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Abstract—In the last decade, quantum computing has showcased
its unique mechanism across diverse fields, highlighting significant
potential for data-driven applications requiring substantial
computational resources. Within this landscape, quantum machine
learning emerges as a promising frontier, poised to harness the unique
advantages of quantum computing for machine learning tasks.
Nonetheless, the current generation of quantum hardware, typified by
noisy intermediate-scale quantum (NISQ) devices, grapples with
severe resource constraints, particularly in terms of qubit availability.
While quantum computing offers tantalizing capabilities such as
superposition and entanglement, which can be strategically leveraged
to optimize the performance of quantum neural networks, the
challenge remains in mitigating the resource limitations while
upholding high recognition accuracy. To address this imperative, we
introduce a pioneering face recognition method christened the
multigate quantum convolutional neural network (MG-QCNN). This
innovation is engineered to surmount the resource bottleneck endemic
to NISQ devices while preserving exceptional recognition accuracy.
Our empirical investigations conducted on benchmark datasets,
including the Yale face dataset and the ORL face database, illuminate
the remarkable potential of this approach. Specifically, our proposed
variational quantum circuit architecture consistently achieves an
impressive average accuracy of 96%, which is better than the 95% of
the classic CNN. Our model underscores the efficacy of quantum
convolution operations in the extraction of feature maps, exhibiting a
transformative stride toward unlocking the full potential of quantum-
enhanced face recognition, and compared with other quantummodels,
our method hasmore advantages in accuracy and efficiency.

Impact Statement—Our groundbreaking research in
quantum machine learning has unveiled a transformative path
forward in the realm of face recognition. By pioneering
the multigate quantum convolutional neural network, we have

harnessed the unique capabilities of quantum computing to
overcome resource limitations and achieve an astounding 96%
average accuracy on face recognition tasks. This achievement
not only showcases the immediate potential of quantum
convolution operations in feature extraction but also sets the
stage for a quantum revolution in the field of machine learning.
Our work is a catalyst for future explorations, promising even
greater computational efficiency and accuracy as we scale up
quantum structures and expand our horizons to high-resolution
color face images. This study is a foundational step toward
quantum-enhanced face recognition, with far-reaching implica-
tions for data-driven applications and the broader field of artifi-
cial intelligence.

Index Terms—Multigate quantum convolutional neural network
(QCNN), quantum biometrics, quantum convolutional neural
network (QCNN), quantummachine learning.

I. INTRODUCTION

FACE recognition, a biometric technology for identity rec-
ognition [1], finds valuable applications in various sectors

such as banking, security, and government [2]. The process of
facial recognition encompasses several stages, including face
image acquisition, image preprocessing, facial feature extrac-
tion, and image recognition [2]. Among these stages, the extrac-
tion and modeling of facial features stand as a pivotal step. By
modeling these features from the facial image, we can subse-
quently employ them to match and determine the identity of the
individual [2].

Among the methods of facial feature extraction, the most
widely used methods are machine learning, such as K-nearest
neighbors (KNN) and support vector machines (SVM) [3].
Backed by the powerful processing power of GPU units, deep
learning methods have achieved dominance in this field [35],
[36], [37], [38]. Among them, the deep learning method based
on convolutional neural network (CNN) is one of the best-
performing methods [2]. CNN for computer vision was
proposed by LeCun et al. [4]. The advantages of CNN over tra-
ditional neural networks lie in its parameter sharing mechanism
and the sparsity of connections, which are brought about by its
creative use of convolution kernels. CNN has received extensive
attention from industry and academia in the past few years due
to its impressive achievements in many fields including but not
limited to computer vision and natural language processing [5].
DeepFace [6] is the foundation of the application of CNN in
face recognition and achieved an accuracy of 97.35% on the
LFW dataset [7], which is very close to the human level.

Manuscript received 5 April 2023; revised 6 October 2023, 7 February 2024,
and 30 March 2024; accepted 10 June 2024. Date of publication 28 June
2024; date of current version 10 December 2024. This work was supported
in part by the UK EPSRC under Grant EP/P009727/1, in part by the
Leverhulme Trust under Grant RF-2019-492, and in part by the US
National Science Foundation under Grant 1946391. This article was
recommended for publication by Associate Editor Aaron Baughman upon
evaluation of the reviewers’ comments. (Corresponding author: Richard
Jiang.)

Yijie Zhu, Plamen Angelov, Qiang Ni, and Richard Jiang are with LIRA
Center, Lancaster University, LA1 4YW Lancaster, U.K. (e-mail: r.jiang2@
lancaster.ac.uk).

Ahmed Bouridane is with the Centre for Data Analytics and Cybersecurity
(CDAC), University of Sharjah, Sharjah 27272, UAE.

M Emre Celebi is with the Department of Computer Science, University of
Central Arkansas, Conway, AR 72035 USA.

Debanjan Konar is with Purdue Quantum Science and Engineering Institute
(PQSEI) and School of Industrial Engineering, Purdue University, West
Lafayette, IN 47906 USA.

Digital Object Identifier 10.1109/TAI.2024.3419077

2691-4581 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6330 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 12, DECEMBER 2024

https://orcid.org/0009-0009-7110-6834
https://orcid.org/0000-0002-1474-2772
https://orcid.org/0000-0002-2721-6317
https://orcid.org/0000-0002-7423-9319
https://orcid.org/0000-0002-5770-934X
https://orcid.org/0000-0002-4593-1656
https://orcid.org/0000-0003-1721-9474
mailto:r.jiang2@lancaster.ac.uk
mailto:r.jiang2@lancaster.ac.uk


Although deep learning has achieved great success, there are
also some problems. The article [43] shows that progress along
current routes is rapidly becoming unsustainable economically,
technologically, and environmentally. Facing the problem of
computing resources, forcibly consuming more resources may
not be a good development direction. It’s a much better idea to
balance efficiency while maintaining great performance.

