\qquad

Part 1: Computational Skills

1) Find the limit below. (4 points)
$\lim _{x \rightarrow 0} \frac{\sin (4 x)}{6}=\frac{\sin (0)}{6}=0$
2) Find the limit below. (4 points)
$\lim _{x \rightarrow 0} \frac{\sin (4 x)}{6 x}=\lim _{x \rightarrow 0} \frac{4 \cos (4 x)}{6}=\frac{4}{6} \cos (0)=\frac{4}{6}=\frac{2}{3}$
3) Find the limit below. (4 points)
$\lim _{x \rightarrow 0} \frac{\sin (4 x)}{6 x^{2}}=\lim _{x \rightarrow 0} \frac{4 \cos (4 x)}{12 x}$ DNE

Note that from the right it goes to $+\infty$, but from the left it goes to $-\infty$. Hence the limit does not exist.
4) Find the integral below. (4 points)

$$
\begin{aligned}
& \int \frac{1}{3 x+6} d x=\int \frac{1}{u} \frac{d u}{3}=\frac{1}{3} \int \frac{1}{u} d u=\frac{1}{3} \ln |u|+C=\frac{1}{3} \ln |3 x+6|+C \\
& u=3 x+6 \\
& d u=3 d x \\
& \frac{d u}{3}=d x
\end{aligned}
$$

5) Find the integral below. (4 points)

$$
\begin{aligned}
& \int \frac{2 x}{x^{2}+7} d x=\int \frac{2 x}{u} \frac{d u}{2 x}=\int \frac{1}{u} d u=\ln |u|+C=\ln \left|x^{2}+7\right|+C \\
& u=x^{2}+7 \\
& d u=2 x d x \\
& \frac{d u}{2 x}=d x
\end{aligned}
$$

6) Find the integral below. (4 points)

$$
\begin{aligned}
& \int \frac{1}{1+4 x^{2}} d x=\int \frac{1}{1+(2 x)^{2}} d x=\int \frac{1}{1+u^{2}} \frac{d u}{2}=\frac{1}{2} \int \frac{1}{1+u^{2}} d u=\frac{1}{2} \tan ^{-1}(u)+C=\frac{1}{2} \tan ^{-1}(2 x)+C \\
& u=2 x \\
& d u=2 d x \\
& \frac{d u}{2}=d x
\end{aligned}
$$

7) Find the integral below. (4 points)

$$
\begin{aligned}
\int \frac{6}{9+x^{2}} d x= & 6 \int \frac{1}{9\left(1+\frac{x^{2}}{9}\right)}=\frac{6}{9} \int \frac{1}{1+\left(\frac{x}{3}\right)^{2}} d x=\frac{6}{9} \int \frac{1}{1+u^{2}} 3 d u=\frac{6}{3} \int \frac{1}{1+u^{2}} d u \\
& =2 \tan ^{-1}(u)+C=2 \tan ^{-1}\left(\frac{x}{3}\right)+C
\end{aligned}
$$

$u=\frac{x}{3}$
$d u=\frac{1}{3} d x$
$3 d u=d x$

Part 2: Conceptual Understanding

8) Let $f(x)$ be an odd function: that is, it satisfies $f(-x)=-f(x)$. Use this fact to find the integral below (4 points)
$3 \int_{-5}^{5} f(x) d x=0$

Every odd function on a symmetric domain around the origin has integral 0.
9) Given the table shown, find the limit below. (4 points)
$\lim _{x \rightarrow \infty} f(x)=35$

x	$f(x)$
1	43.2
10	36.5
100	35.2
1000	35.08
10000	35.007

10) The average value of the function $f(x)=1.3^{x}$ on the interval $[0,8]$ is 3.4 . Illustrate this on the graph below. (4 points)

Part 3: Applications

Problems 11-19: for all the integrals in this section, set up but do not evaluate them. Seriously, you will not have enough time if you try to compute all these integrals and I don't even know if you'll be able to evaluate them without skills from calculus II. Set them up and do not integrate.
11) Find the area between the two curves $y=6-x$ and $y=x^{2}$, shown here. (4 points)
$\int_{0}^{2} 6-x-x^{2} d x$

