Name \qquad

1) Determine whether the series below converges or diverges. Circle which test(s) you use. (6 points) [Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]
$\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}$
2) Determine whether the series below converges or diverges. Circle which test(s) you use. (6 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+4}
$$

3) Find the $3^{\text {rd }}$ order Taylor Polynomial of $f(x)=e^{2 x}$ centered at $x=1$.
(6 points)
4) Use your Taylor Polynomial from the previous problem to write down a formula that approximates the number $e^{2.2}$
(6 points)
5) How accurate is your approximation from the previous problem? Note that the remainder in a $n^{\text {th }}$ order Taylor Polynomial is bounded by $\frac{M(x-a)^{n+1}}{(n+1)!}$.
(6 points)
6) Complete ONE of the following problems.
(a) Find the radius of convergence of the Taylor series below. (8 points maximum)

$$
\sum_{k=1}^{\infty}(2 x)^{k}
$$

(b) Find the interval of convergence of the Taylor series below. (10 points - full credit)

$$
\sum_{k=1}^{\infty} 2(x-5)^{k}
$$

7) Find the series expansion for ONE of the functions below, centered at $x=0$. Use any method.
(a) $f(x)=\cosh (x)$
(8 points maximum)
(b) $f(x)=e^{x^{2}}$
(10 points - full credit)
8) Find the series expansion for ONE of the functions below, centered at $x=0$. Use any method.
(a) $f(x)=\frac{1}{(1-x)^{2}}$
(8 points maximum)
(b) $f(x)=\frac{1}{(2-x)^{2}}$
(10 points - full credit)
9) Given the parametric equations below, find a single equation that describes the same curve. (6 points)

$$
\begin{gathered}
x=t^{2}+2 \\
y=4 t
\end{gathered}
$$

10) Given the parametric equations below, find the slope of the tangent line at $t=2$. (8 points)

$$
\begin{gathered}
x=3-t \\
y=3 t^{2}+12
\end{gathered}
$$

11) Find the equation of the line tangent to the curve in the previous problem at $t=2$. (6 points)
12) On the axis provided, graph ONE of the polar curves below.
(a) $r=3 \sin (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$.
(8 points - full credit)
(b) $r=3 \cos (3 \theta)$ for $0 \leq \theta \leq \frac{\pi}{6}$.
(8 points - full credit)
(c) $r=3 \cos (2 \theta)$ for $0 \leq \theta \leq \pi$.
(6 points maximum)

13) Complete ONE of the following problems.
(a) Given a polar equation $r=f(\theta)$, what is the formula for $\frac{d y}{d x}$ in terms of r and θ ?
(4 points maximum)
(b) Find the slope of the line tangent to $r=\cos (3 \theta)$ at $\frac{\pi}{6}$.
(6 points - full credit)
14) Write down an integral formula for the area shown in the graph below. You do not need to calculate
it. (6 points)

15) $\mathbf{2}$ point bonus: Use Taylor series to find the limit below.

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

16) $\mathbf{1 0}$ points bonus: Write the series below as a summation in sigma notation.
(Warning: Don't waste all you're time thinking about this problem. It's a huge bonus for a reason - it's hard and I don't expect many people to figure it out)

$$
2+4-8-16+32+64-128-256+512+1024-2048-4096+\cdots
$$