Compared with classical computing, quantum computing has
its unique advantages in the field of machine learning [8].
Applying quantum computing to classical neural networks is
one of the major recent application directions of quantum com-
puters [53], [54], [55]. On some problems, quantum mecha-
nisms are expected to perform better than classical algorithms,
especially the potential for quantum polynomials through quan-
tum parallelism speed up [8], [47], and many people try to use
the properties of quantum computing to improve the efficiency
of models. Currently, researchers are primarily concentrating on
one of the most captivating facets of quantum computers: quan-
tum parallelism, which relies heavily on the superposition of
states and is typically the primary cause of the higher speed of
quantum algorithms compared with classic ones. The results of
the experiments [12] indicate that it is achievable to take advan-
tage of the parallelization of existing quantum hardware and
acquire speed up from it. Currently, the development of quan-
tum computing is in the stage of noisy intermediate-scale quan-
tum (NISQ) with limited performance. While quantum machine
learning has achieved some virtuosity [10], quantum-based face
recognition is still in a relatively early research stage due to the
limitation of the number of qubits in current quantum com-
puters. Take the commonly used LFW face database as an
example. The dataset contains 13,000 face images [6]. Even if
each face image is reduced to a size of 12 � 12 pixels, the
demand for the number of qubits still exceeds the processing
power of current quantum computers. In addition, the quantum
resources currently available are relatively limited and expen-
sive. Due to the structure of the QPU itself, the number of
qubits, and the limitations of the quantum volume, the QPU
may not be able to meet the researchers’ design of a variety of
quantum gates and qubits in quantum circuits, including ampli-
tude encoding methods and some classic loss functions. The cur-
rently commonly used and affordable IBM QPU has qubits
ranging from 5 to 27 qubits, so researchers must ensure that every
qubit in their quantum circuits is used as efficiently as possible.

In recent years, face recognition technology, driven by deep
learning, has been extensively studied and is one of the most
popular research topics in pattern recognition and image proc-
essing. The purpose of face recognition is to extract the person-
alized features of people from face images and use this to
identify different people. For example, face recognition based
on Gabor filtering [9], face recognition method based on elastic
graph matching [6], and method based on fuzzy neural network
[11]. At present, various face recognition models based on deep
learning have shown excellent performance [44], [45], [46].

In the face recognition model based on a neural network, the
CNN structure is one of the most commonly used structures [1].
A CNN is a neural network consisting of neurons with learnable
weights and bias constants [2]. For image input, this method can

effectively extract local features. This feature of CNN is suitable
for data with a strong correlation between pixels such as face
images.

Our goal is to realize an easily extensible quantum structure
on a limited number of qubits, aiming at better utilization of
qubits to achieve higher efficiency. Our results show that only
four qubits are required for high-accuracy face recognition on
low-level face data.

We propose a trainable quantum convolutional architecture
that requires a small number of qubits and can be combined
with classical neural networks. Simulation is a viable training
option due to the low number of qubits required. Building on
previous research, we use a variational quantum algorithm-
based convolution method. We designed a new quantum circuit,
using a variety of quantum rotation gates to fit the objective
function better. Therefore, we name this method as multigate
quantum convolutional neural network (MG-QCNN). Our main
contributions are:

1) We propose a multigate method for encoding and setting
parameters in quantum circuits. This method applies a
variety of quantum rotation gates to better fit the objec-
tive function.

2) Using quantum entanglement to achieve convolution, all
qubits of the quantum circuit are measured in the mea-
surement phase, so that the eigenvalues obtained by con-
volution can reflect the correlation between pixels in the
region.

3) Our method can be viewed as a quantumed convolu-
tional layer and thus can be easily combined with vari-
ous network structures.

4) Our structure is lightweight, requiring fewer qubits and
occupying a small quantum volume, making it easy to
deploy in practice. Fixed quantum circuits are more effi-
cient and interpretable than the continuous generation of
random circuits.

Overall, our proposed MG-QCNN considers improving effi-
ciency in addition to improving accuracy. Through the analysis
and discussion of the experimental results, MG-QCNN achieves
the following performance.

1) The proposed MG-QCNN achieves average accuracies
of 90% and 91% in two different databases, outperform-
ing previous quantum machine learning methods.

2) The superiority of using quantum entanglement to gener-
ate feature maps in quantum convolution kernels is dem-
onstrated, and the correlation between feature maps is
strong under the action of quantum entanglement, which
is superior to classical CNN operations.

3) Our model training speed and resource consumption are
better than existing approaches.

4) Our architecture can be easily combined with classic
neural network structure.

The structure of this article is as follows: First, we discuss
face recognition and related work in the field of quantum
machine learning. Subsequently, we introduce the details of
MG-QCNN. After that, we describe the experimental setup and
present the experimental results. Finally, we discuss the results
of the experiments.
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II. BACKGROUND

A. Quantum Machine Learning

Mechanisms such as quantum entanglement and superposi-
tion state possessed by quantum systems give quantum systems
an advantage over classical computers in solving some problems
[13]. In machine learning tasks, with the deepening of research,
the number of training samples and model parameters continue
to increase, and the high parallelism of quantum systems is con-
sidered to optimize traditional machine learning. At present, a
variety of quantum machine learning methods have been pro-
posed, such as the quantum Boltzmann machine [14] and quan-
tum neural network [15], [16]. A Quantum neural network is a
neural network model based on the principles of quantum
mechanics. Or the quantum neural network is a deep learning
method that introduces quantum circuits into classical neural
networks [47]. Ezhov and Ventura [17] discussed various
advantages of quantum neural networks over classical neural
networks: The information that a single qubit can carry increases
exponentially compared with bits [48]; Quantum polynomial
speedup [49]; Single-layer network solution of linearly insepara-
ble problems [42]. Recently, Ezhov suggested that quantum
neural networks do not need to be based on qubits, and criticized
attributing them to quantum machine learning methods or any
other method. He argued that quantum neural networks can be
seen as a universal tool for representing amplitudes of any quan-
tum process [33].

