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Background: Dermoscopy is one of the major imaging

modalities used in the diagnosis of melanoma and other

pigmented skin lesions. Because of the difficulty and sub-

jectivity of human interpretation, automated analysis of

dermoscopy images has become an important research

area. Border detection is often the first step in this analysis.

Methods: In this article, we present an approximate lesion

localization method that serves as a preprocessing step for

detecting borders in dermoscopy images. In this method,

first the black frame around the image is removed using

an iterative algorithm. The approximate location of the

lesion is then determined using an ensemble of thresholding

algorithms.

Results: The method is tested on a set of 428 dermoscopy

images. The localization error is quantified by a metric that

uses dermatologist-determined borders as the ground truth.

Conclusion: The results demonstrate that the method pre-

sented here achieves both fast and accurate localization of

lesions in dermoscopy images.
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MALIGNANT MELANOMA, the most deadly form
of skin cancer, is one of the most rapidly

increasing cancers in the world, with an esti-
mated incidence of 62,480 and an estimated total
of 8420 deaths in the United States in 2008 alone
(1). Early diagnosis is particularly important
because melanoma can be cured with a simple
excision if detected early.

Dermoscopy, also known as epiluminescence
microscopy, has become one of the most impor-
tant tools in the diagnosis of melanoma and other
pigmented skin lesions. This non-invasive skin
imaging technique involves optical magnifica-
tion, which makes subsurface structures more
easily visible when compared with conventional
clinical images (2). This in turn reduces screening
errors and provides greater differentiation be-
tween difficult lesions such as pigmented Spitz
nevi and small, clinically equivocal lesions (3).
However, it has also been demonstrated that
dermoscopy may actually lower the diagnostic
accuracy in the hands of inexperienced derma-
tologists (4). Therefore, in order to minimize the
diagnostic errors that result from the difficulty
and subjectivity of visual interpretation, the de-
velopment of computerized image analysis tech-
niques is of paramount importance (5).

Automated border detection is often the first
step in the automated or semi-automated analy-
sis of dermoscopy images (6–10). It is crucial for
the image analysis for two main reasons. First,
the border structure provides important informa-
tion for accurate diagnosis, as many clinical
features, such as asymmetry, border irregularity,
and abrupt border cut-off, are calculated directly
from the border. Second, the extraction of other
important clinical features such as atypical pig-
ment networks, globules, and blue-white areas,
critically depends on the accuracy of border
detection. Automated border detection is a chal-
lenging task due to several reasons: (i) low con-
trast between the lesion and the surrounding
skin, (ii) irregular and fuzzy lesion borders, (iii)
artifacts such as black frames, skin lines, hairs,
and air bubbles, (iv) variegated coloring inside
the lesion.

A number of methods have been developed
for preprocessing dermoscopy images. Most of
these focused on the removal of artifacts such as
hairs and bubbles. Of the studies dealing with
hair removal, Lee et al. (11) and Schmid (6)
approached the problem using mathematical
morphology. Fleming et al. (5) applied curvilinear
structure detection with various constraints
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followed by gap filling. More recently, Zhou et al.
(12) improved Fleming et al.’s approach using
feature guided examplar-based inpainting. A
method for bubble removal was introduced in
(5), where the authors utilized a morphological
top-hat operator followed by a radial search
procedure.

In this article, we present a method for approx-
imate lesion localization in dermoscopy images.
First, the black frame around the image is re-
moved using an iterative algorithm. Then, the
approximate location of the lesion is determined
using an ensemble of thresholding algorithms.

Materials and Methods

Black frame removal
Dermoscopy images often contain black frames
that are introduced during the digitization pro-
cess. These need to be removed because they
might interfere with the subsequent lesion loca-
lization procedure. In order to determine the
darkness of a pixel with (R, G, and B) coordinates,
the lightness component of the HSL color space
(13) is utilized:

L ¼ maxðR;G;BÞ þminðR;G;BÞ
2

ð1Þ

In particular, a pixel is considered to be black if
its lightness value is o20. Using this criterion, the
image is scanned row by row starting from the
top. A particular row is labeled as part of the
black frame if it contains 60% black pixels. The
top-to-bottom scan terminates when a row that
contains less than the threshold percentage of
pixels is encountered. The same scanning proce-
dure is repeated for the other three main direc-
tions. Figure 1 shows the result of this procedure
on a sample image.

