Name \qquad

Please show all your work and circle your answer when appropriate. You do not need to simplify answers unless the problem specifies to do so.

1) Find $\frac{1}{\sqrt{x}} \cdot \frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)$.
(6 points)
2) Below are graphs of 6 functions. Some of them are continuous functions on the real line. Some of them are not. Circle those that are continuous. For those that are not continuous, draw a single arrow pointing to a feature of the graph that makes you think it's not continuous. (4 points)

3) Calculate $\lim _{x \rightarrow 1} \frac{5 x^{2}+6 x+1}{8 x-4}$ (4 points)
4) Calculate $\lim _{x \rightarrow 1^{+}} \frac{x-2}{(x-1)^{3}}$ (4 points)
5) Calculate $\lim _{x \rightarrow-2^{-}} \frac{x^{3}-5 x^{2}+6 x}{x^{4}-4 x^{2}}$ (4 points)
6) Calculate $\lim _{x \rightarrow-b} \frac{(x+b)^{7}+(x+b)^{10}}{4(x+b)}$ (4 points)
7) Given the graph to the right, estimate the average rate of change between the points given by $x=1$ and $x=4$. (2 points)
8) Given the graph to the right, estimate the instantaneous rate of change at point given by $x=1$. (2 points)

9) Find $\lim _{x \rightarrow \infty} x^{-6}$ (4 points)
10) Find $\lim _{x \rightarrow-\infty} 2^{x}$ (4 points)
11) Find $\lim _{x \rightarrow \infty} \frac{x^{2}+5}{x^{2}-3}$ (4 points)
12) Find $\lim _{x \rightarrow-\infty} \frac{-x^{3}+2 x+4}{x^{2}-2 x^{3}}$ (4 points)
13) Find the derivative of each of the functions below.
(a) $f(x)=3 x^{5}-2 x^{3}$ (4 points)
(b) $f(x)=7$ (4 points)
(c) $f(x)=\frac{x^{2}}{\sin (x)} \quad$ (4 points)
14) Find the derivative of each of the functions below.
(d) $f(x)=2^{x} \cdot 3^{x}(4$ points)
(e) $\ln \left(x^{34}\right)(4$ points $)$
15) Given $f(x)=x^{5}$, which of the following expressions correctly give $f^{\prime}(x)$? Circle all that apply. (3.5 points)
(a) $f^{\prime}(x)=5 x^{4}$
(b) $f^{\prime}(x)=5 x^{4} \frac{d y}{d x}$
(c) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{5}-x^{5}}{h}$
(d) $f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{(x+h)^{5}-x^{5}}{h}$
(e) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{5}-h^{5}}{h}$
(f) $f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{(x+h)^{5}-h^{5}}{h}$
(g) $f^{\prime}(x)=\lim _{b \rightarrow x} \frac{(x)^{5}-b^{5}}{x-b}$
16) Find $\frac{d y}{d x^{\prime}}$, given that $x y^{2}+\sin (y)=x^{4}+2 \quad$ (6 points)
17) The distance of a train from a station is given by $s(t)=\frac{1}{2} t^{2}$. How fast is the train traveling after 60 seconds? The function s is given in feet, while t is given in seconds. (6 points)
18) Use the graph of $y=f(x)$ below to find each of the following. (1 point each)
(a) $\lim _{x \rightarrow-4^{-}} f(x)$
(b) $\lim _{x \rightarrow-4^{+}} f(x)$
(c) $\lim _{x \rightarrow-4} f(x)$
(d) $\lim _{x \rightarrow-2^{-}} f(x)$
(e) $\lim _{x \rightarrow-2^{+}} f(x)$
(f) $\lim _{x \rightarrow-2} f(x)$

(g) $\lim _{x \rightarrow 1^{-}} f(x)$
(h) $\lim _{x \rightarrow 1^{+}} f(x)$
(i) $\lim _{x \rightarrow 1} f(x)$
(j) $\lim _{x \rightarrow 2^{-}} f(x)$
(k) $\lim _{x \rightarrow 2^{+}} f(x)$
(I) $\lim _{x \rightarrow 2} f(x)$
19) This problem is intended to test your conceptual understanding of the formal definition of a limit. We covered this is class using what we called the " $\varepsilon-\delta$ " game. Below is a graph of a function. At $x=2$, we think that the limit is $\lim _{x \rightarrow 2} f(x)=3$. Today, our notion of closeness on the y-axis will be $\varepsilon=\frac{1}{2}$, so we must force $f(x)$ to be within $\frac{1}{2}$ units of 3 . This is illustrated using the dotted lines on the graph below. Find the corresponding notion of closeness on the x-axis that is required, and illustrate it on the graph. (6.5 points)