A quantum circuit is a key part of quantum machine learning
systems. A quantum circuit consists of several qubits and quan-
tum gates as shown in Fig. 1. Lines side by side represent the
qubits, and from up to bottom represent the chronological order.
The vertical lines on these straight lines represent controlled
NOT gate (CNOT) gates that are essentially unitary operators.
Quantum gates can be applied to one or two qubits. Any unitary
transformation acting on any set of qubits can be implemented
by a combination of a series of quantum gates. At the end of the
line is the measurement section.

B. Variational Quantum Algorithm

Variational quantum algorithms (VQA) use classical optimiz-
ers to train quantum circuits with parameters [18]. For classical
deep learning, the model is usually a neural network running on
a classical computer. For VQA, the neural network is replaced
by a quantum circuit running on a quantum computer. A quan-
tum circuit is a variational quantum circuit (VQC). VQC usually
consists of a series of single-qubit gates or multiqubit gate oper-
ations. Some VQCs are used in hybrid methods, as a preprocess-
ing or postprocessing part combined with classical methods
[19], [34], [53], [54], [55]. Parameters in VQC can be optimized
in classical network layers, just like in classical machine learn-
ing, which is why VQC is suitable for building hybrid architec-
tures. The parameters in VQC are mainly reflected in the
rotational gate in the quantum circuit, and the parameters of its
rotation can be trained. VQA optimizes the parameter h in the
circuit by gradient descent to minimize the cost function. In this
way, the parameters of the quantum circuit itself can be updated,
enabling wider and more flexible deployment of quantum cir-
cuits in neural networks. The cost function of VQA is usually
the expected value of the observed object H in the final state of
the line, and the formula is as follows:

E ¼ h0 j U†ðhÞHUðhÞ j 0i: (1)

C. Related Quantum Convolutional Models

Due to the excellent performance of CNN in classical
machine learning, a method using full quantum architecture was
proposed due to its influence. The QCNN [21] implements the
convolutional layer and pooling layer similar to the classical
CNN architecture on the quantum circuit and finally determines
the final classification result through the fully connected layer.

Quanvolutional neural network (QNN) is a quantum network
inspired by classical CNN [20]. Before QNN, a QCNN using
the idea of convolution has been proposed [21]. This quantum
neural network implements quantum convolution and quantum
pooling on quantum neural networks to deal with many-body
physics problems. However, this QCNN differs from the classi-
cal CNN in that it does not have a structure similar to a convolu-
tion kernel (filter). This also means that if QCNNs are applied to
face recognition, the requirement for the number of qubits will
be huge: one qubit per pixel. This reduces the overall efficiency
of the network.

QNN extends the classical CNN structure with quantum
quanvolutional layers but does not replace the whole neural net-
work with quantum layers. Similar to classic convolutional
layers, quanvolutional layers can adjust the number of quanvo-
lutional kernels (filters) within the layer, and can be placed at
any desired position as a completely independent layer when
used in a neural network. The filter structure in the quanvolution
layer is similar to the filter in CNN and can extract local fea-
tures. Fig. 1 is the structure of the quanvolutional layer. The
quantum circuits that constitute the filter in QNN are random
circuits, which are different each time they are generated.

QNN has many advantages. First, the structure of the QNN
makes it easy to combine with traditional neural network layers.

Fig. 1. Quantum circuit of QNN [20]. The quantum circuit in the blue part is a
random circuit, that is, the CNOT gates are randomly generated and are different
for each training. All qubits will be measured in the measurement section.
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However, referring to Aaronson’s research, for algorithms that
require a large number of quantum measurements, any potential
“quantum speedup” will disappear [22]. If the quanvolutional
layer is deployed too much, the speed benefits of quantum com-
puting are difficult to achieve. In addition, more layers require
more qubits, which seems to negate the benefit of carrying more
information in a single qubit. The quanvolutional layer is not
constructed by VQC, so the QNN cannot update the parameters
in the kernel, which makes it highly dependent on the classic
CNN when using this structure to form a neural network, and
cannot replace the classic CNN.

Considering that QNN cannot train parameters, an improved
structure using VQC, variational quanvolutional neural network
(VQNN), is proposed [19]. As the name suggests, this structure
changes the quantum circuit into a VQC, adding quantum gates
with parameters to the original random circuit. Under the action
of the cost function, these parameters will be continuously
updated, and the gradient descent will be performed as in the
classical neural network. The structure of the VQNN is shown
in Fig. 2. On the MNIST dataset [24], the VQNN [19] can
achieve an average test accuracy of 0.854, and the overall level
is better than the QNN [20] trained without parameters. For
VQNN [19], its random quantum circuit needs to be regenerated
every time it is called, and the interpretability of the random cir-
cuit is somewhat lacking. Its use of a single RY gate does not
make full use of the Hilbert space and may be lacking in fitting
the target state.

In addition, earlier, an article proposed a quantum CNN struc-
ture utilizing VQC [23]. This quantum CNN structure is similar
to the first two, but a fixed quantum circuit is designed instead
of a random circuit. This structure is shown in the figure. The
characteristic of this QCNN is that it only measures one qubit in
the measurement step, but uses multiple different quantum con-
volution kernels for multiple measurements. This approach
makes QCNN more similar to the classical CNN approach. [52]

proposed a structure similar to VQNN, and a model that adds an
additional quantum layer to the classic CNN. The article [50]
proposes a QCNN for high-energy physics event classification.
The proposed quantum architecture demonstrates the advantage
of faster learning than the classic CNN when the number of
parameters is similar. The article [41] proposes a quantum neu-
ral network model inspired by CNN. This article [39] introduces
a hybrid quantum classical CNN that applies quantum
computing to extract high-level key features from Earth
observation data for classification purposes. Furthermore, the
adoption of amplitude encoding techniques reduces the
required qubit resources. This article [40] proposes a hybrid
quantum classical CNN for surface defect recognition. The
method introduces quantum CNN layers, reducing the
number of convolutional blocks in the model architecture as
well as the required image size.