Approximate lesion localization
Although dermoscopy images can be quite large,
the actual lesion often occupies a relatively small
area. Therefore, if we can determine the approx-
imate location of the lesion, the border detection
algorithm can focus on this region rather than the
whole image. An accurate bounding box (the
smallest axis-aligned rectangular box that en-
closes the lesion) might be useful for various
reasons: (i) it provides an estimate of the lesion
size (certain image segmentation algorithms such
as region growing and morphological flooding
can use the size of the region as a termination
criterion), (ii) it might improve the border detec-
tion accuracy because the procedure is focused
on a region that is guaranteed to contain the
lesion, (iii) it speeds up the border detection
because the procedure is performed on a region
that is often smaller than the whole image, (iv) its
surrounding might be utilized in the estimation
of the background skin color, which is useful for
various operations including the elimination of
spurious regions that are discovered during the
border detection procedure (10) and the extrac-
tion of dermoscopic features such as blotches (14)
and blue-white areas (15).

In many dermoscopic images, the lesion can be
roughly separated from the background skin
using a grayscale thresholding method applied
to the blue channel (8, 9). While there are a
number of thresholding methods that perform
well in general, the effectiveness of a method
strongly depends on the statistical characteristics
of the image (16). Figure 2 illustrates this phe-
nomenon (the frame of this image is left intact for
visualization purposes). Here, methods 2d, e, and
g perform quite well. In contrast, methods 2c
and h underestimate the optimal threshold,
whereas method 2f overestimates the optimal
threshold. Although method 2c is the most pop-
ular thresholding algorithm in the literature (17),

a b

Fig. 1. Black frame removal: (a) Original image, (b) After frame removal.
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for this particular image, it performs the second
worst.

A possible approach to overcome this problem
is to fuse the results provided by an ensemble of
thresholding algorithms. In this way, it is possible
to exploit the peculiarities of the participating
thresholding algorithms synergistically, thus ar-
riving at more robust final decisions than is
possible with a single thresholding algorithm.
We note that the goal of the fusion is not to
outperform the individual thresholding algo-
rithms, but to obtain accuracies comparable
with that of the best thresholding algorithm
independently of the image characteristics. In

this study, we used the threshold fusion method
proposed by Melgani (16), which we describe
briefly in the following.

Let X 5 fxmn: m 5 0, 1, . . ., M� 1, n 5 0, 1, . . .,
N� 1g be the original scalar M�N image with
L possible gray levels (xmnAf0, 1, . . ., L� 1g) and
Y 5 fymn: m 5 0, 1, . . ., M� 1, n 5 0, 1, . . ., N� 1g
be the binary output of the threshold fusion.
Consider an ensemble of P thresholding algo-
rithms. Let Ti and Ai(i 5 1,2, . . ., P) be the thresh-
old value and the output binary image associated
with the ith algorithm of the ensemble, respec-
tively. Within a Markov random field (MRF)
framework the fusion problem can be formulated

a b

c d

e f

g h

Fig. 2. Comparison of various thresholding methods: (a) Original image, (b) Blue channel, (c) Otsu’s method (17) T 5 137, (d) Kapur et al.’s method

(18) T 5 178, (e) Huang and Wang’s method (19) T 5 183, (f) Yen et al.’s method (20) T 5 200, (g) Sahoo et al.’s method (21) T 5 179, (h) Li and

Tam’s method (22) T 5 59. (T 5 threshold).
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as an energy minimization task. Accordingly, the
local energy function Umn to be minimized for the
pixel (m,n) can be written as follows:

Umn ¼bSP USP ymn;Y
Sðm; nÞ

� �

þ
XP

i¼1

bi UII ymn;A
S
i ðm; nÞ

� � ð2Þ

where S is a predefined neighborhood system
associated with pixel (m,n), USP( � ) and UII( � )
refer to the spatial and inter-image energy func-
tions, respectively, whereas bSP and bi

(i 5 1, 2, . . ., P) represent the spatial and inter-
image parameters, respectively. The spatial en-
ergy function can be expressed as

USP ymn;Y
Sðm;nÞ

� �
¼ �

X
ypq2YSðm;nÞ

I ymn; ypq

� �
ð3Þ

where I(.,.) is the indicator function defined as

Iðymn; ypqÞ ¼
1 if ymn ¼ ypq

0 otherwise

�
ð4Þ

The inter-image energy function is defined as

UII ymn;A
Sðm; nÞ

� �
¼ �

X
Aiðp;qÞ2AS

i
ðm;nÞ

aiðxpqÞ I ymn;Aiðp; qÞ½ � ð5Þ

where ai( � ) is a weight function given by

aiðxmnÞ ¼ 1� expð�gjxmn � TijÞ ð6Þ
This function controls the effect of unreliable

decisions at the pixel level that can be incurred by
the thresholding algorithms. At the global (im-
age) level decisions are weighed by the inter-
image parameters bi (i 5 1, 2, . . ., P), which are
computed as follows:

bi ¼ exp �g �T � Ti

�� ��� �
ð7Þ

where �Tis the average threshold value

�T ¼ 1

P

XP

i¼1

Ti ð8Þ

The MRF fusion strategy proposed in (16) is as
follows:

