Name \qquad

1) Find ONE of the integrals below. (6 points)

$$
\begin{array}{r}
\int 2 x\left(x^{2}-1\right)^{99} d x=\int u^{99} d u=\frac{u^{100}}{100}+C=\frac{\left(x^{2}-1\right)^{100}}{100}+C \\
\\
u=x^{2}-1 \\
d u=2 x d x
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{1} 2 x\left(4-x^{2}\right) d x=\int_{x=0}^{x=1}(-u) d u=\left.\left(-\frac{u^{2}}{2}\right)\right|_{x=0} ^{x=1} & =\left.\left(-\frac{\left(4-x^{2}\right)^{2}}{2}\right)\right|_{0} ^{1}=-\frac{3^{2}}{2}-\left(-\frac{4^{2}}{2}\right)=8-\frac{9}{2}=3.5 \\
u & =4-x^{2} \\
d u & =-2 x d x
\end{aligned}
$$

2) Find the integral below. (6 points)

$$
\begin{aligned}
\int \frac{2 x^{2}}{\sqrt{1-4 x^{3}}} d x=-\frac{1}{6} \int \frac{1}{\sqrt{u}} d u=-\frac{1}{6} \int u^{-\frac{1}{2}} d u & =-\frac{1}{6} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C=-\frac{1}{3}\left(1-4 x^{3}\right)^{\frac{1}{2}}+C \\
u & =1-4 x^{3} \\
d u & =-12 x^{2} d x
\end{aligned}
$$

3) Find the integral below. (6 points)

$$
\begin{gathered}
\int \frac{x}{\sqrt{x-4}} d x=\int \frac{u+4}{\sqrt{u}} d u=\int u^{\frac{1}{2}}+4 u^{-\frac{1}{2}} d u=\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+\frac{4 u^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{2}{3}(x-4)^{\frac{3}{2}}+8(x-4)^{\frac{1}{2}}+C \\
u=x-4 \\
d u=d x \\
u+4=x
\end{gathered}
$$

Question 3 r=0.169

4) Find ONE of the integrals below. (6 points)

$$
\begin{aligned}
\int_{0}^{\ln (4)} \frac{e^{x}}{3+2 e^{x}} d x=\frac{1}{2} \int_{5}^{11} \frac{1}{u} d u=\left.\frac{\ln |u|}{2}\right|_{5} ^{11} & =\frac{\ln (11)}{2}-\frac{\ln (5)}{2} \\
& u=3+2 e^{x} \\
& d u=2 e^{x} d x
\end{aligned}
$$

When $x=0, u=3+2=5$
When $x=\ln (4), u=3+2 e^{\ln (4)}=3+8=11$

$$
\begin{array}{r}
\int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos (\theta) d \theta=\int_{0}^{1} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}-0=\frac{1}{3} \\
u=\sin (\theta) \\
d u=\cos (\theta)
\end{array}
$$

When $\theta=0, u=\sin (0)=0$
When $\theta=\frac{\pi}{2}, u=\sin \left(\frac{\pi}{2}\right)=1$

5) Consider the function $f(x)=x^{2}$ on the interval $[1,4]$. The mean value theorem guarantees that there is a point $x=c$ such that $f^{\prime}(c)=m$. In this context, what is m ?
(4 points)
m is the average rate of change on the interval, which is:

$$
\frac{4^{2}-1^{1}}{4-1}=\frac{15}{3}=5
$$

6) Consider the function f with derivative $f^{\prime}(x)=3 x^{2}+3$ and initial value $f(1)=8$. Find $f(x)$. (6 points)

$$
\begin{gathered}
\int f^{\prime}(x) d x=\int\left(3 x^{2}+3\right) d x=x^{3}+3 x+C \\
1^{3}+3 \cdot 1+C=8 \\
\therefore C=4 \\
f(x)=x^{3}+3 x+4
\end{gathered}
$$

7) Use geometry to find the actual area between $f(x)$ and the x-axis between $x=0$ and $x=6$. (6 points)

$$
\frac{1}{2} 3 \cdot 3+3 \cdot 6=\frac{9}{2}+18=22.5
$$

8) Use a right Riemann Sum with 3 rectangles to estimate the area between $f(x)$ and the x-axis between $x=0$ and $x=6$. (Illustrate your rectangles and find the area) (6 points)
$4 \cdot 2+3 \cdot 2+3 \cdot 2=20$

