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a b s t r a c t

Pattern classification of dermoscopy images is a challenging task of differentiating between benign

melanocytic lesions and melanomas. In this paper, a novel pattern classification method based on color

symmetry and multiscale texture analysis is developed to assist dermatologists’ diagnosis. Our method

aims to classify various tumor patterns using color–texture properties extracted in a perceptually

uniform color space. In order to design an optimal classifier and to address the problem of multi-

component patterns, an adaptive boosting multi-label learning algorithm (AdaBoost.MC) is developed.

Finally, the class label set of the test pattern is determined by fusing the results produced by boosting

based on the maximum a posteriori (MAP) and robust ranking principles. The proposed discrimination

model for multi-label learning algorithm is fully automatic and obtains higher accuracy compared to

existing multi-label classification methods. Our classification model obtains a sensitivity (SE) of 89.28%,

specificity (SP) of 93.75% and an area under the curve (AUC) of 0.986. The results demonstrate that our

pattern classifier based on color–texture features agrees with dermatologists’ perception.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Non-invasive malignant melanoma (MM) is widely diagnosed
using digital dermoscopy. In fact, dermoscopy is one of the most
cost-effective methods for the detection and analysis of pigmen-
ted (PSLs) and non-pigmented skin lesions (Non-PSLs). Many
dermatologists [1,2] use clinical ABCD (A: Asymmetry, B: Border,
C: Color, D: Differential structures); Menzies’ method; 7-point
checklist and pattern analysis methods to diagnose and classify
the lesions. In particular, it is very difficult to distinguish among
lesions and even experienced dermatologists [3] have a diagnostic
accuracy below 85%. Therefore, recently computer-assisted diag-
nosis systems (CADs) have been developed. For CADs to decide if a
lesion is benign, melanoma or suspect [4], it would be desirable to
have automated systems that can provide assistance to less
experienced dermatologists. Automated systems for dermoscopy
images [5–7] usually have four stages: (1) artifact removal,
(2) lesion segmentation, (3) ABCD and texture related feature
extraction and optimization, and finally (4) classification. In
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practice, the classification algorithms, which utilizes low-level
feature extraction such as color, texture and shape, are quite
sophisticated and have achieved considerable success. The extrac-
tion of low-level image features that correlate with high-level
image semantics, however, remains a challenging task.

A few discrimination approaches have been proposed in the
literature that attempt to bridge this semantic gap between low-
level features and high-level semantics. However, many of them use
non-uniform color spaces e.g., RGB, HSV and some of them use
approximately uniform color space such as CIELnanbn [8]. These
techniques do not correlate well with the physician’s perception due
to the use of a non-uniform color space or limited gray scale image
properties. Moreover, color appearance models are not utilized in
these classification techniques. These appearance models correlate
to well with human perception and are capable to predict a wide
variety of visual phenomena, which is not possible in color spaces.

Various lesion classification systems have been proposed in
the literature. In [9], Ganster et al. proposed an automated
melanoma recognition by the nonparametric ‘‘KNN classifier’’. A
machine learning algorithm was developed in [10] to characterize
melanoma by a feature vector that contained shape, color and
texture information, as well as local and global parameters.
Burroni et al. [11] used the K-NN classifier for classification of
melanoma. Automated melanoma classification systems [12,13]
were developed too. Tanaka et al. [14] developed a method for
pattern classification of nevus with texture analysis. Their
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research was devoted to categorize three texture patterns: glob-
ular, reticular, and homogeneous patterns with 94% accuracy.
Iyatomi et al. [15] developed a classification system based on
acral volar skin with three detectors such as parallel ridge,
parallel furrow, and fibrillar patterns. They used more than 46
texture features with maximal value of between-class variance,
and Mahalanobis distance. In [16], a pattern analysis based on
clinical color, architectural order, symmetry of pattern and
homogeneity (CASH) technique was modeled by Markov random
field (MRF). In that study, mean and variance of each plane of
CIELnanbn color space was used to extract the color related
features. For seven pattern classes, the authors reported 86%
classification accuracy. A different approach was developed in
[17] to detect and visualize only pigment network structures
based on cyclic graphs. Recently in [18], a pattern classification
system (PCS) based on the CASH rule was presented to recognize
among six classes instead of multicomponent pattern.

1.1. Aim and approach

The primarily aim of this paper is to measure the color, architec-
tural order, symmetry of pattern and homogeneity (CASH) of lesions
instead of clinical ABCD rule [7,15]. By using CASH method, physi-
cians can classify between benign and malignant lesions. Benign
melanocytic lesions tend to have few colors, an architectural order,
symmetry of pattern and are homogeneous. Malignant melanomas
often have many colors, architectural disorder, asymmetry of pattern
and are heterogeneous. To automate CASH model, some effective
methods [14–18] were proposed. Particularly in [16], CIELnanbn color
space [16] model was utilized to identify seven patterns using
maximum likelihood (ML) criteria. Melanoma or Clark nevus lesions
often contain multicomponent patterns meaning that a lesion contain
2, 3 or more pattern classes. As a result, if a classification decision rule
is used based on ML [16] then it cannot provide multiple decisions to
match with multiple pattern classes simultaneously because it was
based on the single state maximum probability concept. However, if
single input pattern is provided to match a single class output then it
may provide better classification results. Therefore, this study is
focused on providing multi-patterns as an input to match with
multi-class outputs, concurrently as shown in Fig. 1. In this example,
an input lesion is classified into three patterns.

