Name \qquad

1) Let $f(x)=\left(x^{7}-15 x^{2}+3\right) \cdot\left(2 x^{4}+2 x\right)$. Find $f^{\prime}(x)$.
(6 points)

$$
f^{\prime}(x)=\left(7 x^{6}-30 x\right)\left(2 x^{4}+2 x\right)+\left(x^{7}-15 x^{2}+3\right)\left(8 x^{3}+2\right)
$$

2) Let $(x)=\frac{\left(x^{7}-15 x^{2}+3\right)}{\left(2 x^{4}+2 x\right)}$. Find $f^{\prime}(x)$.
(6 points)

$$
f^{\prime}(x)=\frac{\left(7 x^{6}-30 x\right)\left(2 x^{4}+2 x\right)-\left(x^{7}-15 x^{2}+3\right)\left(8 x^{3}+2\right)}{\left(2 x^{4}+2 x\right)^{2}}
$$

3) Find $\frac{d}{d x}(\sin (x))=\cos (x)$
(6 points)

4) Find $\frac{d}{d x}\left(7^{x}\right)=7^{x} \ln (7)$
(6 points)

5) Find the four-hundredth derivative of $y=x^{4}$.
(4 points)

$$
y^{(400)}=\frac{d^{400}}{d x^{400}} x^{4}=0
$$

You can calculate this by finding the first few derivatives and noticing the pattern:

$$
4 x^{3}, 12 x^{2}, 24 x, 24,0,0,0,0,0, \ldots
$$

6) Find the four-hundredth derivative of $y=\sin (x)$.
(4 points)

$$
y^{(400)}=\frac{d^{400}}{d x^{400}} \sin (x)=\sin (x)
$$

You can calculate this by finding the first few derivatives and noticing the pattern:

$$
y=\sin (x), y^{\prime}=\cos (x), y^{\prime \prime}=-\sin (x), y^{\prime \prime \prime}=-\cos (x), y^{\prime \prime \prime \prime}=\sin (x), y^{(5)}=\cos (x), \ldots
$$

Question 6 r=0.4

7) Find the four-hundredth derivative of $y=7^{x}$.
(4 points)

$$
y^{(400)}=\frac{d^{400}}{d x^{400}} 7^{x}=7^{x}(\ln (7))^{400}
$$

You can calculate this by finding the first few derivatives and noticing the pattern:

$$
7^{x} \ln (7), \quad 7^{x}(\ln (7))^{2}, \quad 7^{x}(\ln (7))^{3}, \ldots
$$

A table of values is given below for the function $f(x)=\frac{4 x^{2}-13 x-12}{x-4}$

x	$f(x)$	x	$f(x)$
3.5	17	4.5	21
3.9	18.6	4.1	19.4
3.99	18.96	4.01	19.04
3.999	18.996	4.001	19.004

8) What would you guess the value of the limit is? (4 points)

19 , obviously, or so I thought, because the value of the function is going to 19 .

But apparently it wasn't that obvious, because a lot of people put 4. That's what x is going to, but that's the argument, not the value of the limit.

9) In the previous question you guessed the value of a limit. What limit did you guess?
(Your answer should be an equation with proper limit notation on one side and your answer to \#8 on the other) (4 points)

$$
\lim _{x \rightarrow 4} \frac{4 x^{2}-13 x-12}{x-4}=19
$$

Question 9 r=0.342

10) The graph to the right is the graph of $y=f(x)$. On the same graph, sketch the derivative $y=f^{\prime}(x)$. (6 points)

Anything close to this that illustrates the key features was given full credit.

Some key features to look for:

- Where is the derivative zero?
- Where does the derivative keep growing?
- Where does the derivative not exist?

Use the graph to the right to complete the following FIVE questions.
11) Estimate the derivative of $y=f(x)$ at $x=-2$. (4 points)

Maybe - 2?
(Full credit for anything between -1 and -10).

Only 1 point was awarded for any positive number. Because, at least you knew it was a positive number? Seriously, folks! The function is decreasing so obviously the derivative (rate of change) of the function is negative!!! *This is me being very annoyed*

Question $11 \mathrm{r}=0.224$

12) Sketch the tangent line to f at $x=-2$.
(4 points)

Question $12 \mathrm{r}=0.656$

13) Why is f not continuous at $x=2$?
(4 points)

It has a jump discontinuity there.

Question 13

14) Why is f not differentiable at $x=2$?
(4 points)

It isn't continuous, so it can't be differentiable.

OR

There is no one tangent line to the function: if you try to construct one, we see that there are many ways a line can approximate the function.

15) Calculate the limits below.
(6 points)
$\lim _{x \rightarrow 2^{-}} f(x)=3$
$\lim _{x \rightarrow 2^{+}} f(x)=2$
$\lim _{x \rightarrow 2} f(x)$ DNE

16) State the formal definition of the derivative.
(4 points)

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

17) Complete ONE of the following problems. (6 points)
A) Use your formal definition to find $f^{\prime}(x)$ for $f(x)=3 x^{2}$.
B) Explain, using the formal definition, why it calculates the slope of the tangent line.
A)

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-3 x^{2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h}=\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-3 x^{2}}{h} \\
&=\lim _{h \rightarrow 0} 6 x+3 h=6 x+3 \cdot 0=6 x
\end{aligned}
$$

B) The derivative is the instantaneous rate of change, which we can calculate by finding the average rate of change between two points (x and $x+h$), and taking the limit as one goes to the other.

Additional information not required nor expected for full credit but that I think is interesting:
Also, if you understand what that means, you should understand why the formula below also works:

$$
f^{\prime}(x)=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Calculate the following limits. (6 points each)

$$
\begin{aligned}
& \text { 18) } \lim _{x \rightarrow 2^{+}} \frac{2 x^{2}-8 x+8}{(x-2)^{2}(x+3)(x-4)^{2}}=\lim _{x \rightarrow 2^{+}} \frac{2(x-2)^{2}}{(x-2)^{2}(x+3)(x-4)^{2}}=\lim _{x \rightarrow 2^{+}} \frac{2}{(x+3)(x-4)^{2}} \\
& =\frac{2}{(2+3)(2-4)^{2}}=\frac{2}{5 \cdot 4}=\frac{1}{10}
\end{aligned}
$$

Question $18 \mathrm{r}=0.422$

19) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-8 x+8}{(x-2)^{2}(x+3)(x-4)^{2}}=0$
(Denominator degree is larger than numerator)

20) $\lim _{x \rightarrow 3^{-}} \frac{(x-4)^{2}}{(x-3)}=-\infty$

