Name \qquad

1) Find the derivative of $f(x)$ below.
(4 points)
$f(x)=\sin (2 x)$
2) Given the equation $x+y^{2}=y$, find y^{\prime}. (6 points)
3) The graph below shows the position function of an airliner on an out-and-back trip from Seattle to Minneapolis where $s=f(t)$ is the number of round miles from Seattle t hours after take-off at 6am. When is the plane traveling the fastest toward Seattle?
(6 points)

4) Find the derivative of $f(x)=\tan (\sin (\cos (x)))$. (4 points)
5) Given the equation $\sin (y)+\cos (x)=e^{x}$ where both x and y are functions t, find $\frac{d y}{d t}$. (6 points)
6) Find the derivative of $\ln \left(x^{7}+2 x\right)$.
(4 points)
7) Find the derivative of $\tan ^{-1}\left(x^{2}+1\right)$.
(4 points)
8) Find the derivative of $\left((x+2)\left(x^{2}+1\right)\right)^{4}$. (6 points)
9) A certain cone starts out with a radius of 1 mm and height of 3 mm . It maintains the same aspect ratio while its radius expands at a rate of $4 \mathrm{~mm} / \mathrm{s}$. When the volume is $27 \pi \mathrm{~mm}^{3}$, how quickly is the volume increasing?
(Note that the volume of a right circular cone is given by $V=\frac{1}{3} \pi r^{2} h$)
(10 points)
10) Use the first derivative test to graph the function below.

$$
f(x)=x^{3}+3 x^{2}-24 x
$$

(10 points)

11) Use the second derivative test to graph the function below.

$$
f(x)=2 x^{3}-6 x^{2}-90 x
$$

(10 points)

12) Graph a function f that is defined everywhere; the sign chart for $\frac{d}{d x} f$ is given below. Each value labelled on the sign chart is a critical value.

Assume we also know the following information: $f(x)$ has inflection points at $x=-2,2$, and 5 . (10 points)
13) A boat sails directly toward a 150-meter skyscraper that stands on the edge of a harbor. The angular size θ of the building is the angle formed by lines from the top and bottom of the building to the observer (see figure). A particular triangle that might be helpful is also given.

What is the rate of change of the angular size $\frac{d \theta}{d x}$ when the boat is $x=500 \mathrm{~m}$ from the building? (10 points)

Use the graph below to answer the questions on this page.
14) Find all local maximizers of the function.
(4 points)

16) Find all x-values where the function changes concavity.
(2 points)