Physicians are more capable of interpreting color–texture infor-
mation than any automated method. This is because; the human
visual system (HVS) plays an important role in the categorization
and recognition of objects. Similarly, it has been proven that HVS
used model based approach to take decisions based on the fuzzy
logical model of perception and signal detection theory. Humans are
using these two models to discriminate among patterns and to
make decisions. By combining these two models, the conclusion is
that we should focus on developing a pattern analysis model based
on human perception. As a result, the first aim of this study is to
Fig. 1. Automatic classification of multicomponent patterns to m
develop an effective pattern classification model based on CASH,
which is closer to physician perception. Secondly, to develop an
efficient and optimized pattern classification method in a CIECAM02
(JCh) perceptually uniform color space. Thirdly, an adaptive boosting
(AdaBoost.MH) multi-label input machine learning algorithm is
used to develop (AdaBoost.MC) multi-label output method for
effective patterns detector and to solve the multicomponent pattern
problem in dermoscopy images. The AdaBoost.MC algorithm is
developed by integrating maximum a posterior probability (MAP)
along with ranking concept. The MAP probability technique is
utilized since it provides most popular statistical criteria to get
optimality. In this multi-label boosting algorithm, the classes are
ranked according to their level of similarity. The class is ranked first
with the highest probability; second best probability is ranked
second and so on based on label-weighted score.

In this study, the classifications of different pattern classes in
the lesion diagnosis process are summarized as follows:
(a)
atch
Reticular pattern or pigmented network: It is the most common
global feature present in a junctional nevus, compound nevus,
lentigo or melanosis.
(b)
 Globular pattern: It presents itself as small aggregated glo-
bules and may have different colors, which has high specifi-
city for diagnosis of compound and intradermal nevi.
(c)
 Cobblestone pattern: It is similar to Globular pattern but they
are large, closely aggregated and angulated.
(d)
 Homogeneous pattern: diffuse and homogeneous blue-grayish
pigmentation is present and absence of pigmented network,
which characterizes the blue nevi.
(e)
 Parallel ridge pattern (PRP): The specific type of pattern found
in palm or sole, which may be benign melanocytic nevi and
acral melanomas if it has parallel ridge pattern.
(f)
 Starburst pattern: It is characterized by the presence of
pigmented streaks in a radial arrangement. It is commonly
seen in Red nevi or pigmented Spitz nevi.
(g)
 Multicomponent pattern: This pattern has high specificity for
diagnosis of melanoma and consists of presence of three or
more dermoscopic features in a single lesion.
The multicomponent pattern is shown in Fig. 1, while the rest
of the abovementioned dermoscopic patterns are shown in Fig. 2.
2. Outline of the proposed pattern classification model

To analyze the above mentioned patterns, a computerized CASH
model is proposed as illustrated in Fig. 3. From each dermoscopy
image, Region-of-interest (ROI) is selected first, which is then
transformed it into the CIECAM02 (JCh) uniform color space. After-
wards color attributes such as the number of colors, percentage of
occurrence and their similarities are measured. For texture feature
the class label sets for diagnosis the melanoma tumors.



Fig. 2. Example of the different patterns present in dermoscopy images. (a) Clark nevus shows pigmented network, (b) melanocytic nevus shows globular pattern.

(c) dermal nevus shows Cobblestone pattern, (d) blue nevus shows Homogeneous pattern, (e) acral melanomas shows parallel pattern, and (f) reed Spitz nevus shows

starburst pattern.
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Fig. 3. Flow chart of the proposed pattern classification model for dermoscopy images.
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analysis, the local and global statistical properties are extracted
using the multiscale steerable pyramid transform (SPT) technique.

By combining these color–texture related features, a feature
vector is constructed, which is finally learned by AdaBoost.MC
multi-label classifier to distinguish among pattern classes. All
steps are performed in a uniform color space (JCh) of CIECAM02
color appearance model. Detailed information about each step is
presented in the subsequent sections.
3. Region-of-interest extraction and color space transformation

3.1. Region-of-interest (ROI) extraction

In order to obtain effective pattern extraction and classifica-
tion, a region of size (450�450) is automatically selected from
the center of each dermoscopy image having 768�512 pixels.
This step is called ROI extraction. Seven pattern groups of total
350 are selected from a data set of 1039 dermoscopic images.
A detailed description of this selected data set is presented in
Section 6.1.

3.2. Color space transform

The proposed perceptually adapted pattern classification is
intended to make the early diagnosis of skin cancer easier to the
physician. Accordingly, the algorithm has to emulate the percep-
tion of the medical expert in order to categorize tumors. There-
fore, the algorithm must be related to dermatologist’s perception.

Since dermoscopy images are color images, any algorithm
designed to process them must take into account color informa-
tion or otherwise, the technique would waste a valuable source of
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information. Consequently, the image has to be represented in
one of the color spaces presented in the literature.

Combining both arguments, the conclusion is that the chosen
color space must be related to human perception. That is, it must
be a uniform color space. When dealing with almost uniform
color spaces, CIELnanbn [16] is the most widely used, especially
when combined with the advanced distance metrics CIE94 and
CIEDE2000. This color system, accounts for chromatic adaptation
when the illuminant of the scene is near day-light, the back-
ground is medium gray and the surround levels of luminance are
moderate. However, it does not account for changes in back-
ground or luminance, cannot predict brightness and colorfulness
and give erroneous results when the illuminant of the scene is
largely different from day-light.

Due to the bright illumination of the image acquisition device
in a dermoscopy context, certain details of the lesion can become
indistinguishable. The illumination changes the contrast within
the scene, making some patterns disappear, especially in dark
areas of the image [19]. Therefore, it is necessary to predict the
perceived appearance of the dark lesion in a bright surrounding.
Moreover, as stated in the literature, among the existing color
spaces with their corresponding color difference formula, it is
preferable the selection of a color appearance based uniform color
space which is capable of considering viewing conditions [20].