III. OUR PROPOSED MULTIGATE QUANTUM CNN

The structure of MG-QCNN we propose is based on VQC,
which encodes the image data in the form of classical data, and
obtains the expected value through measurement after VQC
processing to achieve the function of extracting image features.
For face recognition tasks, it is important to exploit the spatial
information between pixels. For classical deep learning, merg-
ing local pixel regions is an important task, while CNN uses a
filter, or convolution kernel, to slide on the original data, collect
the values in a rectangular region, and compare the parameters
of the filter with the filter. Calculations are made to obtain the
eigenvalues of this region. Our proposed method also follows
this approach, preserving the 2-D shape of the original image,
sliding over the image through a 2 � 2 square filter, and encod-
ing the corresponding pixel values onto qubits.

In our multigate approach, we use multiple quantum rotation
gates to encode and set parameters. Our method utilizes RY gates

Fig. 2. Left figure is VQNN [19]. The quantum circuit in the blue part is a random circuit, that is, the CNOT gate and the rotation gate are randomly generated, and
each training is different. The parameters in the rotation gate are updated via the cost function. In addition to the difference between quantum circuits and quanvolution
neural network, the introduction of trainable parameters enables VQNN to be separated from classical CNN and train independently, which is different from QNN
which must rely on classical networks. The right figure is QCNN [22]. The quantum circuit is composed of the control RZ gate and the control RX gate. Only one qubit
is measured during measurement, and multiple quantum convolution kernels are set, making QCNN similar to classical CNN.
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to encode the pixels of the raw data, transforming classical data
into quantum data on qubits, and rotates each qubit using RX and
RZ gates that carry parameters. With the calculation of the loss
function, the parameters of the RX gate and the RZ gate are con-
tinuously updated, so that the model is fitted to the objective
function. Our method can theoretically converge better.

When designing a VQC-based quantum convolution struc-
ture, there are three main modules to consider: encoder, varia-
tional circuit, and decoder.

A. Encoder

The main function of the encoder is to quantify the input clas-
sical data into quantum data that can be input into a quantum cir-
cuit. At present, the commonly used coding methods include
basic coding, amplitude coding and angle encoding. Angle
encoding uses rotation gates to encode classical information,
and the rotation angle of these rotation gates is determined by
classical information. As shown in the encoder section in Figs. 1
and 2, amplitude encoding is usually achieved by rotating quan-
tum gates. Taking the single-qubit rotation gate as an example,
the rotation gate needs to input a rotation parameter. On the
Bloch sphere, the state of the qubit will migrate according to the
type and parameter of the rotation gate. In our architecture, RY

gates will be used for all classical data, and each qubit carries
one data (i.e. one pixel in the original image). We first normalize
the raw data to unit length before entering the RY gate as a
parameter. The initial state of all our qubits is j0i, rendered on a
Bloch sphere as shown in Fig. 3. As we use the RY gate encod-
ing, the state of the qubit embodied on the Bloch sphere is
rotated from the initial state j0i around the Y-axis according to
the parameter h. We choose the RY gate because the rotation of
the initial state along the Y-axis can most intuitively reflect the
original data in the quantum system. The equation for encoding
using the RY gate is as follows:

Ryð/Þ ¼ e�
i/ry
2 ¼

cos
/
2

� �
�sin

/
2

� �

sin
/
2

� �
cos

/
2

� �
2
6664

3
7775: (2)

B. Variational Quantum Circuit

In this part, the encoded quantum data will be processed by
quantum gates. In VQC, rotating quantum gates are often used
as carriers of trainable parameters, such as the circuit part in
Fig. 2. CNOT gates and control revolving gates are used to cre-
ate quantum entanglement, which is one way of implementing
quantum convolutional circuits. The role of this part is to extract
data features.

Unlike VQNNs, we design a VQC with a fixed structure,
as shown in Fig. 4, rather than a randomly generated circuit.
The random circuit will make the result of each training not
fixed, and the randomness is very strong. If the VQC is too
random, due to their expressibility, a “barren plateau” effect
occurs, making model training difficult [25], [51]. This effect
can be mitigated using fixed quantum circuits. We use RX

gates and RZ gates in the circuit to carry trainable parame-
ters, which are the rotation gates around the X and Z axis
[56]. We rotate the state along the y-axis on the Bloch sphere
from the initial state j0i using the RY gate in the encoding
phase. To make the circuit easier to fit, we deploy RX gates
and RZ gates on each qubit so that the entire quantum space
can be utilized.

Due to the eight quantum rotation gates, our filter carries eight
parameters. To improve efficiency, these eight parameters will
not change when sliding, which means that the parameters of
each 2 � 2 area in an image are the same. Although different
sets of parameters can be used, we adopt the same set of parame-
ters for the efficiency of the method. The unitary operation
of our quantum circuit with an encoder can be expressed by the
following equation:

U ¼ RY xð ÞRX h1ð ÞRZ h2ð Þ ¼ eixry eih1rx eih2rz (3)

where h is the parameters and the x is the input data.

Fig. 3. Figure shows the Bloch sphere. When preparing a quantum circuit, the
initial state of the circuit is j0i, which is the top of the Z-axis. We use an RY gate
for encoding, so the initial state j0i will rotate around the Y-axis. The encoded
data will be distributed on the circle as shown by the red square in the figure. The
green arrow in the figure and the blue dot points to indicate that the initial state
j0i rotates p=4 around the Y-axis.

Fig. 4. Quantum circuit of MG-QCNN. The dashed lines in the measurement
section represent whether or not measurements were made here in the different
models. Our model is encoded using RY gates, using RX gates and RZ gates to
carry a total of eight parameters, two on each qubit. CNOT gates are used to gen-
erate quantum entanglement to achieve an effect similar to convolution in classi-
cal CNNs.
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For classic models, there is a universal approximation theo-
rem (UAT) [57] to support its approximation capabilities. Simi-
larly, for quantum models, UAT can be used to demonstrate
approximation capabilities. According to [58], a quantum analog
can be constructed on the basis of UAT. For any function g :
v! R and for any e> 0, there exist n 2 N and w 2 R such that

xwn xð Þ � g xð Þ�� ��< e: (4)

For all x in v and wn xð Þ is the basis function. Based on quan-
tum UAT, we can think that our quantum circuits can fit the
functions.