12) Find the area between the two curves $x=(y-3)^{2}$ and $x=4$, shown here. (4 points)

$$
\int_{1}^{5} 4-(y-3)^{2} d y
$$

13) The velocity of a bird is given by the function $f(x)=-(x-4)^{2}+4$ shown here. After 6 seconds, how far is it from where it started? (4 points)
$\int_{0}^{6}-(x-4)^{2}+4 d x$

14) The velocity of a bird is given by the function $f(x)=-(x-4)^{2}+4$ as shown in the previous problem. After 6 seconds, how far did the bird end up traveling? (4 points)
$-\int_{0}^{2}-(x-4)^{2}+4 d x+\int_{2}^{6}-(x-4)^{2}+4 d x$
y
15) The region illustrated here is rotated around the x-axis. (4 points)
a) Circle the descriptor that best describes the shape.
I. A bump with a rounded top.
II. A bump with a slighlty sharp point.
III. A ring with some flat side(s)
IV. The top of a volcano
b) Find the volume of the shape created.
$\int_{0}^{2} \pi\left(-x^{2}+4\right)^{2} d x$
(Disk)
$\int_{0}^{4} 2 \pi y \sqrt{4-y} d y$
(Shell)
16) The region illustrated here is rotated around the y-axis. (4 points)
a) Circle the descriptor that best describes the shape.
I. A bump with a rounded top.
i. A bump with a slighlty sharp point
ii. A ring with some flat side(s)
iii. The top of a volcano
b) Find the volume of the shape created.
$\int_{0}^{2} 2 \pi x\left(-x^{2}+4\right) d y$

(Shell)
$\int_{0}^{4} \pi(\sqrt{y-4})^{2} d y$
(Disk)
17) The region illustrated here is rotated around the line $x=-3$. (4 points)
a) Circle the descriptor that best describes the shape.
II. A bump with a rounded top.
i. A bump with a slighlty sharp point.
ii. A ring with some flat side(s)
iii. The top of a volcano
b) Find the volume of the shape created.

(Shell)

$$
\int_{0}^{4} \pi(\sqrt{4-y}+3)^{2} d y-\int_{0}^{4} \pi 3^{2} d y
$$

(Washer: Two disks subtracted)
18) The region illustrated here is rotated around the y-axis. (4 points)
a) Find the surface area of the curvy part of the shape created. You may ignore any flat side(s).
$\int_{0}^{2} 2 \pi x \sqrt{1+(-2 x)^{2}} d x$

19) Find the arc length of $f(x)=-x^{2}+4$ between $x=0$ and $x=2$, as shown here. (4 points)
$\int_{0}^{2} \sqrt{1+(-2 x)^{2}} d x$

Part 3: Review

20) Find the limit below. (4 points)
$\lim _{x \rightarrow 2^{+}} \frac{x-4}{x-2}=-\infty$
21) Find the limit below. (4 points)
$\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3} x+3=6$
22) Find the derivaive of the function below. (4 points)
$f(x)=\left(x^{2}+2\right)^{5}$
$f^{\prime}(x)=5\left(x^{2}+2\right)^{4} \cdot 2 x$
23) Find the derivaive of the function below. (4 points)

$$
\begin{aligned}
& f(x)=\sin (x) e^{x} \\
& \cos (x) e^{x}+\sin (x) e^{x}
\end{aligned}
$$

24) Find the integral below. (4 points)
$\int_{0}^{2} 6 x^{2} d x=\left.2 x^{3}\right|_{0} ^{2}=2 \cdot 2^{3}-0=16$
25) Find the integral below. (4 points)

$$
\int_{0}^{\pi / 2} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\frac{\pi}{2}}=-(0)-(-1)=1
$$

Part 4: Extra Credit Problem

26) Who discovered calculus? (4 bonus points)

Either Newton or Leibniz are acceptable answers.