A color appearance model, CAM, provides us the scene [21] as
we would actually see it. CIECAM02 is the recently adopted CIE
color appearance model [22] and it is the most advanced among
all existing CAMs due to its successful combination of the best
features from existing color models. The CIECAM02 simplifies its
previous version, CIECAM97s, which was adapted to the color
appearance transformation of CAT2000. CIECAM02 defines six
dimensions of color appearance: brightness Q, lightness J, color-
fulness M, chroma C, saturation s, and hue h.

In CIECAM02 color space, the input data [23] are the adapting
field luminance (normally taken to be 20% of the luminance of
white in the adapting field), La, the relative tristimulus values of
the stimulus, XYZ, the relative tristimulus values of white in the
same viewing conditions, XwYwZw, and the relative luminance of
the background, Yb. Also, the parameters c, for the impact of
surround, Nc, a chromatic induction factor, and F, a factor for
degree of adaptation, must be selected. Afterwards, an initial
chromatic adaptation transform is used to change from the
stimulus viewing conditions to corresponding colors under
equal-energy-illuminant reference viewing conditions. First, tris-
timulus values for both the sample and white are transformed to
spectrally-sharpened cone responses, using the transformation.

CIECAM02 does not explicitly construct a color space [23].
However, a cylindrical color space can be built with CIECAM02
lightness, chroma, and hue correlates (J,C,h) and J, Ccos(h), and

Csin(h) that could be used if a rectangular color space is prefer-
able. The JCh color space is not totally uniform (the same as
CIELnanbn). Although, this is one of the most uniform color spaces
in existence that accounts for all the perceptual phenomena as
mentioned above. It has also an advanced metric very similar to
CIEDE2000 in CIELnanbn to correct the remaining non-uniformity
[24] by Eq. (1).

DE02�OPT ¼ ½ðDJ=kJSJÞ
2
þðDC=kCSCÞ

2
þðDH=kHSHÞ

2
�1=2

SJ ¼ 0:5þðJ=100Þ2; SC ¼ 1þ0:02C; SH ¼ 1þ0:01C

kJ ¼ kC ¼ kH ¼ 1

DH¼ 2
ffiffiffiffiffiffiffiffiffiffi
CsCr

p
sin

Dh

2

� �

C ¼
CsþCr

2
; J¼

Jsþ Jr

2
ð1Þ
where, Cis the mean of the reference color chroma Cr and the
sample color chroma Cs and J is the corresponding value for
lightness. SJ, SC, and SH are parametric functions that allow the
adaptation of the formula to the experimental data set for whom
the equation is derived. kJ, kC and kH are weighting factors that are
set to one by default that can be changed regarding to viewing
conditions. Accordingly, the JCh uniform color space is the color
system adopted by the proposed method because of its better
uniformity and adaptation to human perception.
4. Pattern analysis and feature vector construction

Pattern or texture analysis plays an important role in many
image processing tasks such as in remote sensing, medical,
natural scenes and content based image retrieval (CBIR) systems.
The main benefit of extracting the effective texture features is
that they provide better classification results. A number of
researchers have proposed algorithms for texture analysis, but
they are limited to gray scale or have used non-uniform color
space. In this paper, optimized color–texture features are
extracted in a uniform color space. The proposed pattern analysis
method is based on color and texture features and consists of the
following steps: (1) extraction of color features such as color
occurrence and color similarity, and (2) extraction of texture
features by using the multiscale SPT decomposition approach.
Afterwards, a normalized feature vector is constructed. These
steps are further explained in the following subsections.

4.1. Color-related features extraction

Color feature extraction from dermoscopy images [7] plays an
important role for early diagnosis of melanoma and benign skin
lesions. To examine skin lesions, dermatologists usually have identi-
fied six colors. These colors are light-brown, dark-brown, white, red,
blue, and black. In fact, different individuals perceive skin lesion
colors in a distinct manner. Especially, there are problems with
separating light-brown from dark-brown, but problems also occur
with red and dark-brown due to a rather reddish glow of the dark-
brown color in skin lesions. To perform better differentiation among
objects, the human visual system (HVS) [25] utilizes color features
separate from texture ones. By following these assumptions, color
attributes are calculated by using JCh (lightness, chroma and hue)
uniform color space of the CIECAM02 color appearance model to
improve its adaptation to dermatologist’s perception.

For color feature extraction, the spatially adaptive six shades of
dominant colors are calculated. The presented approach is fol-
lowed from [26] but adjusted to uniform color space. To calculate
color features, a number of locally adapted dominant colors and
their corresponding percentage of occurrence of each color within
a certain neighborhood, are calculated as

aJChðx,y,Nx,yÞ ¼ ðc
JCh
i ,piÞ, i¼ 1,2,3,::,M¼ 6,piA ½0,1�

n o
ð2Þ

where each of the dominant colors, cJCh
i is a 3-D vector in JCh color

space, and pi are the corresponding percentages. Nx,y denotes the
neighborhood of the pixel at location (x,y) and M is the total number
of colors in the neighborhood. To measure the spatial adaptive
dominant colors, the follow technique is presented in [27], which is
generalized form of iterative k-means clustering. This developed
technique is adaptive and includes spatial constraints to segment
the image into fixed k number of clusters. A typical value is k¼6. In
this clustering technique, every pixel of the image is represented by
a color that is equal to the average color of the pixels in its
neighborhood that belong to that class. As in the immediate
neighborhood of a pixel, we can assume that the dominant colors
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are slowly varying and are approximately constant. Accordingly, the
color composition feature illustration of the Eq. (2) at each point in
the image consists of the K characteristics colors of each class and
their relative percentages. After calculating colors their percentage
of occurrence, color symmetry of tumor regions are needed to
calculate because it is an important measure of the pigment
distribution in a certain neighborhood.

