Name <u>Solutions</u>

2) Find an equation for the graph shown below.

3) The volume of air, v, in cubic centimeters in the lungs of a certain distance runner is modeled by the equation $v = 300 \sin(60\pi t) + 800$, where t is time measured in minutes.

(a) What is the maximum volume of air in the runner's lungs?

The air in the runner's lungs is given by $300 \sin(60\pi t) + 800 \ cm^3$, and we know that $300 \sin(60\pi t)$ gets as large as 300, so plugging this in we find the maximum volume to be: $300 + 800 \ cm^3 = 1100 \ cm^3$

(a) What is the minimum volume of air in the runner's lungs?

At first glance we can say that definitely it's at least $0 \ cm^3$, but actually we can say more. When we look at the equation $300 \sin(60\pi t) + 800$ we know that $300 \sin(60\pi t)$ can get as small as -300, so we plug this in and find the minimum volume to be:

 $-300 + 800 \ cm^3 = 500 \ cm^3$

In fact the runner's lungs never run out of air!

(c) How many breaths does the runner take each minute?

A breath would be one cycle from fully inflated, $1100 \ cm^3$ to fully inflated again at $1100 \ cm^3$. Because the equation is sinusoidal, this occurs every time $60\pi t$ goes through 2π . Let's see when this is:

$$60\pi t = 2\pi$$
$$t = \frac{2\pi}{60\pi} = \frac{1}{30}$$

Every 1/30th of a minute the runner takes a breath. That means the runner takes 30 breaths every minute.

OR

t is measured in minutes, so set t = 1 and see how many cycles of 2π the runner goes through:

 $\frac{60\pi \cdot 1}{2\pi} = 30$ breaths per minute