1. Apply each thresholding algorithm of the en-
semble to the image X to generate the set of
thresholded images Ai (i 5 1, 2, . . ., P).

2. Initialize Y by minimizing for each pixel (m,n)
the local energy function Umn defined in Eq. (2)
without the spatial energy term, i.e. by setting
bSP 5 0.

3. Update Y by minimizing for each pixel (m,n)
the local energy function Umn defined in Eq. (2)

including the spatial energy term, i.e. by set-
ting bSP 6¼0.

4. Repeat step 3 Kmax times or until the number
of different labels in Y computed over the last
two iterations becomes very small.

In our preliminary experiments, we observed
that, besides being computationally demanding,
the iterative part (step 3) of the fusion algorithm
makes only marginal contribution to the quality
of the results. Therefore, in this study, we con-
sidered only the first two steps. The g parameter
was set to the recommended value of 0.1 (16). For
computational reasons, a [Eq. (6)] and b [Eq. (7)]
values were precalculated and the neighborhood
system S was chosen as a 3� 3 square.

The most important performance factor in the
fusion algorithm seems to be the choice of the
thresholding algorithms. We considered six pop-
ular thresholding algorithms to construct the
ensemble: Otsu’s (18), Kapur et al.’s (19), Huang
and Wang’s (20), Yen et al.’s (21), Sahoo et al.’s
(22), and Li and Tam’s (23) methods. In order to
determine the best combination, we evaluated
ensembles with three (20 ensembles), four (15
ensembles), five (six ensembles), and six (one
ensembles) methods.

Figure 3 shows the output of four particular
ensembles: Otsu–Kapur–Huang, Yen–Sahoo–Li,
Otsu–Kapur–Huang–Yen, and Huang–Yen–Sa-
hoo–Li. Note that each ensemble contains at least
one method that either underestimates or over-
estimates the optimal threshold. It can be seen that
each ensemble performs equally well, which de-
monstrates that failures in pathological cases might
be prevented using a proper fusion strategy.

Figure 4a shows the result of the ensemble
Otsu–Kapur–Huang–Sahoo. Here, the blue
bounding box encloses the dermatologist deter-
mined border (see ‘Results and Discussion’),
whereas the red one encloses the binary output
of the threshold fusion. It can be seen that the red
box is completely contained within the blue box.
This was observed in many cases because the
automated thresholding methods tend to find the
sharpest pigment change, whereas the dermatol-
ogists choose the outmost detectable pigment. We
experimented with two different expansion
methods to solve this problem. The first one
involves expanding the automatic box by P% in
four main directions. In other words, an auto-
matic box of size MB�NB is expanded by
MB� P/100 pixels in the west and east directions
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and NB� P/100 pixels in the north and south
directions. The second one involves incrementing
the threshold values obtained by each algorithm
in the ensemble by G gray levels. In the rest of
this article, we will refer to these expansion
methods as non-adaptive and adaptive, respec-
tively. Figure 4a and b shows the results of these
methods with the expanded box shown in green.
In this particular example, the non-adaptive
method performs better in bringing the automatic
box closer to the manual one. In order to deter-
mine the optimal expansion amounts we evalu-
ated PAf2,4,6,8g and GAf4,6,8,10g.

Results and Discussion

The proposed method was tested on a set of 428
dermoscopy images obtained from the EDRA
Interactive Atlas of Dermoscopy (2) and the
Keio University Hospital. These were 24-bit
RGB color images with dimensions ranging
from 771� 507 to 768� 512 pixels. An experi-
enced dermatologist (W.V.S.) determined the
manual borders by selecting a number of points
on the lesion border, which were then connected

by a second-order B-spline. The bounding box
error was quantified using the grading system
developed by Hance et al. (24)

e ¼ AreaðAutomaticBox�ManualBoxÞ
AreaðManualBoxÞ � 100 ð9Þ

where AutomaticBox is the binary image obtained
by filling the bounding box of the fusion output,
ManualBox is the binary image obtained by filling
the bounding box of the dermatologist-deter-
mined border, � is the exclusive OR operation,
which essentially determines the pixels for which
the AutomaticBox and ManualBox disagree, and
Area(I) denotes the number of pixels in the
binary image I.