To find out color symmetry, a technique based on the per-
ceived color differences of the set of six dominant colors is
computed from Eq. (2). The difference measure is adopted by
the proposed method that is corresponding to Eq. (1). This
measure corrects the remainder non-uniformity, which is present
in JCh color space. Afterwards, symmetric distance differences
between two locally adapted dominant colors a1

JCh and a2
JCh,

DJCh(a1
JCh, a2

JCh), are calculated as

DJChða1
JCh,a2

JChÞ ¼
XM
i ¼ 1

DE02�OPT ðc
JCh
i ð1Þ,c

JCh
i ð2ÞÞnpi ð3Þ

where cJCh
i ð1Þ, cJCh

i ð2Þ and pi are the matched colors and their
respective percentages. DE02�OPT represents color difference for-
mula in JCh uniform color space, which is calculated from Eq. (1).
Consequently, the color percentage and symmetric distance
differences are utilized for the definition of color features. By
using Eqs. (2) and (3), f JCh

color color feature vector is constructed.

f JCh
color ¼DJChða1

JCh,a2
JChÞ,aJChðx,y,Nx,yÞ ð4Þ

4.2. Texture-related features extraction

The aforementioned color features rely only on the color
characteristics of the dermoscopy image. However, color features
do not give important characteristics to quantify the texture
characteristics of the lesions.

Several studies [12,13,15–18] proposed to extract texture
features in skin lesion images. However, these studies focused
more on extracting statistical properties and hence did not
consider both local and global spatially correlated relationships
among pixels. In case of multicomponent, PRP and homogeneous
patterns, it is very difficult to analyze texture by just considering
global texture [16] properties. As a result, the differentiation of
Melanoma from other pigmented skin lesions becomes a difficult
task. To solve this problem, a solution is developed based on the
multiscale frequency decomposition algorithm in a perceptually
uniform color space. Steerable pyramids transformation (SPT) as a
multiscale frequency decomposition algorithm is applied to the J

plane of JCh color space to get an advantage of the perceptual
uniformity.

In general, multiscale feature extraction provides an effective
solution for pattern recognition as compared to co-occurrence
[28] matrix. Among multiscale feature extraction algorithms, the
most popular are discrete wavelet transform (DWT) [29,30],
Gabor wavelets (GWs) [31], local binary pattern (LBP) [32], and
the Steerable pyramid transform (SPT) [33,34]. These approaches
have been shown to be very useful in capturing texture char-
acteristics with high discriminatory power.

The SPT decomposition algorithm is a multiscale and multi-
directional representation of frequency transform similar to DWT
or GWs, but with interesting translation and rotation invariance
properties. In addition to this, SPT combines the benefits of both
GWs and wavelet transform, making a multiscale form of the
image in a pyramid hierarchy. SPT transform was first introduced
by Freeman and Adelson [33,34]. Recently, several studies have
investigated the discriminating power of steerable pyramid-based
features in various applications including: image denoising,
textures classification, digital watermarking and image proces-
sing. Particularly in [26], SPT decomposition algorithm was
effectively adapted for segmentation of objects to achieve its
approximate adaptation to human visual cortex (V1 area) that can
be used to produce any number of orientations subbands. The
physiological studies of visual cortex [35] also proved that a
feature vector constructed in the frequency domain achieves an
effective texture discrimination power. Besides that SPT decom-
position provides local texture characteristics, while keeping
global properties. Accordingly, this SPT decomposition method
is adapted for pattern analysis in dermoscopy images.

Multiscale texture feature extraction by one-level and 4-oriented
SPT decomposition is shown in Fig. 4. One-level decomposition is
empirically determined to be sufficient for dermoscopy texture
analysis. In order to extract multiscale texture features, first input
J plane image of size (450�450) pixels is divided into eight
rectangular blocks of size (32�32) pixels. As determined by
experimentation, the total eight blocks divisions are performed for
measuring the statistical properties of different tumor’s region.
However, in order to apply multiscale decomposition step, the
whole area of J plane dermoscopy images is considered.

The J plane input is first decomposed into highpass and
lowpass band images by using steerable [34] high and lowpass
filters. Next, a lowpass image is decomposed into sub-band
images by using four orientation band-pass filters. The mathe-
matical representation of the decomposition step is given as
follows:

Let IJðx,yÞ be 2-D J image in JCh color space, which is first
decomposed into highpass residual band and a lowpass band by
using steerable filters H0 and L0, respectively. This lowpass band
is then split into a set of oriented bandpass subbands B0,B1,:::,Bk

and a lower lowpass subband L1 where k¼4. For a given IJðx,yÞ
image, its steerable pyramid decomposition Imn

SPT ðx,yÞ is defined as:

Imn
SPT ðx,yÞ ¼

X
x0

X
y0

IJðx
0,y0ÞBmnðx�x0,y�y0Þ, n¼ 0,1,:::,k�1 ð5Þ

where Bmn denotes the directional bandpass filters at level m¼ 1,
and orientation n¼ 0,1,:::,k�1. After an image is decomposed into
set of subimages (In

SPT ðx,yÞ), statistical properties are calculated for
measuring the texture characteristics and these properties are
extracted on each block of size (32�32) pixel of lowpass, high-
pass band and every subband images. Mean (m), Standard devia-
tion (s) and Skewness (r) texture characteristics are extracted
from lowpass, highpass band and every subband Imn

SPT ðx,yÞ oriented
images. In order to minimize the prediction error of the classifica-
tion model, we applied a feature selection step to reduce the
dimensionality of feature vectors by selecting the most informa-
tive features. Since, the subband images have shared some of the
common statistical texture features compared to lowpass and
highpass band images that must be minimized. Therefore,
principal-component analysis (PCA) method is applied to get
more informative features. 24-diagonal eigenvalues (Dl24) are
selected by PCA method to each statistical attributes extracted
from four subband Imn

SPT ðx,yÞ decomposed images. We have empiri-
cally determined that these 24 eigenvalues describe the best
discrimination among the textures of each subband images
compared to other values. In total (8�3�2)¼48 m, s and r
statistical attributes are also extracted from each block of lowpass
and highpass band images denoted by L8m, L8s, L8r, H8m, H8s, H8r.
Consequently, each input image is transformed into a
(48þ24)¼72-dimenional multiscale texture features vector.

