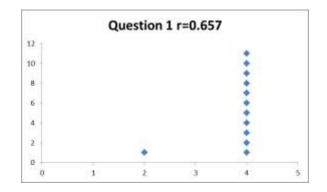
1) Find the derivative of f(x) below. (4 points)

 $f(x) = \sin(2x)$

$f'(x) = \cos(2x) \cdot 2 = 2\cos(2x)$

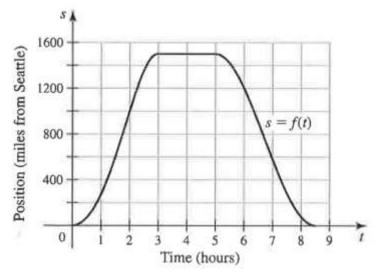


2) Given the equation $x + y^2 = y$, find y'. (6 points)

$$1 + 2yy' = y'
1 = y' - 2yy'
1 = y'(1 - 2y)
\frac{1}{1 - 2y} = y'$$

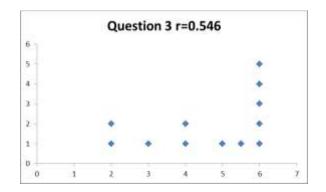
		Que	estion	2 r=0.8	368		
8							
7 -						٠	
6						*	
5						+	
4			+				
3			٠			+	
2			+			٠	
1		*	+			+	
0							
0	1	2	3	-4	5	6	7

3) The graph below shows the position function of an airliner on an out-and-back trip from Seattle to Minneapolis where s = f(t) is the number of round miles from Seattle t hours after take-off at 6am. When is the plane traveling the fastest toward Seattle? (6 points)



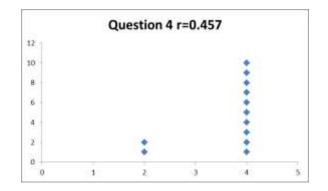
t = 7 which is 1pm.

(Anything between 6 (noon) and 7.5 (1:30pm) was given full credit)



4) Find the derivative of $f(x) = \tan(\sin(\cos(x)))$. (4 points)

 $\sec^2(\sin(\cos(x))) \cdot \cos(\cos(x)) \cdot (-\sin(x))$



5) Given the equation $sin(y) + cos(x) = e^x$ where both x and y are functions t, find $\frac{dy}{dt}$. (6 points)

$$\sin(y) y' - \sin(x) x' = e^{x} x'$$

$$\sin(y) y' = e^{x} x' + \sin(x) x'$$

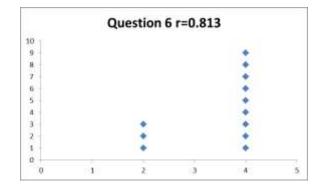
$$y' = \frac{e^{x} x' + \sin(x) x'}{\sin(y)}$$

Note that in this problem $y' = \frac{dy}{dt}$ and $x' = \frac{dx}{dt}$

		Que	stion 5	5 r=0.6	81		
4.5							
4 -			٠				
3.5							
3		*	٠			+	
2.5							
2		+	۰.				
1.5							
1		+	٠		+	+	
0.5							
0							
0	1	2	3	- 4	5	6	7

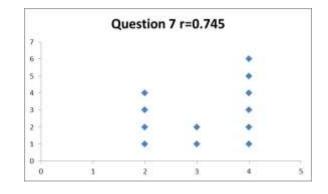
6) Find the derivative of $\ln(x^7 + 2x)$. (4 points)

$$\frac{d}{dx}\ln(x^7 + 2x) = \frac{1}{x^7 + 2x} \cdot (7x^6 + 2)$$



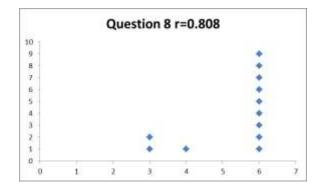
7) Find the derivative of $\tan^{-1}(x^2 + 1)$. (4 points)

$$\frac{d}{dx}\tan^{-1}(x^2+1) = \frac{1}{1+(x^2+1)^2} \cdot 2x = \frac{2x}{1+(x^2+1)^2}$$



8) Find the derivative of $((x + 2)(x^2 + 1))^4$. (6 points)

$$y' = 4((x+2)(x^2+1))^3 \cdot [1 \cdot (x^2+1) + (x+2) \cdot 2x]$$



9) A certain cone starts out with a radius of 1mm and height of 3mm. It maintains the same aspect ratio while its radius expands at a rate of 4mm/s. When the volume is 27π mm³, how quickly is the volume increasing?