C. Decoder

In the decoder, the processed quantum features will be mea-
sured with the help of Pauli Z gates. The expected value of each
qubit will be derived from repeated measurements. Through the
decoder, the quantum data is converted into classical data, and
the classical data can be used as the input for the next layer to
continue processing.

Here we consider two cases, measuring all qubits and measur-
ing one qubit but setting multiple convolution kernels. Both
measurements have their potential advantages. Measuring a sin-
gle qubit but setting up multiple convolution kernels makes the
quantum convolution layer more similar to the classical convo-
lution operation, but the number of qubits required grows expo-
nentially, as does the number of parameters, which may increase
the training time. We will test both measures in experiments to
analyze their impact on the overall performance of the model.

After a convolution operation with quantum filters, we obtain
a set of feature maps of the original images. Since our quantum
architecture is easy to expand, classical neural networks or
quantum neural networks can be used to continue processing
and further extract features. However, in this study, since our
goal is to verify the performance of our architecture, we do not
extend the network deeper. Keeping the model structure simple
allows us to better analyze the experimental results. We directly
feed the resulting feature map into a classical fully connected
layer for classification. Through the cost function, the model can
update the parameters on the eight quantum rotation gates in the
variational quantum circuit. By repeating this process many
times, the parameters are continuously updated, and the model
is continuously fitted to the objective function we need.

IV. EXPERIMENTAL SETUP AND RESULT EVALUATION

In this section, we present our experiments using the method
described in the previous section, where the results obtained will
be analyzed. Our first experiment will use the Yale Face Data-
base [26], a small database. Due to the limitations of current
QML simulation algorithms, it is difficult for us to use large
databases, and we think using Yale Face Database is a suitable
challenge to demonstrate the lowest performance bounds for
systems using minimal parameters. After this, as an increase in
difficulty, our experiments will use the ORL face dataset [27].
The ORL face dataset has more data than the Yale Face Data-
base, which is more challenging for our method. We believe
that the application of our method to studies on small databases
is valuable for its further potential application in medicine.

A. Experimental Setup

We choose the Yale face database [26] and the ORL database
of faces [27] as the experimental data. The Yale face dataset
was created by Yale University and contains 15 people, each of
whom has 11 face images with different expressions, poses and
lighting: center-light, w/glasses, happy, left-light, w/no glasses,
normal, right-light, sad, sleepy, surprised, and wink. In a total of
165 images, the original size of each image is 320 � 243 pixels.
The ORL database of faces contains a set of images of human
faces taken in the laboratory. Each of the 40 different subjects
had ten different images, varying lighting, facial expressions
(eyes open/closed, smiling/not smiling), and facial details (with/
without glasses). The size of each image is 92� 112 pixels, and
each pixel has 256 gray levels.

In this experiment, we test five methods: our proposed
MG-QCNN, VQNN [19], HQNN [52], HQCCNN [50], and
QCNN [23]. Fig. 5 illustrates the basic architecture of the
MG-QCNN. It consists of a VQC layer with one filter and a
fully-connected layer with 15 classes. The input data is a 48 �
48 face image. The kernel size and stride of the VQC layer are
chosen to be 2 � 2 and 2, respectively. An input image of 48 �
48 pixels is encoded into a four-qubit state using the RY rotation
gate and then entangled through a CNOT gate with trainable
parameters. The decoding part is designed in two ways: either
all qubits are measured or only one qubit is measured but with
four convolution kernels. The quantum convolutional layer will
thus extract a 24 � 24 � 4 feature tensor from the 48 � 48

Fig. 5. Figure shows the overall structure of the model in the experiment. The original image is encoded into the quantum circuit with a 2 � 2 area and a stride of 2.
U(h) represents a unitary operation consisting of quantum gates. For our MGQCNN, it is a unitary operation composed of RX gate and RZ gate, each gate contains one
parameter, a total of 8 as shown in Fig. 4 above. After different measurement methods, 24� 24� 4 feature maps are obtained, the classic fully connected layer is used
for classification, and the parameter h is updated after cost function. The model approaches the target after many iterations.
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pixels input image, which will then be converted into 15 output
classes for the Yale Face Database or 40 output classes for the
ORL face dataset for different person by the fully-connected
layer. A classical CNN that exactly corresponds to the quantum
convolutional layer is set as a control. Except that the convolu-
tional layer is classical, other parameters are completely consis-
tent with the quantum layer.

The VQNN has the same structure as our model; however, it
incorporates randomly generated quantum circuits. As demon-
strated in Fig. 2, the measurement section will assess all qubits.
Each filter is composed of four randomly generated quantum
rotation gates, thereby containing four parameters. The HQNN
is also set as the same.

The setup for QCNN is largely the same, except a single qubit
is measured during the measurement phase, with four quantum
convolution kernels in place as depicted in Fig. 2. The filter of
HQCCNN is 2� 3, and other settings are the same as QCNN.

For Yale Face Database, we train each model for 30 epochs
using the Adam optimizer with 20 mini-batches and a learning
rate of 0.0001. About 120 images are used for training and 45
images are used for testing. We use cross-entropy as the loss
function. For the ORL Database of Faces, we change the learn-
ing rate to 0.001. The data is divided into the training set and
test set according to the ratio of 7:3. We randomly repartitioned
the data set each time we repeated the experiment. Other than
these, the other settings are the same.

To conduct a more in-depth analysis of our method, we set up
experiments in which the structure of the model was adjusted.
We expanded the convolution kernel of the model to 3 � 3 for
testing. In addition, we also removed the RX gate and RZ gate of
the model respectively to test the contribution of different quan-
tum gates in the quantum circuit. We also cancel the entangle-
ment in the quantum circuits to test the ability of quantum
entanglement to extract data correlations.