Next a texture feature vector based on statistical properties of
low, high and lowpass subband images is created by combining
these values as

f J
texture ¼ L8m,L8s,L8r,H8m,H8s,H8r,Dl24 ð6Þ
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An optimal feature vector is generated based on the combina-
tion of color and texture properties that is further normalized
using normal-probability density function (PDF). The PDF func-
tion is utilized to transform the feature vector into zero mean and
unit variance. This feature vector is shown in Eq. (7), where m

denotes the number of color features and n represents the
number of texture features.

f i ¼ ½f
JCh
colorðmÞ,f

J
textureðnÞ�, 8i¼ 1,2,3,:::,mþn ð7Þ
5. Pattern classification model by multi-label learning

After extracting the set of features (f i), the next step is to devise a
suitable machine learning algorithm to assess the features’ discri-
minative power. Melanomas often exhibit multicomponent patterns
so any learning algorithm must take multi-label input and provide
multi-label output at the same time. Multi-label learning [36] refers
to the classification problem where each input pattern can be
assigned to multiple class labels, simultaneously. It has found
applications in many domains, such as computer vision, human
computer interaction, bioinformatics, and physiology. Among multi-
classes and multi-label learning algorithms, the most popular
algorithms are support vector machine (ML-SVM) [37], ML-KNN
[38] and multi-label ranking [39].

Boosting algorithms [40] are a set of nonparametric meta-
learning algorithms, which can provide optimal classification
results. In general, the advantages of using adaptive boosting
(AdaBoost) algorithm over other machine learning algorithm are
its computational efficiency, better robustness and no regressions.
In medical image analysis studies, SVM classifiers have been
widely used, but as AdaBoost can choose good informative
features from potentially very large feature data sets [41]. This
can significantly reduce the need for experts for selection of
useful features based on their knowledge. However the major
problem of boosting is that, it does not provide multiple class-
label outputs with max-margin without class-correlation. There-
fore nowadays, the boosting algorithms [37,42] are extended to
multi-class outputs, which are based on AdaBoost.MH [43].

For dermoscopy pattern discrimination as discussed in Section
1.1, a multi-class input boosting algorithm (AdaBoost.MH) is
adopted, which is extended to multi-class output by using
maximum a posterior (MAP) and robust ranking principles named
as AdaBoost.MC classifier. Compare to existing multi-label rank-
ing algorithms, the AdaBoost.MC classifier is robust in the sense
that its rank classes are based on optimized scores, which are
calculated during evaluation of MAP and boosting. As a result, this
AdaBoost.MC multi-label learning algorithm is designed to pro-
vide maxim-margin without the class-correlation problem.

5.1. AdaBoost.MC classification algorithm

Assume that xiA f i, i¼ 1,2,3,:::,n are the collection of training
examples, which belong to a set of class labels yi denoted as
ðx1,y1Þ,ðx2,y2Þ,:::,ðxn,ynÞ
� �

where xiAX and yi � Y ¼ y1,y2,:::,yn

� �
.

For solving this multi-class problem, AdaBoost.MH [43] algorithm
is adopted, which is further extended to multi-class label outputs
by MAP and robust ranking principles called AdaBoost.MC. The
detailed pseudocode of the algorithm AdaBoost.MC is given in
Fig. 5. In this classification algorithm, decision stumps are used as
weak learners during boosting process. A decision stump is a
machine learning model consisting of a one-level decision tree.
Decisions stumps components are often used as a weak learner
for ensemble machine learning algorithms such as Boosting. By
using 1-vs-All technique in the Boosting algorithm, a binary



Fig. 5. Multi-label pattern classification (AdaBoost.MC) by boosting (AdaBoost.MH), Maximum a posteriori (MAP) and robust ranking principles.
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classifier is obtained for each label class without learning the
complex decision boundaries.

To generate a sequence h1,h2,:::,ht of weak hypotheses, Ada-
Boost.MH works by iteratively (t) calling a weak learner. At the
end of this iteration step, the final hypothesis H is obtained as a
sum HðlÞ ¼

PT
t ¼ 1 ht of these weak hypotheses for class labels (l).

A weak hypothesis is a function i.e., ht : X� Y-R. We interpret
the sign of htðxi,yjÞ as the prediction of ht on whether xi belongs
toyj, i.e. htðxi,yjÞ40 means that xi is believed to belong to yj while
htðxi,yjÞo0 means it is believed not to belong toyj.

After that principle of maximum a posteriori (MAP) is utilized
to determine the class label set for the dermoscopy test pattern.
Bayes rule was used to describe a combination of feature values
and a class value. Traditionally, Bayes rule is mostly used to select
features for multi-instance learning. Therefore, this rule is
integrated in this Boosting algorithm to ensemble the results
produce by MAP method. Finally, to get multi-label class decision
in multiple states is performed by a robust ranking principle. The
implementation details of MAP rule and robust ranking methods
are described in the subsequent paragraphs.

