Name \qquad

Part 1: Computational Skills

1) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} 3 x+7=3 \cdot 4+7=19$

2) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \sqrt{2 x+1}=\sqrt{2 \cdot 4+1}=\sqrt{9}=3$

3) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{x-4}=\lim _{x \rightarrow 4} x+4=4+4=8$

4) Find the limit below. (4 points)
$\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+1)}{x-4}=\lim _{x \rightarrow 4}(x+1)=4+1=5$

5) Find the limit below. (4 points)
$\lim _{x \rightarrow 4^{-}} \frac{1}{x-4}=-\infty$

6) Find the limit below. (4 points)
$\lim _{x \rightarrow 4^{+}} \frac{x(x+6)}{(x-2)(x-4)}=\infty$

7) Find derivative of the function below. (6 points)
$f(x)=x^{2} t^{5}$
$f^{\prime}(x)=2 x t^{5}$

8) Find derivative of the function below. (6 points)
$f(t)=x^{2} t^{5}$
$f(t)=5 x^{2} t^{4}$

9) Find derivative of the function below. (4 points)

$$
f(x)=2 x^{2}+3 x+1
$$

$f^{\prime}(x)=4 x+3$

10) Find derivative of the function below. (4 points)
$f(x)=3 e^{x}$
$f^{\prime}(x)=3 e^{x}$

11) Find derivative of the function below. (4 points)
$f(x)=7^{x}$
$f^{\prime}(x)=7^{x} \ln (7)$

12) Find derivative of the function below. (6 points)

$$
f(x)=\frac{x^{2}+2 x+1}{x^{3}+5 x+2}
$$

$$
f^{\prime}(x)=\frac{(2 x+2)\left(x^{3}+5 x+2\right)-\left(x^{2}+2 x+1\right)\left(3 x^{2}+5\right)}{\left(x^{3}+5 x+2\right)^{2}}
$$

13) Find derivative of the function below. (6 points)

$$
\begin{gathered}
f(x)=\left(x^{2}+2 x+1\right)\left(x^{3}+5 x+2\right) \\
f^{\prime}(x)=(2 x+2)\left(x^{3}+5 x+2\right)+\left(x^{2}+2 x+1\right)\left(3 x^{2}+5\right)
\end{gathered}
$$

Part 2: Conceptual Understanding

Use the graph for the problems on this page.
14) Estimate each of the following limits. (6 points)
$\lim _{x \rightarrow-3^{+}} f(x)=-2$
$\lim _{x \rightarrow-5^{-}} f(x)=\infty$

15) Identify two discontinuities and the type of discontinuity. (2 points)
$x=-5, x=-3$ and $x=3$ are all discontinuities. They are, in order, infinite, removable, and a jump discontinuity.

16) Estimate each of the following derivatives. (6 points)
$f^{\prime}(0)=0$

$$
f^{\prime}(2)=-2 \text { ish }
$$

17) On the axes below to the RIGHT, construct a function that is continuous everywhere, but not differentiable at the position $x=5$. (4 points)
18) On the axes below to the LEFT, construct a function that is defined everywhere, but does not have a limit at the position $x=5$. (4 points)

19) Below is a table of values of a function $f(x)$. Use it to estimate $f^{\prime}(2)$. (6 points)

There are many potential estimates. However the best estimates will find the slope of a line that is a good approximation of the tangent line. Such as:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-5}{3-2}=3
$$

x	$f(x)$
0	2
1	3
2	5
3	8
4	11
5	15

Part 3: Applications

20) The equation $2 y^{\prime}+y=x$ is called a differential equation because it involves an unknown function y, and its derivative y^{\prime}. This type of equation is often used in engineering and physics. Find constants a and b such that the function $y=a x+b$ satisfies the equation given. (6 points)

$$
\begin{gathered}
y=a x+b \\
y^{\prime}=a \\
2 a+a x+b=x \\
a x+(2 a+b)=x+0 \\
a=1 \\
2 a+b=0 \\
b=-2 \\
y=a-2
\end{gathered}
$$

Half credit if you did something meaningful:
Plugging y^{\prime} into the equation with y^{\prime} in it.
Plugging $2 y^{\prime}+y$ into the equation with x in it. (Ultimately useless. But good try!)

21) The position of a beetle is given by $p(t)=4 t^{2}+3 t+1$. Here t is measured in seconds and p is measured in feet. How fast is the beetle moving after 2 seconds? (6 points)

Velocity is the derivative of position. Hence $v(t)=p^{\prime}(t)=8 t+3$.
$v(2)=8 \cdot 2+3=16+3=19$

19 feet per second.