We use PennyLane [28] and PyTorch [29] to perform experi-
ments on a local computer with an 8-core CPU 64G memory.
PennyLane is an open-source python-based framework that ena-
bles automatic differentiation of hybrid quantum-classical com-
putations. It is compatible with mainstream machine learning
frameworks like TensorFlow [30] and PyTorch and has a huge
plugin ecosystem. In the experiment, we train all models using
the built-in Pennylane simulator default_qubit, which supports
the backpropagation method of the PyTorch interface. This is a
Python-based qubit state vector simulator, with backends writ-
ten using NumPy, TensorFlow, PyTorch, and JAX. As a result,
this simulator supports end-to-end backpropagation, and models

containing this device can be deployed for execution on GPUs
and TPUs.

Before inputting the data to the model, we normalized the
data with a Gaussian distribution, normalized the pixels of the
original data to the interval [�1, 1], and then multiplied by p as
the angle parameter of the RY gate for encoding. The parame-
ters in each quantum filter are initially randomly generated.

Number of shots means how many times an algorithm is run
to get a probability distribution of results. Generally speaking
for quantum computing, the more measurements, the more accu-
rate the results. However, more measurements mean more quan-
tum resources and time are consumed. To balance the two, we
set the number of shots in this experiment to 1000.

B. Result Evaluation

Table I presents the test results of the quantum models on two
datasets. From the results, we found that the MGQCNN-All
model achieved the best performance in the five indicators of
test loss, mean accuracy, max accuracy, running time, and mem-
ory usage. On the Yale dataset, the MG-QCNN-All model
achieves a test loss of 0.347, which is better than the QHNN
model. The mean accuracy of the MG-QCNN-All model
reaches 96.000%, which is 2.667% higher than the Q CNN
model with the second highest mean accuracy. For max accu-
racy, the MG-QCNN-All model achieves 97.778%, which is
2.222% higher than the second. About 93.3% for the VQNN
model and MGQCNN-Single model. Meanwhile, the MG-
QCNN-All model shows great advantages in training time and
memory usage. Compared with the HQNN model, which takes
34 165 s, the MG-QCNN-All model takes 29 567 s, which is
4598 s faster, with a significant time advantage. The time taken
by the QCNN model is more than three times that of MG-
QCNN-All, and the gap is significant. In terms of memory
usage, the MG-QCNN-All model is the least, and the QCNN
and HQCCNN models are significantly more than the other
models. At the same time, the MG-QCNN-All model shows
great advantages in training time and memory usage. Judging
from the change curve of loss and accuracy in the training phase
in Fig. 6, the QCNN model shows obvious advantages in terms
of convergence speed and final loss, but the results in the test are
not very good.

For the ORL dataset, from Table I, we find that the MG-
QCNN-All model achieves the best performance in terms of
test loss, average accuracy, running time, and memory footprint,
but the maximum accuracy is that QCNN achieves the best

TABLE I
TEST RESULT OF THE MODELS WITH YALE AND ORL DATA SETS

TEST LOSS MEAN ACCURACY MAX ACCURACY RUNNING TIME MEMORY

DATASETS Yale ORL Yale ORL Yale ORL Yale ORL Yale ORL
CLASSIC-CNN - - 93.333% 94.976% 95.556% 96.667% - - - -
VQNN [19] 0.398 0.456 91.111% 90.841% 93.333% 92.500 41256s 123664s 6.849GB 6.854GB
HQNN [52] 0.368 0.339 88.889% 88.472% 91.111% 91.667 34165s 81920s 3.910GB 5.272GB

HQCCNN [50] 0.385 0.362 92.775% 93.267% 93.333 94.167 124058s 342587s 14.871GB 19.204GB
QCNN [23] 0.384 0.336 93.333% 95.097% 95.556% 97.500 96825s 236937s 9.231GB 12.251GB

MG-QCNN-ALL 0.347 0.307 96.000% 95.959% 97.778% 96.667 29567s 69169s 3.837GB 5.086GB
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performance. The MG-QCNN-All model achieves a test loss of
0.307, outperforming the QCNN model. The average accuracy
of the MG-QCNN-All model reaches 95.959%, which is
0.862% higher than the second-ranked QCNN model. For the
maximum accuracy, the QCNN model reaches 97.5%, which is
0.833% higher than the MG-QCNN-All model. In terms of
training time and memory usage, the MG-QCNN-All model still
shows its advantages. Compared with the HQNN model, which
took 81 920 s, the MG-QCNN-All model took 69169 s, which
was 12 751 s faster, and the time advantage was nearly double.
The QCNNmodel took 236 937 s. This time is four times that of
MG-QCNN-All, and the difference is significant. It can also be
seen from the memory usage of the model that the number of
parameters has a huge impact on the resource consumption of
model training. Judging from the change curves of loss and
accuracy in the training phase in Fig. 6, the QCNN model still

shows advantages in terms of convergence speed and final loss,
and the average accuracy in the test results is still not as good as
the MG-QCNN.

We modified the measurement part of our model by introduc-
ing four convolution kernels, each of which measured one qubit
similar to a classic CNN to conduct verification experiments.
This experiment allowed us to compare the performance and
efficiency of two different measurement methods in the model
to determine which one was more suitable for real-world appli-
cations. The results of our model on two datasets with two meas-
urements can be seen in Table II. The results indicate that the
MG-QCNN-All model performs better in terms of average accu-
racy, maximum accuracy, running time, and memory.

It can be seen from the results in Table II that the MG-
QCNN-All model has higher recognition accuracy. In particular,
the average accuracy of the MG-QCNN-All model shows the

Fig. 6. Upper part is the training loss and accuracy of the models in Yale face database. The lower part is the training loss and accuracy of the models in ORL database
of faces.