We determined the optimal parameter combi-
nation for the presented approximate bounding
box computation method as follows. First, the
black frame removal procedure described in
‘Black frame removal’ is performed on each
image in the data set. The lesion bounding box
is then computed using the fusion method de-
scribed in ‘Approximate lesion localization’ with
one of the 42 ensembles. Finally, the approximate
bounding box is expanded using either the non-
adaptive method with PAf2,4,6,8g or the adap-
tive method with GAf4,6,8,10g. Table 1 shows
various statistics associated with the four most
accurate ensembles for each expansion method.
The last two columns refer to the mean and
standard deviation values, respectively, for
the percentage image size reduction, i.e.
AreaðAutomaticBoxÞ

MN 100, provided by the bounding
box computation. The following observations
are in order: (i) both expansion methods reduce
the mean bounding box error, (ii) the lowest
mean errors were obtained using the ensemble
Otsu–Kapur–Huang–Sahoo, (iii) the non-adap-
tive expansion method was more effective than
the adaptive one, (iv) the computation of the
bounding box reduced the original image size
by about 260%.

The adaptive method was less effective than the
non-adaptive one probably because the former
often expands the approximate box by unpredict-
able amounts: either too little (as in Fig. 4b) or too
much depending on the shape of the histogram
and the value of the G parameter. In contrast, the
latter always expands the approximate box by an
amount specified by the P parameter.

Table 2 shows the statistics for the individual
thresholding methods. Note that, due to space
limitations, we report only the results of the non-

a b

c d

Fig. 3. Comparison of various threshold ensembles: (a) Otsu-Kapur-

Huang, (b) Yen-Sahoo-Li, (c) Otsu-Sahoo-Li, (c) Otsu-Kapur-Huang-

Yen, (d) Huang-Yen-Sahoo-Li.
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adaptive expansion method (as in the ensemble
case, the adaptive method has inferior perfor-
mance). It can be seen that, in most configura-
tions, the individual methods obtain significantly
higher mean errors than the best ensemble meth-
ods, i.e. the first four rows of Table 1. This is
because, as explained in ‘Approximate lesion
localization,’ the individual methods are more
prone to catastrophic failures when given patho-
logical input images. The high standard devia-
tion values also support this explanation. Only
the performance of Otsu (with P 5 2, 4) and Li

et al.’s (with P 5 4) methods is close to the
performance of the ensembles. However, as men-
tioned in ‘Approximate lesion localization,’ the
goal of fusion is not to outperform the individual
thresholding algorithms, but to obtain accuracies
comparable with that of the best threshol-
ding algorithm independently of the image chara-
cteristics.

As mentioned in ‘Approximate lesion localiza-
tion,’ an accurate bounding box can provide an
estimate of the lesion size, i.e. Area (ManualBor-
der). In order to verify this, we calculated the best

TABLE 1. Ensemble statistics

Ensembles Expansion method mei
sei

mex
sex

ms ss

Otsu–Kapur–Huang–Sahoo Non-adaptive (P 5 2) 10.25 8.10 7.58 8.13 268.31 185.64

Otsu–Huang–Yen–Li Non-adaptive (P 5 4) 11.92 7.59 7.89 6.30 260.55 183.85

Otsu–Huang–Sahoo–Li Non-adaptive (P 5 4) 11.98 7.62 7.90 6.20 260.95 184.14

Otsu–Huang–Sahoo Non-adaptive (P 5 2) 11.14 7.17 7.91 6.71 273.84 195.69

Otsu–Kapur–Huang–Sahoo Adaptive (G 5 6) 10.25 8.10 9.27 7.68 276.92 192.14

Kapur–Huang–Sahoo–Li Adaptive (G 5 8) 10.98 7.66 9.43 7.69 279.03 194.42

Otsu–Kapur–Huang–Sahoo Adaptive (G 5 4) 10.25 8.10 9.44 7.56 279.98 194.26

Kapur–Huang–Sahoo–Li Adaptive (G 5 6) 10.98 7.66 9.67 7.58 282.09 196.58

m, mean; s, standard deviation; eI, initial box error; ex, expanded box error.