9) Below is a graph of a function with some associated areas. Use the graph to find the integral below. (6 points)

$$
\int_{0}^{8} f(x) d x=17-9=8
$$

10) A velocity function is given below. Find the displacement over the interval $0 \leq t \leq 8$

$$
v(t)=t^{2}-6 t+8
$$

(Set up, but do not integrate.)
(6 points)

$$
\int_{0}^{8}\left(t^{2}-6 t+8\right) d t
$$

11) A velocity function is given below. Find the distance travelled over the interval $0 \leq t \leq 8$

$$
v(t)=t^{2}-6 t+8
$$

(Set up, but do not integrate.)
(6 points)

$$
\begin{gathered}
t^{2}-6 t+8=0 \\
(t-2)(t-4)=0
\end{gathered}
$$

$\int_{0}^{2}\left(t^{2}-6 t+8\right) d t-\int_{2}^{4}\left(t^{2}-6 t+8\right) d t+\int_{4}^{8}\left(t^{2}-6 t+8\right) d t$

On problems 12-17 illustrate the problem using a Cartesian plane, then solve it.
12) Find the area of the region bounded by $y=2-|x|$ and $y=x^{2}$.
(Set up, but do not integrate.)
(6 points)

$$
\int_{-1}^{1}(2-|x|)-x^{2} d x
$$

13) The region bounded by $y=\sqrt{25-x^{2}}$ and $y=0$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using) (Disk/washer) (Cylindrical Shell)
(6 points)

The shape created is a sphere.
You might need to do some algebra to see the equation of the circle:

$$
y^{2}+x^{2}=25
$$

Disk Method:
$\int_{-5}^{5} \pi r^{2} d x=\int_{-5}^{5} \pi\left(\sqrt{25-x^{2}}\right)^{2} d x$

Shell Method:
$\int_{0}^{5} 2 \pi r h d y=\int_{0}^{5} 2 \pi y\left(\sqrt{25-y^{2}}-\left(-\sqrt{25-y^{2}}\right)\right) d y$
 Question $13 \mathrm{r}=0.624$

14) The region bounded by $y=x$ and $y=\sqrt{x}$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using)
(Disk/washer) (Cylindrical Shell)
(6 points)

It's some kind of bowl on its side. The inside is straight, while the outside is rounded.

Washer Method:
$\int_{0}^{1} \pi r_{\text {outer }}^{2} d x-\int_{0}^{1} \pi r_{\text {inner }}^{2} d x=\int_{0}^{1} \pi(\sqrt{x})^{2} d x-\int_{0}^{1} \pi x^{2} d x$

Shell Method:
$\int_{0}^{1} 2 \pi r h d y=\int_{0}^{1} 2 \pi y\left(y-y^{2}\right) d y$

Question 14 r=0.682

15) The region bounded by $y=x^{3}-x^{8}+1$ and $y=1$ is rotated around the x-axis. Find the volume of the resulting 3-D solid. (Set up, but do not integrate. Circle which method you're using)
(Disk/washer) (Cylindrical Shell)

What does that curve look like?? You can't know exactly what it looks like, but you can figure out a few key pieces of information:
When $x=0, y=1$
When $x=1, y=1$

So the region is bounded between $x=0$ and $x=1$. The only question now is, is it above or below the line $y=1$? To determine this, note that $\left(\frac{1}{2}\right)^{3}>\left(\frac{1}{2}\right)^{8}$, or in general on this interval:

$$
x^{3}>x^{8}
$$

Hence it is above $y=1$.
Washer Method:
$\int_{0}^{1} \pi r_{\text {outer }}^{2} d x-\int_{0}^{1} \pi r_{\text {inner }}^{2} d x=\int_{0}^{1} \pi\left(x^{3}-x^{8}+1\right)^{2} d x-\int_{0}^{1} \pi(1)^{2} d x$

Shell Method:
$\int_{0}^{1} 2 \pi r h d y=\int_{0}^{1} 2 \pi y(? ? ?) d y$
(We can't easily determine h, because we can't easily solve $y=x^{3}-x^{8}+1$ for x)

16) Find the length of the curve $y=x^{3}+2$ between $x=-2$ and $x=1$.
(Set up, but do not integrate.)
(6 points)

$$
\int_{-2}^{1} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{-2}^{1} \sqrt{1+\left(3 x^{2}\right)^{2}} d x
$$

17) Find the area of the surface generated when the curve $y=8 \sqrt{x}$ between $x=9$ and $x=20$ is rotated around the x-axis.
(Set up, but do not integrate.)
(6 points)
$\int_{9}^{20} 2 \pi r \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{9}^{20} 2 \pi 8 \sqrt{x} \sqrt{1+\left(\frac{4}{\sqrt{x}}\right)^{2}} d x$