The corresponding rule for determining the class label set for
input feature vector (f 1,f 2,f 3,:::,f n) by using MAP principle can be
defined as follows:

y
!
ðlÞ ¼ argmax

yj AY
Pðf 1,f 2,f 3,:::,f n9yjÞ ð8Þ

where f 1,f 2,f 3,:::,f n is the set of feature values that describe the
new instance, and y

!
ðlÞ is the most probable hypothesis to find
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out class label set for a test pattern. Using Bayes rule, Eq. (9) can
be rewritten as follows:

y
!
ðlÞ ¼ argmax

yj AY
ððPðyjÞPðf 1,f 2,f 3,:::,f n9yjÞÞ=Pðf 1,f 2,f 3,:::,f nÞÞ ð9Þ

Next, the formulation of multi-class labels problem is given
by:

y
!
ðlÞ ¼ argmax

yj AY
PðyjÞPðf 1,f 2,f 3,:::,f n9yjÞ ð10Þ

Using training data the two terms PðyjÞ and Pðf 1,f 2,f 3,:::,f n9yjÞ

have to be calculated. The class prior probability PðyjÞ can be
easily estimated by a maximum-weighted score of occurrence of
the class value, during a training-phase of weak learner (decisions
stump). Let wl

i be the cumulative weighted probability for multi-
classifier decision stumps of each attribute (l), and sl

i is the
maximum score of distinguish points find out from right and left
child of decision stump by wl

i. This prior probability step can be
represented as

PðyjÞ ¼ argmax
yj AY

Xn

i ¼ 1

9wl
i9, sl

i ð11Þ

Alternatively, estimating the posterior probability
Pðf 1,f 2,f 3,:::,f n9yjÞ terms is calculated by evaluating the multi-
AdaBoost model hypothesis in terms of decision i.e. HðlÞ. In this
evaluation step of boosting, the classes with highest posterior
probability are returned. The class label set is selected for input
pattern based on these prior and maximum posterior
probabilities.

The objective of multi-label learning algorithms is to learn a
set of labels with max-margin without class-correlations pro-
blem, which must have these characteristics among classes with-
out imposing the strict boundary conditions. Moreover, MAP
based on Bayes rule provides initial probabilities of each class to
match with the set of input class, but cannot rank that output
class labels. As a result, we need to reformulate Eq. (10) in order
to introduce efficient optimization, max-margin and provide
ranking for multi-label learning problem. Under these assump-
tions, the problem can be expressed in terms of ranking prob-
ability as

argmin
wk

Pij9fcðwkðxi,yjÞÞ�fcðwk�1ðxi,yjÞÞ9rd, 8k¼ 1,2,:::,n ð12Þ

where Pij denotes the maximum a posterior (MAP) probability of
the test pattern, which was calculated from Eq. (10). Also, the
multi-label classifier is ranked according to d parameter, which is
the maximum significance level of every class (K) belongs to
particular category. Accordingly, the value of this objective func-
tion (argmin

wk

Pij �j j) must be less than or equal to d parameter. The
value of d parameter is experimentally defined as 0.99. The
fcðwkðxi,yjÞÞ function represents the weighted probability
wkðxi,yjÞ of every class label fcð�Þ calculated during training step.
Since, the aim is to minimize this objective function by following
the ranking probability scheme. Let yk be the weighted prob-
ability of each label class fcðwkðxi,yjÞÞ then Eq. (12) can be
rewritten as

argmin
wk

Pij fcðykÞ�fcðyk�1Þ
�� ��rd, 8k¼ 1,2,,:::,n ð13Þ

Next, we select first, second, third and so on classes (qij) based
on the weighed-ranking score to the test pattern features during
MAP calculation, which is denoted by Sc . Finally, the probability of
each class (Pk) is maximized with respect to other classes by the
weighted score Sc , which is calculated as

y¼ Sc : max argð
Pk

Pk=ð1�PkÞÞ=ðPk�1=ð1�Pk�1ÞÞ ð14Þ
where, we have to choose the class label set for test pattern based
on the dynamic selection criteria for every value of ði,jÞAn classes
as

qij ¼ 1, if i¼ j¼ a,�a
n

y=ð1þyÞ, if j4 i,ioa

1=ð1þyÞ, if jo i,i4�a

0, otherwise
�

ð15Þ

Such that

a¼ ðlnð1�CÞ=lnðyÞÞ, C¼ 0:05 ð16Þ

where, C denotes the threshold level of significance, which equals
0.05. The value of C is determined by experimental analysis. Also,
the condition on yk is applied such that yk � yk�1þd. This
formulation for learning a max-margin multi-label outputs clas-
sifier is projected by using robust ranking scheme. To achieve a
perfect ranking of all labels, the optimized weights are derived
based on prior and posterior probabilities. Consequently to
develop AdaBoost.MC classifier, multi-label classification algo-
rithm is acquired that maximizes the margins among class labels.
6. Experimental setup

6.1. Dermoscopy data set

Skin lesions of dermoscopy images are used in the experiment,
which has been collected as a CD resource from the two European
university hospitals as part of the EDRA-CDROM, 2002 [44]. This
data set contained 1039 color images in total with spatial
resolution of 768�512 pixels. All these images were captured
during routine clinical assessments to imitate the a priori prob-
abilities of the clinical diagnosis. In total 350 dermoscopic images
are selected from this data set as Reticular (50), Globular (50),
Cobblestone (50), Homogeneous (50), Parallel ridge (50), Star-
burst (50) and Multicomponent (50). After selecting the 350
dermoscopy images, a region of size (450�450) is automatically
selected from the center of those images. Next, each image is
preprocessed by transforming into CIECAM02 color appearance
model of (JCh) uniform color space. After that, the color and
texture features are extracted and then construct a normalize
feature vector to classify pattern classes. In the classification step,
20% of dermoscopy images are used of each class for testing and
80% for training the AdaBoost.MC classifier. Finally, the input test
pattern is matched with the set of class label based on MAP and
robust ranking techniques, which gives best discrimination power
among patterns allowing the property of max-margins.