(Note that the volume of a right circular cone is given by $V = \frac{1}{3}\pi r^2 h$) (10 points)

Variables:

 $V = 27\pi$ V = ?r = ?r' = 4h = 3rh' = 3r'

Equation:

 $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 3r = \pi r^3$

Derivative:

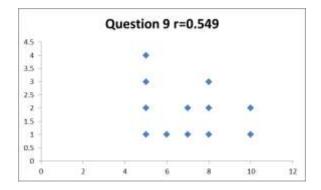
 $V' = 3\pi r^2 r'$

Solve for *r*

 $V = \pi r^{3}$ $27\pi = \pi r^{3}$ $27 = r^{3}$ 3 = r

Solution:

 $V' = 3\pi r^2 r'$ $V' = 3\pi (3)^2 4 = 108\pi \text{ mm}^3/\text{s}$



10) Use the first derivative test to graph the function below.

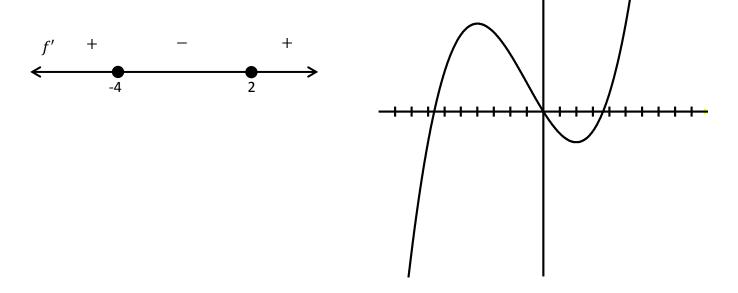
 $f(x) = x^3 + 3x^2 - 24x$

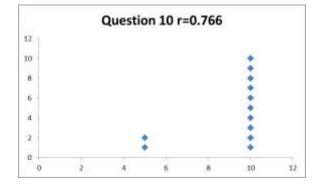
(10 points)

 $f'(x) = 3x^2 + 6x - 24 = 3(x^2 + 2x - 8) = 3(x - 2)(x + 4)$

The critical values are when f'(x) = 0, which are x = 2, -4

The first derivative test calls for a sign chart to investigate these CVS:





11) Use the second derivative test to graph the function below.

 $f(x) = 2x^3 - 6x^2 - 90x$

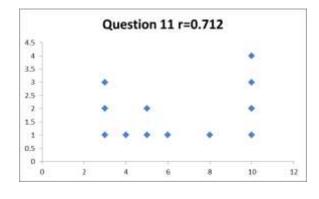
(10 points)

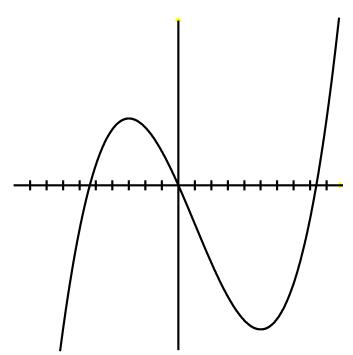
 $f'(x) = 6x^2 - 12x - 90 = 6(x^2 - 2x - 15) = 6(x - 5)(x + 3)$

