Name __ Solutions Test 2, Spring 2018

1) A 13-foot ladder is leaning against a vertical wall (see figure) when Jack begins pulling the foot of the
ladder away from the wall at a rate of 0.5ft/s. How fast is the top of the ladder sliding down the wall
when the foot of the ladder is 5ft from the wall?
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2) Find the derivative of y = tan(e*).

y' =sec?(e¥)e*
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3) Find the derivative of ((x + 2)(x? + 1))4

Y =4(@+2)x2+1))" - [1- (2 +1) + (x +2) - 2x]
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4) Given that cos(y?) + x = e, find %-

—sin(y?) - 2yy' + 1= ey’
1=eYy’ + 2sin(y?)yy’

1=y'(e¥ + 2sin(y?) y)
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5) Given that y = x4, find %.
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6) Given that g(y) = eYy?®, find the derivative of g(y).

9' () =e’y® +eYey !
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. . _ 1 _ -1 _ ln(x) -1 _ -1
7) Calculate the derivative of y = gD (logy(x))~* = (ln(4)) = In(4) (In(x))

y' = () (~OnG)
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8) A boat sails directly toward a 150-meter skyscraper that stands on the edge of a harbor. The angular
size 6 of the building is the angle formed by lines from the top and bottom of the building to the
observer (see figure). A particular triangle that might be helpful is also given.
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What is the rate of change of the angular size % when the boat is x = 500m from the building?
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9) The area of a circle increases at a rate of 1cm?/s. How fast is the radius changing when the radius is
2cm?
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10) Use the graph below to identify the points (if any) on the interval [a, c] at which the function has an
absolute maximum value or an absolute minimum value.

Absolute Maximum: __ None

Absolute Minimum: __ Atx = ¢
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11) Find the derivative of f(x) = sin™1(2x)
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12) Graph the function below, paying particular attention to the critical values and the end behavior.

(On this problem you need not calculate the location of the inflection point(s) precisely)
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13) Graph the function y = —x3 + 9x.

y' = —-3x2+4+9=3(3—x?)

CVs:x = +v3

y'" = —6x

Second derivative test: y” > 0 at x = —/3 making that a max. "' < 0 at x = /3 making that a min.

Inflection pointatx =0

End behavior:
lim —x3 +9x = —0
X—00

lim —x34+9x = o

X——00
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14) Graph the function y = x + 2 cos(x) on [—2m, 27].

(On this problem you need not calculate the location of the inflection point(s) precisely)

y' =1—2sin(x)

CVs: whenever sin(x) = %
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15) Find positive numbers x and y satisfying the equation xy = 12 such that the sum 2x + y is as small
as possible.

12
fx) = x+7

12
f’(x)=2—ﬁ

CVs: 2 — i—i = 0 = x = +/6. Keep only x = /6 because x must be positive.

Sign chart:
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We see that the maximum value is when x = V6 and y = 7
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16) Evaluate the limit below.
cos(x) +1
x-m (x —m)?

o cos(x)+1n . —sin(x) n . —cos(x) 1
s (x — m)? _xl—r>r1112(x—7r)_xl—>l?r 2 2
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