TABLE II
TEST RESULT OF THE MODELS WITH THE DIFFERENT MEASUREMENT METHODS

TEST LOSS MEAN ACCURACY MAX ACCURACY RUNNING TIME MEMORY

DATASETS Yale ORL Yale ORL Yale ORL Yale ORL Yale ORL
MG-QCNN-ALL 0.347 0.307 96.000% 95.959% 97.778% 96.667 29567s 69169s 3.837GB 5.086GB

MG-QCNN-SINGLE 0.412 0.531 90.222% 88.573% 93.333% 90.833 155043s 254161s 12.906GB 15.347GB
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best performance on both datasets. It takes the least amount of
time and consumes the least amount of resources, which has
advantages. In addition, for comparison, we also trained a classi-
cal CNN on The ORL database of faces, replacing the quantum
layer with the classical convolutional layer, and the accuracy
reached 95%. Compared with the classical CNN, our proposed
MG-QCNN-All model has an accuracy advantage. According to
the comparison between the MG-QCNN-All model and the
MG-QCNN-Single model, the performance of the MG-QCNN-
All model comprehensively exceeds the MG-QCNN-Single
model, and the structure similar to the classical CNN does not
bring better performance to the quantum model but increases the
model training time. This is due to the imitation of the classical
CNN structure resulting in a fourfold increase in the parameters
of the filter to 32 parameters. With so many parameters, the speed
of training will be greatly slowed down. Especially when using
Yale Face Database as the dataset, MG-QCNN-Single is difficult
to converge. However, the performance of the QCNN model is
second only to the MG-QCNN-All model, and it converges faster
than the MG-QCNN-All model in the training phase.

The problem of difficulty in training is also reflected in
HQCCNN. Its structure is more complex than MGQCNN and it
takes up more resources during training. In general, the training
phase converges faster, and the model should perform better on
the test set. If the model does not perform well, it may be over-
fitting. Therefore, we changed the learning rate and epoch of
training, tried different combinations, and the performance of
the model did not improve. We think the reason for this phe-
nomenon is that the number of parameters of the QCNN model
is too large, the data we use in the experiment is limited, and the
QCNN model cannot fit the data well. However, as the amount
of data increases, the training time of the QCNN model
increases substantially. Due to our resource limitation, we were
unable to train and test models on large datasets. We adopt the
quantum neural network in the hope that the mechanism of
quantum computing can provide help for the marginal effect
problem and improve the efficiency of the neural network. From
our experimental results, it does not seem to be a reasonable
choice to use a quantum model with a similar structure to the
classical CNN. By contrast, the VQNN model, HQNN and the
MG-QCNN-All model have obvious advantages in terms of
training speed and hardware resource usage. Even with only
one filter, the quantum layer can convert the input 2-D image
into four feature maps, and output the correlation between the
channels of the feature maps under the action of quantum
entanglement.

Overall, from the perspective of loss functions, the results of
each quantum model in multiple experiments are relatively sta-
ble. However, from the perspective of average accuracy and
maximum accuracy, the robustness of HQNN’s performance is
relatively poor. We believe this is due to the fact that HQNN
has fewer quantum gates carrying parameters and does not fully
cover every qubit. Apart from this, the quantum models exhibit
similar robustness and are generally within an acceptable range.

The VQNNmodel with four parameters per filter is less accu-
rate and takes longer to train than the MG-QCNN-All model
with eight parameters per filter. We analyze that this may be
because the quantum circuits of the VQNN model are randomly
generated. As a result, the VQNN model requires a large num-
ber of random circuits to be generated during training, thereby
slowing down its training speed. The fixed design circuits of the
MG-QCNN-All model, however, eliminate the need for this
step and thus improve training efficiency.

Our experimental results for different structural modifications
of our method are presented in Table III. Judging from the
results, increasing the size of the convolution kernel does not
have a positive impact on the experimental results, but instead
reduces the efficiency of the model. We believe this is because
larger convolution kernels are currently less efficient for existing
loss functions and optimization methods, and there are concerns
about “barren plateaus” with more qubits. This problem needs
to be solved by redesigning the loss function. In the experiment
of removing the RX gate and RZ gate, the accuracy of the model
dropped significantly. Although the required memory and time
decreased, this was due to the overall parameter decrease. In
comparison, removing the RX gate causes a greater decrease in
accuracy. This is because the RX gate affects the Z-axis in Bloch
space, thus affecting the final measurement results. In the exper-
iment of removing quantum entanglement, the accuracy of the
model dropped significantly, which proves that the correlation
between the data brought by quantum entanglement is very
important, which is also reflected in the experiment of the mea-
surement method.

We extract the incorrectly recognized images from our model
experiments for analysis. Fig. 7 shows the accuracy results for
specific classes in the data set. Relatively speaking, for the Yale
data set, there are a large number of shadows in the background
of some data, such as subject 08, which has a higher error rate
than other images. For the ORL data set, there is little difference
in error rates between faces without glasses and those with
glasses. However, for subject 31, the reflection of glasses in five
images interferes with the model, and the error rates of these

TABLE III
TEST RESULT OF THE MODELS WITH THE DIFFERENT STRUCTURES

TEST LOSS MEAN ACCURACY MAX ACCURACY RUNNING TIME MEMORY

DATASETS Yale ORL Yale ORL Yale ORL Yale ORL Yale ORL
MG-QCNN-ALL 0.347 0.307 96.000% 95.959% 97.778% 96.667% 29567s 69169s 3.837GB 5.086GB
333 FLITER 0.398 0.521 93.333% 92.917% 97.778% 96.667% 56158s 167732s 7.663GB 8.137GB

RX-REDUCTION 0.346 0.301 89.667% 89.333% 93.333% 94.167% 28423s 70285s 3.677GB 5.011GB
RZ-REDUCTION 0.352 0.317 91.333% 90.333% 95.556% 94.167% 29016s 67293s 3.701GB 4.863GB

NO-ENTANGLEMENT 0.341 0.299 88.222% 88.417% 91.111% 91.667% 28774s 68024s 3.762GB 4.882GB

6338 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 12, DECEMBER 2024



images are relatively high. We believe that these two points are
due to the fact that only a single convolutional layer was set up in
our experiment, which lacked the ability to extract richer features.

VI. DISCUSSION

In the previous section, we presented the results of our experi-
ments and analyzed them in detail. Overall, considering the pur-
pose of the research and the experimental environment, the
results of our work are good and can provide some methods
worthy of reference in the development of related fields.

