1) A certain rectangle has a height that is always twice its width. If the width increases at a rate of 3ft/s, how quickly is the area increasing when it is 10 feet wide?

Equation:

A =	xy
<i>y</i> =	2 <i>x</i>
A =	$2x^2$

Variables:

x = 10
x' = 3
<i>A</i> =??
A' = ??

Derivative:

$$A'=4xx'$$

Solution:

 $A' = 4 \cdot 10 \cdot 3 = 120 \text{ ft}^2/\text{s}$

2) At a certain cement mixing factory, small aggregate enters the mixture from a hopper shaped like an inverted circular cone, such as the one shown here. The particular hopper for this question will be assumed to be 6 meters tall and 2 meters wide. If the aggregate enters the mixture at a rate of $2cm^3/s$, and there the current height of the aggregate is 0.75 meters, how quickly is the height decreasing?

Equation:

$$V = \frac{1}{3}\pi r^2 h$$

$$\frac{r}{1} = \frac{d}{2} = \frac{h}{6}$$

$$V = \frac{1}{3}\pi \left(\frac{h}{6}\right)^2 h = \frac{\pi}{36\cdot 3}h^3$$

Variables:

V =??V' = -2h = 75h' =??

Derivative:

 $V' = \frac{\pi}{36} h^2 h'$

Solution:

$$-2 = \frac{\pi}{36} 75^2 h'$$
$$h' = -\frac{72}{75^2 \pi} cm/s$$