Name \qquad Solutions \qquad Trigonometry Quiz 5

1) On the axis below, graph the function $y=\sec \left(\frac{1}{2} x\right)$

2) Find an equation for the graph shown below.

3) The volume of air, v, in cubic centimeters in the lungs of a certain distance runner is modeled by the equation $v=300 \sin (60 \pi t)+800$, where t is time measured in minutes.
(a) What is the maximum volume of air in the runner's lungs?

The air in the runner's lungs is given by $300 \sin (60 \pi t)+800 \mathrm{~cm}^{3}$, and we know that $300 \sin (60 \pi t)$ gets as large as 300 , so plugging this in we find the maximum volume to be:

$$
300+800 \mathrm{~cm}^{3}=1100 \mathrm{~cm}^{3}
$$

(a) What is the minimum volume of air in the runner's lungs?

At first glance we can say that definitely it's at least $0 \mathrm{~cm}^{3}$, but actually we can say more. When we look at the equation $300 \sin (60 \pi t)+800$ we know that $300 \sin (60 \pi t)$ can get as small as -300 , so we plug this in and find the minimum volume to be:

$$
-300+800 \mathrm{~cm}^{3}=500 \mathrm{~cm}^{3}
$$

In fact the runner's lungs never run out of air!
(c) How many breaths does the runner take each minute?

A breath would be one cycle from fully inflated, $1100 \mathrm{~cm}^{3}$ to fully inflated again at $1100 \mathrm{~cm}^{3}$. Because the equation is sinusoidal, this occurs every time $60 \pi t$ goes through 2π. Let's see when this is:

$$
\begin{gathered}
60 \pi t=2 \pi \\
t=\frac{2 \pi}{60 \pi}=\frac{1}{30}
\end{gathered}
$$

Every $1 / 30^{\text {th }}$ of a minute the runner takes a breath. That means the runner takes 30 breaths every minute.

OR
t is measured in minutes, so set $t=1$ and see how many cycles of 2π the runner goes through:

$$
\frac{60 \pi \cdot 1}{2 \pi}=30 \text { breaths per minute }
$$

