Name _Solutions \qquad Trigonometry, Test 2

1) Find $\cos \left(\frac{11 \pi}{12}\right)$. Show your work. (5 points)

$$
\begin{aligned}
\cos \left(\frac{11 \pi}{12}\right) & =\cos \left(\frac{8 \pi}{12}+\frac{3 \pi}{12}\right) \\
& =\cos \left(\frac{2 \pi}{3}+\frac{\pi}{4}\right) \\
& =\cos \left(\frac{2 \pi}{3}\right) \cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{2 \pi}{3}\right) \sin \left(\frac{\pi}{4}\right) \\
& =\frac{-1}{2} \cdot \frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} \\
& =-\frac{1}{2 \sqrt{2}}-\frac{\sqrt{3}}{2 \sqrt{2}} \\
& =-\frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

2) Find $\sin \left(\frac{3 \pi}{2}\right) \cos \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2}\right) \cos \left(\frac{3 \pi}{2}\right)$. Show your work. (5 points)

$$
\sin \left(\frac{3 \pi}{2}\right) \cos \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2}\right) \cos \left(\frac{3 \pi}{2}\right)=\sin \left(\frac{3 \pi}{2}-\frac{\pi}{2}\right)=\sin \left(\frac{2 \pi}{2}\right)=\sin (\pi)=0
$$

3) Simplify $(2 \sin (x)+\cos (x)) \cdot(\sin (x)+2 \cos (x))-4 \sin (x) \cos (x)$ as much as possible. Circle your answer. (10 points)

$$
\begin{aligned}
& (2 \sin (x)+\cos (x)) \cdot(\sin (x)+2 \cos (x))-4 \sin (x) \cos (x) \\
& =2 \sin ^{2}(x)+\cos (x) \sin (x)+4 \sin (x) \cos (x)+2 \cos ^{2}(x)-4 \sin (x) \cos (x) \\
& =2 \sin ^{2}(x)+\cos (x) \sin (x)+2 \cos ^{2}(x) \\
& =2\left(\sin ^{2}(x)+\cos ^{2}(x)\right)+\cos (x) \sin (x) \\
& =2+\cos (x) \sin (x)
\end{aligned}
$$

4) Verify the following identity. (20 points)

$$
\frac{\csc (x)-\sin (x)}{\sin (x)}=\cot ^{2}(x)
$$

$$
\begin{aligned}
& \frac{\csc (x)-\sin (x)}{\sin (x)} \\
& =\frac{\frac{1}{\sin (x)}-\sin (x)}{\sin (x)} \\
& =\frac{\frac{1}{\sin (x)}-\frac{\sin ^{2}(x)}{\sin (x)}}{\sin (x)} \\
& =\frac{\frac{1-\sin 2}{2}(x)}{\sin (x)} \\
& \sin (x) \\
& =\frac{\frac{\cos ^{2}(x)}{\sin (x)}}{\sin (x)} \\
& =\frac{\frac{\cos ^{2}(x)}{\sin (x)}}{\frac{\sin (x)}{1}} \\
& = \\
& =\frac{\cos ^{2}(x)}{\cot ^{2}(x)} \\
& \sin ^{2}(x) \\
& \sin \frac{\cos ^{2}(x)}{\sin (x)} \\
& =
\end{aligned}
$$

5) Write as a single fraction and simplify if possible. Circle your answer. (20 points)

$$
\frac{\tan (x)}{\sin (x) \cos (x)}-\frac{\sin ^{2}(x)}{\cos ^{2}(x)}
$$

$$
\begin{aligned}
& \frac{\tan (x)}{\sin (x) \cos (x)}-\frac{\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{\tan (x) \cos (x)}{\sin (x) \cos ^{2}(x)}-\frac{\sin ^{3}(x)}{\sin (x) \cos ^{2}(x)} \\
& =\frac{\tan (x) \cos (x)-\sin ^{3}(x)}{\sin (x) \cos ^{2}(x)} \\
& =\frac{\frac{\sin (x)}{\cos (x)} \cdot \cos (x)-\sin ^{3}(x)}{\sin (x) \cos ^{2}(x)} \\
& =\frac{\sin (x)-\sin ^{3}(x)}{\sin (x) \cos ^{2}(x)} \\
& =\frac{\sin (x)\left(1-\sin ^{2}(x)\right)}{\sin (x) \cos ^{2}(x)} \\
& =\frac{1-\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{\cos ^{2}(x)}{\cos ^{2}(x)} \\
& =1
\end{aligned}
$$

Find an equation for the graph shown below. Circle your answer. (10 points)

$$
y=\frac{1}{2} \sec (2 x)+\frac{1}{2}
$$

6) On the axis below, sketch the function $y=\sin \left(2\left(x-\frac{\pi}{2}\right)\right) \cdot(10$ points $)$

7) Find an equation for the graph shown below. Circle your answer. (10 points)

$y=\tan \left(\frac{x}{2}\right)+1$
8) On the axis below, sketch the function $y=2 \cos (x+457 \pi)-1$. (10 points)