6.2. Statistical analysis

The performance of proposed model based on concept of
multi-class instances and multi-label outputs is evaluated using
statistical methods. To evaluate the diagnostic performance of
this model, the area under curve (AUC) [45] of the receiver
operating characteristic (ROC) analysis is used. Specifically, AUC

is used to investigate the sensitivity: SE and specificity: SP. The
area under the curve (AUC) is a commonly used index to assess
the overall discrimination. The AUC ranges from 0.50 to 1.0 and
the greater its value the higher is the pattern classification
accuracy. To calculate SE and SP, the true positive rate (TPR) and
false positive rate (FPR) are measured, respectively as

SE¼ TPR¼ TP=ðTPþFNÞ ð17Þ

FPR¼ FP=ðFPþTNÞ ð18Þ
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and

SP¼ 1�FPR ð19Þ
Table 1
Pattern classification performance of different dermoscopic structures.

Pattern detectors classes SE (%) SP (%) E AUC

Reticular 87.11 97.96 0.459 0.981

Globular 86.25 97.21 0.477 0.997

Cobblestone 87.76 93.23 0.555 0.990

Homogeneous 90.47 95.10 0.697 0.996

Parallel ridge 85.25 89.50 0.524 0.989

Starburst 89.62 90.14 0.634 0.966

Multicomponent 98.50 93.11 0.344 0.989

Number of classifiers in case of melanomas with four pattern detectors as;

SE¼Sensitivity, SP¼Specificity, E¼average standard deviation training error dur-

ing learning by AdaBoost.MC, and AUC¼Area under the Receiver operating

characteristic (ROC) curve.

Fig. 6. Receiver operating characteristics (ROC) curves for the multi-label learning

algorithms.

Fig. 7. Seven different dermoscopy images match with pattern classes, where (a) cobbl

pattern includes (cobblestone, globular, homogeneous, pigmented network), (e) paralle

Table 2
Comparisons of classification performance by different methods using 10-fold cross va

No. aClassifiers Patterns detection errors

Reticular (%) Globular (%) Cobblestone (%) Hom

1 ML-SVM 14 16 12 9

2 ML-KNN 16 20 16 13

3 AdaBoost.MC 3 6 4 2

a The classifiers are used in this comparisons were; ML-KNN¼K-Nearest Neigh

classification algorithm.
where TP and FP represent the number of true positives and
false positives, and TN and FN denote the number of true
negatives and false negatives, respectively. The TPR value is
determined by a classifier performance on classifying positive
instances correctly among positive data set and the FPR value is
defined how many incorrect positive results occur among nega-
tive samples. For experimental analysis, the data set is divided
into training (80%) and testing (20%). During training the pro-
posed boosting classifier of each round, we also calculated the
training error in terms of standard deviation of mean error (E).
The significance level of AdaBoost.MC was compared with state-
of-the-art classification algorithms such as (ML-SVM [37] and ML-
KNN [38]) using 10-fold cross-validation test. The parameters
used for ML-SVM and ML-KNN are type¼RBF, para¼1, cost¼1
and rounds¼250 along with k¼7(fixed cluster) values.

6.3. Computational time

The proposed system is currently implemented in MATLAB
7.6.0.324s (The Mathworks, Natick, MA) on a 2.0 Core to Duo
32-bit Intel processor system with 1 GB DDR2 RAM, running
Windows 7. On average, it takes 0.346 s to transform 230 RGB
dermoscopy image to JCh color space. In order to extract color and
texture features, on average 2.23 s and 1.78 s are spent on each
dermoscopy images for constructing the training and testing the
data set, respectively. Since, for training and testing the Ada-
Boost.MC classifier on this data set, 7.56 and 3.65 s are consumed
on average, respectively. This time is calculated on fixed 250
iterations. In case of testing an input pattern of image size
(768�512) pixels, on average 3.65 s is taken for output class
matching. This time can be further reduced by using optimized
C/Cþþ implementation.
7. Results and discussion

The average results of the proposed model on this data set are
shown in Table 1. Table 1 demonstrates each pattern classifier by
using boosting, maximum a posterior (MAP) and robust ranking
principles in terms of sensitivity: SE, specificity: SP and average
error(E) along with area under the ROC curve (AUC) analysis. Fig. 6
shows the corresponding receiving operating characteristic curve
estone pattern, (b) globular pattern, (c) homogeneous pattern, (d) multicomponent

l pattern, (f) Reticular or pigmented network, and (g) starburst pattern.

lidation.

ogeneous (%) Parallel-ridge (%) Starburst (%) Multicomponent (%)

10 13 8

14 18 19

4 4 3

bor, ML-SVM¼Support vector machine and AdaBoost-MC¼proposed AdaBoost
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(ROC) of each multi-label machine learning algorithm. In this
figure, each classifier performance is shown based on the average
TPR and FPR values over the seven pattern classes. It shows that
significantly better performance is obtained by the proposed
multi-label AdaBoost.MC learning algorithm as compared to
others. As displayed also in Table 1, it can be noticed that in case
of Homogeneous; Globular; Cobblestone and Multicomponent
patterns, the best performance has been measured i.e., AUC:
0.997. The proposed pattern classifier significantly improves the
performance with the average value of SE: 89.29, SP: 93.25 and
AUC: 0.986. Moreover, the sample results that are matched with
pattern classes are also shown in Fig. 7.