The critical values are when f'(x) = 0, which are x = 5, -3

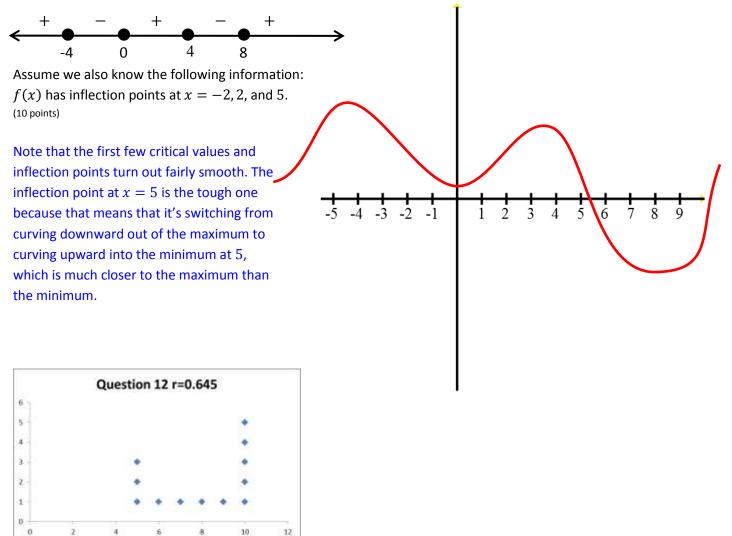
The second derivative test calls to evaluate the second derivative at these CVs: f''(x) = 12x - 12

f''(5) > 0 --- concave up, so it's a minimum. f''(-3) < 0 --- concave down, so it's a maximum.

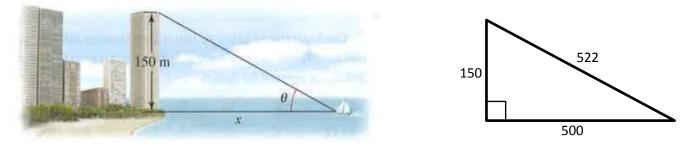




12) Graph a function f that is defined everywhere; the sign chart for $\frac{d}{dx}f$ is given below. Each value labelled on the sign chart is a critical value.

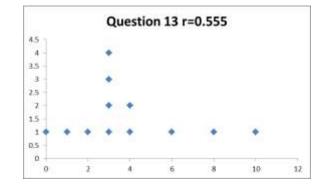


13) A boat sails directly toward a 150-meter skyscraper that stands on the edge of a harbor. The angular size θ of the building is the angle formed by lines from the top and bottom of the building to the observer (see figure). A particular triangle that might be helpful is also given.



What is the rate of change of the angular size $\frac{d\theta}{dx}$ when the boat is x = 500m from the building? (10 points)

$$\tan(\theta) = \frac{150}{x}$$
$$\sec^2(\theta) \,\theta' = -\frac{150}{x^2}$$
$$\theta' = \frac{-150}{x^2 \sec^2(\theta)} = \frac{-150 \cos^2(\theta)}{x^2} = \frac{-150 \cdot 500^2}{500^2 \cdot 522^2} = \frac{-150}{522^2} \, rad/m$$



Use the graph below to answer the questions on this page.

14) Find all local maximizers of the function. (4 points)

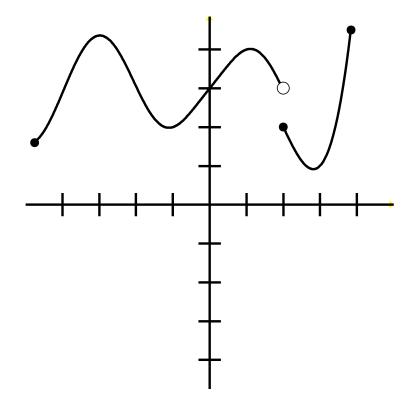
$$x = -3, 1, 4$$

15) Find all local minimum values of the function. (4 points)

y = 1.5, 2, 1

16) Find all *x*-values where the function changes concavity. (2 points)

x = -4, -2, 0, 2



Question 14 r=0.388				Question 15 r=0.38					Question 16 r=0.568							
÷					4.0.						6.1					
R-											-					
É.					8.5						5					
					1		•				4		+			
					35.						1				2	
		•	•		3		•	*								
					15						1		+		*	
		+	•		1 +	+	•	+			+					
					8.5						1.1					
1 <u>1</u>	(4) (4)	5.1	100	1.2	0	2.0	- 22			1.2	.0 +	0.5	14.0	4.5		2