TABLE 2. Individual statistics

Thresholding method Expansion method mei
sei

mex
sei

ms ss

Otsu Non-adaptive (P 5 2) 12.05 9.10 9.00 8.95 275.07 199.28

Kapur Non-adaptive (P 5 2) 12.87 16.86 12.68 17.56 261.95 197.94

Huang Non-adaptive (P 5 2) 20.31 67.97 17.17 69.76 269.59 190.09

Yen Non-adaptive (P 5 2) 14.98 27.12 15.74 27.74 255.61 250.53

Sahoo Non-adaptive (P 5 2) 13.43 24.60 13.37 25.19 254.43 184.36

Li Non-adaptive (P 5 2) 15.12 9.65 11.06 9.07 293.54 215.80

Otsu Non-adaptive (P 5 4) 12.05 9.10 9.10 9.14 256.86 182.82

Kapur Non-adaptive (P 5 4) 12.87 16.86 15.54 18.61 245.36 183.78

Huang Non-adaptive (P 5 4) 20.31 67.97 16.83 70.69 251.99 174.44

Yen Non-adaptive (P 5 4) 14.98 27.12 19.32 28.49 239.46 230.91

Sahoo Non-adaptive (P 5 4) 13.43 24.60 16.43 25.98 238.32 170.38

Li Non-adaptive (P 5 4) 15.12 9.65 9.41 7.99 273.93 198.61

m, mean; s, standard deviation; eI, initial box error; ex, expanded box error.

a b

Fig. 4. Comparison of the bounding box expansion methods: Non-adaptive expansion with P 5 3%, (b) Adaptive expansion with G 5 6.
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fitting line for Area (AutomaticBox) vs. Area
(ManualBorder) using the generalized least-
squares method (25):

AreaðManualBorderÞ � AreaðAutomaticBoxÞ
� 0:861271� 15627:226419

ð10Þ

where ManualBorder is the binary image obtained
by filling the dermatologist-determined border.
The accuracy of this relation was calculated by
plugging the area of the approximate bounding

box for each image into Eq. (10), and then
comparing the result with the actual area of the
lesion, which is calculated from the dermatolo-
gist-determined border. The percentage mean
and standard deviation errors over the entire
image set were 11.88 and 11.49, respectively.
These results demonstrate that the lesion size
can be estimated from the bounding box area
with relatively high accuracy. An even better
estimate can be made from the binary output of
the threshold fusion. The best fitting line for
Area(FusionOutput) vs. Area(ManualBorder) was

a

c d

e f

g h

b

Fig. 5. Sample bounding box computation results: (a) ei 5 3.26%, ex 5 1.83%, (b) ei 5 4.89%, ex 5 3.62%, (c) ei 5 10.87%, ex 5 4.03%, (d)

ei 5 3.18%, ex 5 4.82%, (e) ei 5 6.75%, ex 5 5.36%, (f) ei 5 14.24%, ex 5 9.21%, (g) ei 5 14.05%, ex 5 10.91%, (h) ei 5 18.36%, ex 5 13.62% (ei:

initial box error, ex: expanded box error).
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calculated as

AreaðManualBorderÞ � AreaðFusionOutputÞ
� 1:158209� 4485:287871

ð11Þ

where FusionOutput is the binary output of the
threshold fusion. The percentage mean and stan-
dard deviation errors for this relation were 8.16
and 8.54, respectively.

Figure 5 shows sample bounding box compu-
tation results obtained using the ensemble Otsu–
Kapur–Huang–Sahoo with P 5 2. It can be seen
that the presented method determines an accu-
rate bounding box even for lesions with fuzzy
borders. We note that while the expansion opera-
tion is useful in most cases, in some cases such as
Fig. 5d, it might deteriorate the results slightly.

Conclusions

In this paper, an automated method for approx-
imate lesion localization in dermoscopy images is
presented. The method is comprised of three
main phases: black frame removal, initial bound-
ing box computation using an ensemble of
thresholding algorithms, and expansion of the
initial bounding box. The execution time of the
method is about 0.15 s for a typical image of size
768� 512 pixels on an Intel Pentium D 2.66 GHz
computer.

The presented method may not perform well
on images with significant amount of hair or
bubbles because these elements alter the histo-
gram, which in turn results in biased threshold
computations. For images with hair, a preproces-
sor such as DullRazort (11) might be helpful.
Unfortunately, the development of a reliable
bubble removal method remains an open pro-
blem.

Future work will be directed toward testing the
utility of the presented method in a border detec-
tion study. The implementation of the threshold
fusion method will be made publicly available as
part of the Fourier image processing and analysis
library, which can be downloaded from http://
sourceforge.net/projects/fourier-ipal
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