Name \qquad

1) A 13-foot ladder is leaning against a vertical wall (see figure) when Jack begins pulling the foot of the ladder away from the wall at a rate of $0.5 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down the wall when the foot of the ladder is 5 ft from the wall?

2) Find the derivative of $y=\tan \left(e^{x}\right)$.
3) Find the derivative of $\left((x+2)\left(x^{2}+1\right)\right)^{4}$
4) Given that $\cos \left(y^{2}\right)+x=e^{y}$, find $\frac{d y}{d x}$.
5) Given that $y=x^{\frac{5}{4}}$, find $\frac{d y}{d x}$.
6) Given that $g(y)=e^{y} y^{e}$, find the derivative of $g(y)$.
7) Calculate the derivative of $y=\frac{1}{\log _{4}(x)}$
8) A boat sails directly toward a 150-meter skyscraper that stands on the edge of a harbor. The angular size θ of the building is the angle formed by lines from the top and bottom of the building to the observer (see figure). A particular triangle that might be helpful is also given.

What is the rate of change of the angular size $\frac{d \theta}{d x}$ when the boat is $x=500 \mathrm{~m}$ from the building?
9) The area of a circle increases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{s}$. How fast is the radius changing when the radius is 2 cm ?
10) Use the graph below to identify the points (if any) on the interval [$a, b]$ at which the function has an absolute maximum value or an absolute minimum value.

11) Find the derivative of $f(x)=\sin ^{-1}(2 x)$
12) Graph the function below, paying particular attention to the critical values and the end behavior. (On this problem you need not calculate the location of the inflection point(s) precisely)

$$
y=\frac{x}{x^{2}+1}
$$

13) Graph the function $y=-x^{3}+9 x$.

14) Graph the function $y=x+2 \cos (x)$ on $[-2 \pi, 2 \pi]$.
(On this problem you need not calculate the location of the inflection point(s) precisely)

15) Find positive numbers x and y satisfying the equation $x y=12$ such that the sum $2 x+y$ is as small as possible.
16) Evaluate the limit below.

$$
\lim _{x \rightarrow \pi} \frac{\cos (x)+1}{(x-\pi)^{2}}
$$