Although we chose a relatively small data set due to the limita-
tion of the experimental environment, it can be predicted that
with the increase in the total number of data and the number of
classification classes, the recognition performance of the model
will decrease, but our model reaches 95%, in this case. The above
mean accuracy can prove the superiority of the model. Similarly,
our model structure is relatively simple. Compared with those
complex classical neural networks with excellent performance,
our quantum network has a low depth and there is a gap in accu-
racy. However, our quantum model, while simple, is easy to

combine our quantum structures with some classical structures,
which can be combined with architectures like pooling layers or
activation functions in classical CNNs. The parameters and some
similarities and differences of each model can be seen in Table
IV. The number of parameters mentioned in Table IV is the num-
ber of quantum parameters of the model in the Yale dataset. The
vast majority of our models are still quantum parameters, and the
classical parameters are used to align the classes of the data sets.
Taking our experiment as an example, the two data sets are 15
and 40, respectively. We limit the complexity of the architecture.
In addition to the limitations of the experimental environment, we
want to verify the superiority of our quantum circuits, so keeping
the network structure simple is also a reasonable choice.

Extending the size of the quantum convolution kernel is also
worth considering. The current reason for limiting the size of a
single filter is the “quantum barren plateau” [25]. In general,
when there are too many qubits in a VQC-based quantum con-
volution kernel, the function is too flat and it is difficult to find
the minimum value. Although there are ways to alleviate the
impact of the “quantum barren plateau”, the VQC model with
more than 10 qubits can hardly converge, and the 3 � 3 quan-
tum convolution kernel is almost the limit. In the future, if VQC
cannot make progress on the “quantum barren plateau” problem,
quantum convolution methods may have bottlenecks in process-
ing high-resolution single faces. Although there is a “quantum
barren plateau” bottleneck, we can also optimize the VQA to
achieve high performance with a limited number of qubits as
much as possible [31].

Both our proposed quantum neural network approach and
encoding method can be implemented and executed on NISQ
devices. However, even for small models, learning and infer-
ence on quantum simulators are computationally expensive pro-
cesses. From our experimental results, the time and resources
consumed by the training of these simple quantum neural net-
works are huge compared with classical neural networks, not to

Fig. 7. Accuracy results for different classes of Yale data set and ORL data set. The label Y in the figure represents the Yale data set, O represents the data set, and
the following numbers are specific classes.

TABLE IV
THE SETUP OF DIFFERENT QUANTUM CIRCUITS IN THE EXPERIMENT

QUANTUM
GATES

NUMBERS
MEASUREMENT QUANTUM

PARAMETER
RANDOM
CIRCUIT

VQNN 12 All 2,880 Yes
HQNN 11 All 2,304 No

HQCCNN 22 Single 23,040 No
QCNN 16 Single 13,824 No
MG-

QCNN-
ALL

15 All 4,608 No

MG-
QCNN-
SINGLE

15 Single 18,432 No
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mention that the current quantum simulation cannot use GPU
units like classical neural networks, which greatly limits the
number of experiments that can be performed. Therefore, quan-
tum convolution methods are currently not suitable for purposes
other than research. Furthermore, the quantum simulator we set
up is an ideal environment, i.e. a noise-free simulator. Model
accuracy is expected to degrade when running on real noisy
quantum hardware. However, the model cannot be tested on
existing quantum hardware due to the long wait time per image.

In future work, our first consideration is to combine our quan-
tum convolutional layers with some classical neural network
structures for better model performance. Increasing the depth of
the network, such as the number of quantum convolutional
layers, is also a topic worthy of further study. Adding cross-
validation to the experiment is also an option worth trying so
that we can more fully evaluate the performance of the model.
In addition, we will consider expanding on color images, rather
than being limited to grayscale images, to better approximate the
current classical face recognition task. At the same time, increase
experimental data and try to build more complex models.

From our experimental results, quantum computing has the
prospect of being applied to practical problems in machine
learning like face recognition. Therefore, it is very reasonable to
generalize quantum machine learning to other biometrics tasks
besides face recognition such as Brain MR and liver tumor seg-
mentation [55], brain tumor segmentation [32], and radiological
image classification [34]. Quantum systems have the unique trait
of being nonreplicable, which makes them an invaluable asset in
the area of biometrics, such as face image data since it signifi-
cantly reduces the risk of sensitive personal information being
leaked. This is helpful for current biometrics privacy [59], [60].
This makes it a valuable area for further research. Quantum
computing offers unparalleled security for data due to the fact
that measurements of quantum circuits must be taken to gain
access to the data, rendering external malicious operations
unable to occur without leaving behind a trace. We can intro-
duce a new concept, quantum biometrics, which uses quantum
computing to process biometrics, including but not limited to
face recognition, fingerprint recognition, iris recognition and a
series of image-related tasks, and can also be extended to speech
recognition and personal habits. In addition to these routine
tasks, the application of quantum methods to genes and proteins
is also worth considering the good performance of quantum
computing, especially VQA in the field of chemistry.

VII. CONCLUSION

In this study, we introduced a novel quantum convolutional
model rooted in variational circuits, seamlessly integrating vari-
ational quantum circuits and convolutional layers into the frame-
work of quantum neural networks. Our research endeavors
encompassed a comprehensive series of experiments involving
diverse datasets, yielding a rich tapestry of empirical findings,
which we meticulously analyzed. The empirical outcomes
unequivocally underscored the advantages of our new model,
showcasing its superior computational efficiency and remark-
able recognition accuracy. Notably, our investigations revealed

that quantum circuits characterized by fixed variation consis-
tently contribute to enhanced model performance.

While the realm of face recognition has been extensively
explored within the domain of deep learning, our work repre-
sents a pioneering foray into its uncharted territory in the realm
of quantum machine learning. As elucidated in our preceding
discussions, this study serves as an inaugural stride, laying the
foundation for future endeavors in this nascent field. Our future
research trajectory will involve the exploration of more expan-
sive datasets and the experimentation with increasingly intricate
model architectures, aimed at further refining the classification
performance. We are committed to establishing the scalability
of quantum structures, seeking to match the prowess of classical
neural networks in face recognition tasks. Additionally, the
prospect of extending our fundamental methodology to accom-
modate high-resolution color face images will be a critical ave-
nue for exploration.
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