\qquad

1) Find ONE of the integrals below. (6 points)

$$
\begin{aligned}
& \int 2 x\left(x^{2}-1\right)^{99} d x \\
& \int_{0}^{1} 2 x\left(4-x^{2}\right) d x
\end{aligned}
$$

2) Find the integral below. (6 points)

$$
\int \frac{2 x^{2}}{\sqrt{1-4 x^{3}}} d x
$$

3) Find the integral below. (6 points)

$$
\int \frac{x}{\sqrt{x-4}} d x
$$

4) Find ONE of the integrals below. (6 points)

$$
\begin{aligned}
& \int_{0}^{\ln (4)} \frac{e^{x}}{3+2 e^{x}} d x \\
& \int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos (\theta) d \theta
\end{aligned}
$$

5) Consider the function $f(x)=x^{2}$ on the interval $[1,4]$. The mean value theorem guarantees that there is a point $x=c$ such that $f^{\prime}(c)=m$. In this context, what is m ?
(4 points)
6) Consider the function f with derivative $f^{\prime}(x)=3 x^{2}+3$ and initial value $f(1)=8$. Find $f(x)$. (6 points)
7) Use geometry to find the actual area between $f(x)$ and the x-axis between $x=0$ and $x=6$. (6 points)

8) Use a right Riemann Sum with 3 rectangles to estimate the area between $f(x)$ and the x-axis between $x=0$ and $x=6$. (lllustrate your rectangles and find the area) (6 points)

9) Below is a graph of a function with some associated areas. Use the graph to find the integral below. (6 points)

$$
\int_{0}^{8} f(x) d x
$$

10) A velocity function is given below. Find the displacement over the interval $0 \leq t \leq 8$

$$
v(t)=t^{2}-6 t+8
$$

(Set up, but do not integrate.)
(6 points)
11) A velocity function is given below. Find the distance travelled over the interval $0 \leq t \leq 8$

$$
v(t)=t^{2}-6 t+8
$$

(Set up, but do not integrate.)
(6 points)

On problems 12-17 illustrate the problem using a Cartesian Plane, then find the solution.
12) Find the area of the region bounded by $y=2-|x|$ and $y=x^{2}$.
(Set up, but do not integrate.)
(6 points)

13) The region bounded by $y=\sqrt{25-x^{2}}$ and $y=0$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using)
(Disk/washer) (Cylindrical Shell)
(6 points)
14) The region bounded by $y=x$ and $y=\sqrt{x}$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using)
(Disk/washer) (Cylindrical Shell)
(6 points)

15) The region bounded by $y=x^{3}-x^{8}+1$ and $y=1$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using) (Disk/washer) (Cylindrical Shell)
16) Find the length of the curve $y=x^{3}+2$ between $x=-2$ and $x=1$.
(Set up, but do not integrate.)
(6 points)

17) Find the area of the surface generated when the curve $y=8 \sqrt{x}$ between $x=9$ and $x=20$ is rotated around the x-axis.
(Set up, but do not integrate.)
(6 points)