On the other hand, the classification accuracy of AdaBoost.MC is
compared against the sate-of-the-art classification algorithms such
as ML-KNN and ML-SVM by 10-fold cross validation test using 1-vs-
all approach. The results are displayed in Table 2. Hence, the
performance of the proposed patterns detector by AdaBoost.MC
has been shown to be better than ML-KNN and ML-SVM algorithms.
In fact, ML-KNN is based on the ranking scheme and to predict a
new input data for ranking can be problematic. But the classification
accuracy of new input multi-component pattern for ML-SVM is
somewhat lower than AdaBoost.MC, which is overall better than
ML-KNN. AdaBoost.MC algorithm performs well due to the fact that
it selected the most discriminating feature, which is getting char-
acteristics to maximize the margins based on optimized Bayes rule
and robust ranking probabilities for multi-label output. However,
Table 3
Comparisons of classification performance in terms of average computational

time.

No. aClassifiers Patterns detection errors

Training(s) Testing (s)

1 ML-KNN 19.89 13.22

2 ML-SVM 14.27 9.24

3 AdaBoost.MC 7.56 3.65

a The classifiers are used in this comparisons were; ML-KNN¼multi-

label K-Nearest Neighbor, Support vector machine (ML-SVM) and Ada-

Boost-MC¼proposed AdaBoost multi-label classification algorithm.

Fig. 8. Example of wrongly classified deromscopy images, where (a) cob

Table 4
Comparisons of proposed Adaboost.Mc pattern classifier by using mean errors in term

No. aColor spaces Pattern detection errors

Reticular (%) Globular (%) Cobblestone (%) Hom

1 HSV 5 7 12 11

2 CIEL*a*b* 3 4 8 9

3 JCh 2 1 3 5

a The proposed classifier are compared with different color spaces such as in HSV,
ML-SVM does not select most discriminating features but provide
maximum margins. By empirical analysis, it was observed that ML-
KNN and MK-SVM are not designed to select appropriate feature
sets, and effectively rank the final multi-label output classification
decision, which are robustly implemented in AdaBoost.MC algo-
rithm. Time computation is an important factor to evaluate the
classification algorithms for showing the performance in real-time
applications. As shown in Table 3, the AdaBoost.MC is faster when
compared to ML-KNN and ML-SVM. On average, AdaBoost.MC
(training: 7.56 and testing: 3.65) seconds (s) are taken, while ML-
KNN (training: 19.89 s and testing: 13.22 s) and ML-SVM (training:
14.27 s and testing: 9.24 s).

In contrast of these comparisons with the state-of-the-art
algorithms, a separate evaluation of the proposed AdaBoost.MC
model is also performed in different color spaces such as RGB, CIE
Lnanb and JCh. Table 4 summarizes the mean classification errors
of the proposed method in RGB, CIE L*a*b* and JCh color spaces. As
shown in Table 3, by using uniform color space (JCh), the pattern
classification results are greatly enhanced. The reason is that by
using uniform color space (JCh), the color and texture features are
effectively extracted in comparison to other color spaces.

The proposed pattern classification algorithm based on CASH is
highly accurate, when tested on this dermoscopy data set. However,
there are some dermoscopy images in which this system provides
false positive output. This is often due to lesion covered by artifacts
such as heavy hair (Fig. 8(a)), effect of dermoscopy-gel (Fig. 8(b)) or
some diffused-regions (Fig. 8(c)). For instance, the lesion in
Fig. 8(a) is considered as a parallel pattern-class, while it belongs
to cobblestone pattern. Similarly, the other two lesions are regarded
as cobblestone, and (homogeneous, parallel) patterns instead of
globular and homogeneous patterns, which are shown in
Fig. 8(b) and Fig. 8(c), respectively. Due to these problems, the
algorithm is sensitive to the artifacts. Accordingly, the classification
accuracy can be increased by removing these artifacts from lesions.
8. Conclusion

In this paper, a novel pattern classification model related to
dermatologist’s perception is proposed. The purpose of this study
blestone pattern, (b) globular pattern and (c) homogeneous pattern.

s of different color spaces.

ogeneous (%) Parallel-ridge (%) Starburst (%) Multicomponent (%)

17 14 12

13 11 7

4 2 5

CIEL*a*b* and JCh.
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was to develop an effective pattern classification (AdaBoost.MC)
model based on extraction of color symmetry and multiscale-
texture feature in uniform CIECAM02 (JCh) color space. To the
best of our knowledge, many studies for lesions classification of
dermoscopy have been devoted towards clinical ABCD rule but
few studies on pattern analysis have been developed in the
literature. Since, none of them consider the problem of multi-
component patterns, which are mostly observed in melanoma
and Clark nevi lesions. In fact, previous pattern detection methods
attempted to classify multi-pattern lesions by just considering
single pattern class. In contrast, in our study, multiple pattern
input technique is presented to develop classifier model for
providing multiple class-label outputs. By developing Ada-
Boost.MC multi-label algorithm, the groups such as melanoma
and nevi lesions are easily classified. The overall performance of
the proposed algorithm is measured in terms of effectiveness and
time. On average, sensitivity (SE): 89.28%, specificity (SP): 93.75%
and area under the curve (AUC): 0.986 are obtained. The Ada-
Boost.MC algorithm achieved significantly higher classification
rate and faster than state-of-the-art classification methods due to
use of robust ranking with max-marginal characteristics, which
avoids class correlation problem. Furthermore, an entirely auto-
mated system is developed, which has more sophisticated pattern
classifier for dermoscopy images that focused more on color and
textural properties of the lesion regions in a uniform color space
derived from a color appearance model and making use of an
advanced color distance measure. The proposed system appears
to be sufficiently accurate, robust, and computationally fast for
discrimination of lesions, which helps the dermatologists in a
‘‘screening support system’’ or in a CAD tool. In the future work,
more local pattern classes will be added with the combination of
ABCD technique to classify among lesions and pre-process them
before extraction of color–texture features.
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