tional cost of DB (DM) is higher than that of D2

2 due to the extra
absolute value and sorting operations involved.

In Table 2 we display the percentage average and maximum er-
rors for Da,b, DB, and DM for n 6 8. Average relative error (ARE) is de-
fined as

eeDavg ¼
1
jSj
P
x2S

eDðxÞ � 1
��� ���;

where S is a finite subset of the unit hypersphere Sn�1
2 , and jSj de-

notes the number of elements in S. An efficient way to pick a ran-
dom point on Sn�1

2 is to generate n independent Gaussian random
variables x1,x2, . . . ,xn with zero mean and unit variance. The distri-
bution of the unit vectors
Table 1
Operation counts for the norms.

Norm ABS COMP ADD MULT SQRT

D1 n n � 1 0 0 0
D1 n 0 n � 1 0 0
D2 0 0 n � 1 n 1
DB n OðnlognÞ n � 1 n 0
Da,b n n � 1 n 2 0
DM n OðnlognÞ n � 1 n 0

Table 2
Percentage average and maximum errors for the approximate Euclidean norms.

n Da,b DB DbM
ARE MREe ARE MREe MREt ARE

2 2.00 5.25 2.41 3.96 3.96 2.48
3 2.39 9.98 3.00 6.02 6.02 2.97
4 2.57 13.64 3.44 7.39 7.39 3.28
5 2.68 16.59 3.77 8.39 8.39 3.53
6 2.73 18.88 4.01 9.19 9.19 3.73
7 2.76 20.67 4.18 9.84 9.84 3.92
8 2.77 21.92 4.31 10.39 10.39 4.10
y ¼ ðy1; y2; . . . ; ynÞ : yi ¼ xi
Pn
j¼1

x2
j

 , !1=2

; i ¼ 1;2; . . . ;n

8<:
9=;

will then be uniform over the surface of the hypersphere (Muller,
1959). For each approximate norm, the ARE and MRE values were
calculated over an increasing number of points, 220,221, . . . (that
are uniformly distributed on the hypersphere) until the error values
converge, i.e., the error values do not differ by more than � = 10�5 in
two consecutive iterations.

In Table 2, the error values under the column ‘‘DMðRnÞ’’ were ob-
tained using the aforementioned iterative scheme, whereas those
under the column ‘‘DMðZnÞ’’ are taken from Mukherjee (2011).
Motivated by the fact that DM consistently underestimates D2, we
also experimented with a normalized form of this approximate
norm given by DbM ðxÞ ¼ DMðxÞ=d�. Note that d⁄ < 1 for n P 2 (6).

Note that for DM and DB, two types of maximum error were con-
sidered: empirical maximum error (MREe), which is calculated
numerically over S and the theoretical maximum error (MREt),
which is calculated analytically using (5) and (6), respectively.

By examining Table 2, the following observations can be made
regarding the maximum error:

. The most accurate approximation is DB. This is because this
norm is designed to minimize the maximum error.

. The proposed normalization is quite effective since the resulting
norm, DbM , is, on the average, only 8.6% less accurate than DB,
whereas both DMðRnÞ and DMðZnÞ are, on the average, about
85% less accurate than DB.

. The least accurate approximations are DM and Da,b for n 6 4 and
n > 4, respectively.

. As n is increased, the error increases in all approximations.
However, as can also be seen in Fig. 1, the error grows faster
in some approximations than others.

. For DB, the empirical and theoretical errors agree almost per-
fectly in all cases, which demonstrates the validity of the pre-
sented iterative error calculation scheme. As for DM, the
agreement in each case is close, but not as close as that
observed in DB. We have confirmed that using a smaller conver-
gence threshold (�) alleviates this problem at the expense of
increased computational cost.

On the other hand, with respect to average error we can see
that:

. Da,b is the most accurate approximation. This is because this
norm is designed to minimize the average error.

. DMðRnÞ and DMðZnÞ are the least accurate approximations. Fur-
thermore, the errors given by Mukherjee are lower than those
that we obtained (over Rn), and the discrepancy between the
outcomes of the two error calculation schemes increases as n
is increased. The optimistic average error values given by
DM

Rn Zn

MREe ARE MREe ARE MREe MREt

4.12 2.55 7.61 2.40 7.61 7.61
6.40 4.14 11.35 3.63 11.35 11.35
7.97 5.21 13.75 4.29 13.75 13.75
9.16 5.98 15.47 4.65 15.46 15.49

10.12 6.55 16.80 4.85 16.79 16.83
10.91 7.00 17.90 5.00 17.86 17.92
11.59 7.35 18.78 5.04 18.75 18.82



Table 3
Percentage average and maximum errors for DbM .

n Dd�bM Dd̂bM
ARE MREe d⁄ ARE MREe d̂

2 2.48 4.12 0.960434 2.41 3.96 0.961971
3 2.97 6.40 0.939809 2.79 6.02 0.943192
4 3.28 7.97 0.926150 2.99 7.39 0.931336
5 3.53 9.16 0.916059 3.13 8.40 0.922654
6 3.73 10.12 0.908117 3.23 9.18 0.915927
7 3.92 10.91 0.901603 3.31 9.84 0.910619
8 4.10 11.59 0.896101 3.40 10.39 0.905850
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Mukherjee are due to the fact that his approximation was pri-
marily intended for use in digital geometry and hence the calcu-
lations were performed in Zn (rather than Rn) using a very small
number of points ranging from 32 to 512 (Mukherjee, 2011). In
fact, Mukherjee used progressively fewer points with increasing
n to calculate the error values. In (Celebi et al., 2011), we dem-
onstrated that more points are required in higher dimensions to
obtain unbiased error estimates.

In the calculation of DbM , we assumed that the optimal scaling
factor for DM is the same as that of DB, i.e., d⁄. In order to check this
assumption, we performed a one-dimensional grid search over
[d⁄,1] for each n value. The results are shown in Table 3. It can be
seen that:

. Dd̂bM is significantly more accurate than Dd�bM with respect to both

ARE and MRE.

. Dd̂bM and DB have almost identical MREs. Since DB is analytically
optimized for the maximum error it can be concluded that Dd̂bM
can reach the same optimality by means of a suitable scaling
factor.

. Interestingly, Dd̂bM is more accurate than DB with respect to ARE.
This could be due to the fact that the two approximations take
different paths towards minimizing the MRE.

3. Conclusions

In this paper, we examined the weighted t-cost norm recently
proposed by Mukherjee (2011) with respect to its ability to
approximate the Euclidean norm in Rn. We evaluated the average
and maximum errors of this norm using numerical simulations
and compared the results to those of two other well-known Euclid-
ean norm approximations. The results demonstrated that, because
it was designed for digital geometry applications in Zn, the original
weighted t-cost norm is not particularly suited to approximate the
Euclidean norm in Rn. It is also shown, however, that when nor-
malized with an appropriate scaling factor, Mukherjee’s norm be-
comes competitive with an analytically optimized approximation
with respect to both average and maximum relative errors.
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