Part 1: Computational Skills

1) Find the limit below. (4 points)

 $\lim_{x \to 4} 3x + 7 = 3 \cdot 4 + 7 = 19$

 $\lim_{x \to 4} \sqrt{2x + 1} = \sqrt{2 \cdot 4 + 1} = \sqrt{9} = 3$

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{x - 4} = \lim_{x \to 4} x + 4 = 4 + 4 = 8$$

$$\lim_{x \to 4} \frac{x^2 - 3x - 4}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 1)}{x - 4} = \lim_{x \to 4} (x + 1) = 4 + 1 = 5$$

$$\lim_{x \to 4^+} \frac{x(x+6)}{(x-2)(x-4)} = \infty$$

$$f(x) = x^2 t^5$$

 $f'(x) = 2xt^5$

$$f(t) = x^2 t^5$$

$$f(t) = 5x^2t^4$$

		Que	stion 8	8 r=0.6	61		
18 _							
16 -						•	
14 -			•				
12 -			X				
10 -							
8 -			X				
6 -							
4 -							
2 -							
0	1	1	-	1	1	-	
0	1	2	3	4	5	6	7

$$f(x) = 2x^2 + 3x + 1$$

f'(x) = 4x + 3

$$f(x) = 3e^x$$

 $f'(x) = 3e^x$

 $f(x) = 7^x$

 $f'(x) = 7^x \ln(7)$

$$f(x) = \frac{x^2 + 2x + 1}{x^3 + 5x + 2}$$

$$f'(x) = \frac{(2x+2)(x^3+5x+2) - (x^2+2x+1)(3x^2+5)}{(x^3+5x+2)^2}$$

$$f(x) = (x^2 + 2x + 1)(x^3 + 5x + 2)$$
$$f'(x) = (2x + 2)(x^3 + 5x + 2) + (x^2 + 2x + 1)(3x^2 + 5)$$

Part 2: Conceptual Understanding

Use the graph for the problems on this page.

14) Estimate each of the following limits. (6 points)

$$\lim_{x \to -3^+} f(x) = -2$$

 $\lim_{x \to -5^-} f(x) = \infty$

15) Identify two discontinuities and the type of discontinuity. (2 points)

x = -5, x = -3 and x = 3 are all discontinuities. They are, in order, infinite, removable, and a jump discontinuity.

16) Estimate each of the following derivatives. (6 points)

$$f'(0) = 0$$

$$f'(2) = -2ish$$

17) On the axes below to the RIGHT, construct a function that is continuous everywhere, but not differentiable at the position x = 5. (4 points)

18) On the axes below to the LEFT, construct a function that is defined everywhere, but does not have a limit at the position x = 5. (4 points)

19) Below is a table of values of a function f(x). Use it to estimate f'(2). (6 points)

There are many potential estimates. However the best estimates will find the slope of a line that is a good approximation of the tangent line. Such as:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 5}{3 - 2} = 3$$

x	f(x)		
0	2		
1	3		
2	5		
3	8		
4	11		
5	15		

Part 3: Applications

20) The equation 2y' + y = x is called a <u>differential equation</u> because it involves an unknown function y, and its derivative y'. This type of equation is often used in engineering and physics. Find constants a and b such that the function y = ax + b satisfies the equation given. (6 points)

$$y = ax + b$$

$$y' = a$$

$$2a + ax + b = x$$

$$ax + (2a + b) = x + 0$$

$$a = 1$$

$$2a + b = 0$$

$$b = -2$$

$$y = a - 2$$

Half credit if you did something meaningful:

Plugging y' into the equation with y' in it.

Plugging 2y' + y into the equation with x in it. (Ultimately useless. But good try!)

21) The position of a beetle is given by $p(t) = 4t^2 + 3t + 1$. Here t is measured in seconds and p is measured in feet. How fast is the beetle moving after 2 seconds? (6 points)

Velocity is the derivative of position. Hence v(t) = p'(t) = 8t + 3.

 $v(2) = 8 \cdot 2 + 3 = 16 + 3 = 19$

19 feet per second.

