Name \qquad

Part 1: Computational Skills

1) Find the limit below. (4 points)
$\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=3+3=6$
2) Find the limit below. (4 points)
$\lim _{x \rightarrow 3} \frac{x-3}{2 x^{2}-5 x-3}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(2 x+1)}=\lim _{x \rightarrow 3} \frac{1}{(2 x+1)}=\frac{1}{2 \cdot 3+1}=\frac{1}{7}$
3) Find the limit below. (4 points)
$\lim _{x \rightarrow 3} \frac{2 x^{2}+x-4}{x-3}$ DNE
4) Find the limit below. (4 points)
$\lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3}=\lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3} \cdot \frac{\sqrt{x}+\sqrt{3}}{\sqrt{x}+\sqrt{3}}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x}+\sqrt{3})}=\frac{1}{\sqrt{3}+\sqrt{3}}=\frac{1}{2 \sqrt{3}}$
5) The limit below comes out to 1 . Show every single step and very clear work on how to get there. (14 points)
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{2 x-2}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{2(x-1)}=\lim _{x \rightarrow 1} \frac{(x+1)}{2}=\frac{1+1}{2}=1$

Of particular note for things required for full credit:

- Show each step (4 pts)
- Proper use of equals signs (4pts)
- Proper use of the limit notation (4pts)
- Reserved for unexpected issues (2pts)
$6)$ Find the derivative of the function below. (4 points)
$f(x)=3 x^{4}+7 x^{2}-5$
$f^{\prime}(x)=12 x^{3}+14 x$

7) Find the derivative of the function below. (4 points)
$f(x)=\sin (x) \tan (x)$
$f^{\prime}(x)=\cos (x) \tan (x)+\sin (x) \sec ^{2}(x)$
8) Find the derivative of the function below. (4 points)
$f(x)=\frac{2 x^{2}+3 x}{6 x^{7}-5 x^{4}+2}$
$f^{\prime}(x)=\frac{(4 x+3)\left(6 x^{7}-5 x^{4}+2\right)-\left(2 x^{2}+3 x\right)\left(42 x^{6}-20 x^{3}\right)}{\left(6 x^{7}-5 x^{4}+2\right)^{2}}$
9) Find the derivative of the function below. (4 points)

$$
\begin{aligned}
& f(x)=\tan ^{-1}\left(e^{5 x^{4}}\right) \\
& f^{\prime}(x)=\frac{1}{1+\left(e^{5 x^{4}}\right)^{2}} e^{5 x^{4}} 20 x^{3}
\end{aligned}
$$

10) Given the function below, $f^{\prime}(2)=63$. Show every single step and very clear work on how to get there. (14 points)

$$
\begin{gathered}
f(x)=3\left(3 x^{2}-5 x-1\right)^{3} \\
f(x)=9\left(3 x^{2}-5 x-1\right)^{2} \cdot(6 x-5) \\
f^{\prime}(2)=9 \cdot\left(3 \cdot 2^{2}-5 \cdot 2-1\right)^{2} \cdot(6 \cdot 2-5)=9 \cdot(1)^{2} \cdot(7)=63
\end{gathered}
$$

Of particular note for things required for full credit:

- Show each step (4 pts)
- Proper use of equals signs (4pts)
- Proper use of the derivative notation (4pts)
- Reserved for unexpected issues (2pts)

Part 2: Conceptual Understanding

Given the graph of $y=f(x)$ below, find or estimate the following.
11) Find the limit below. (2 points)
$\lim _{x \rightarrow-3^{-}} f(x)=-3$
12) Find the derivative below. (2 points)
$f^{\prime}(-2)=0$
13) Find the limit below. (2 points)
$\lim _{x \rightarrow 3^{+}} f(x)=-\infty$
14) Find the derivative below. (2 points)

$f^{\prime}(5)=1$? (Anything in $\left[\frac{1}{2}, 5\right]$ is accepted for full credit)
15) Find the limit below. (2 points)
$\lim _{x \rightarrow 4} f(x)=-4$
16) Find the derivative below. (2 points)
$f^{\prime}(3)$ DNE
17) What is the average rate of change of $f(x)$ between $x=0$ and $x=1$? (2 points)
-2.2 ? (Anything in $[-2,-3]$ is accepted for full credit)
18) What is the instantaneous rate of change of $f(x)$ at $x=-1$? (2 points)
$f^{\prime}(-1)=2 ?$ (Anything in $[1,7]$ is accepted for full credit)
19) For each graph given below, graph the derivative. (3 points each)

Part 3: Applications

20) A spherical rubber bladder is being filled with water. Water is pumped I at a rate of 2 cubic feet per minute. How is the radius changing with respect to time when the radius is equal to 2 feet? (8 points)

Equation:
$V=\frac{4}{3} \pi r^{3}$

Variables:
$V=$ Unknown but we could solve for it if needed
$V^{\prime}=2$
$r=2$
$r^{\prime}=$? ?

Derivative:
$V^{\prime}=4 \pi r^{2} r^{\prime}$

Solution:
$2=4 \pi 2^{2} r^{\prime}=16 \pi r^{\prime}$
$r^{\prime}=\frac{2}{16 \pi}=\frac{1}{8 \pi}$ feet/minute
21) Velocity is defined as the change in position over time. If the relative position of a rodent running away from a cat is given by $p(t)=3 t^{2}+2 t$ where p is measured in feet and t is measured in seconds. What is the velocity of the rodent after 2 seconds? (4 points)
$p^{\prime}(t)=6 t+2$
$p^{\prime}(2)=6 \cdot 2+2=14 \mathrm{ft} / \mathrm{s}$

