\qquad

Part 1: Computational Skills

1) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} 3 x+7$
2) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \sqrt{2 x+1}$
3) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
4) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x-4}$
5) Find the limit below. (4 points)
$\lim _{x \rightarrow 4^{-}} \frac{1}{x-4}$
6) Find the limit below. (4 points)
$\lim _{x \rightarrow 4^{+}} \frac{x(x+6)}{(x-2)(x-4)}$
7) Find derivative of the function below. (6 points)

$$
f(x)=x^{2} t^{5}
$$

8) Find derivative of the function below. (6 points)

$$
f(t)=x^{2} t^{5}
$$

9) Find derivative of the function below. (4 points)
$f(x)=2 x^{2}+3 x+1$
10) Find derivative of the function below. (4 points)
$f(x)=3 e^{x}$
11) Find derivative of the function below. (4 points)
$f(x)=7^{x}$
12) Find derivative of the function below. (6 points)

$$
f(x)=\frac{x^{2}+2 x+1}{x^{3}+5 x+2}
$$

13) Find derivative of the function below. (6 points)

$$
f(x)=\left(x^{2}+2 x+1\right)\left(x^{3}+5 x+2\right)
$$

Part 2: Conceptual Understanding

Use the graph for the problems on this page.
14) Estimate each of the following limits. (6 points)
$\lim _{x \rightarrow-3^{+}} f(x)=$
$\lim _{x \rightarrow-5^{-}} f(x)=$
15) Identify two discontinuities and the type of discontinuity. (2 points)

16) Estimate each of the following derivatives. (6 points)
$f^{\prime}(0)=$
$f^{\prime}(2)=$
17) On the axes below to the RIGHT, construct a function that is continuous everywhere, but not differentiable at the position $x=5$. (4 points)
18) On the axes below to the LEFT, construct a function that is defined everywhere, but does not have a limit at the position $x=5$. (4 points)

19) Below is a table of values of a function $f(x)$. Use it to estimate $f^{\prime}(2)$. (6 points)

x	$f(x)$
0	2
1	3
2	5
3	8
4	11
5	15

Part 3: Applications

20) The equation $2 y^{\prime}+y=x$ is called a differential equation because it involves an unknown function y, and its derivative y^{\prime}. This type of equation is often used in engineering and physics. Find constants a and b such that the function $y=a x+b$ satisfies the equation given. (6 points)
21) The position of a beetle is given by $p(t)=4 t^{2}+3 t+1$. Here t is measured in seconds and p is measured in feet. How fast is the beetle moving after 2 seconds? (6 points)
