Name \qquad

1) Determine whether the series below converges or diverges. Circle which test(s) you use. (6 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]
$\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}$
(1) $\lim _{k \rightarrow \infty} \frac{(-1)^{k}}{k^{3}}=0$
(2) $\frac{1}{(k+1)^{3}}<\frac{1}{k^{3}}$

By the alternating series test we see that from 1 and 2 above, the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}$ converges.
2) Determine whether the series below converges or diverges. Circle which test(s) you use. (6 points) [Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]
$\sum_{k=1}^{\infty} \frac{1}{k^{2}+4} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$

By the comparison we see from the above that the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}+4}$ converges.
3) Find the $3^{\text {rd }}$ order Taylor Polynomial of $f(x)=e^{2 x}$ centered at $x=1$. (6 points)

		At $x=1 ?$	Coef of
$f(x)$	$e^{2 x}$	e^{2}	x^{0}
$f^{\prime}(x)$	$2 e^{2 x}$	$2 e^{2}$	x^{1}
$f^{\prime \prime}(x)$	$4 e^{2 x}$	$4 e^{2}$	x^{2}
$f^{\prime \prime \prime}(x)$	$8 e^{2 x}$	$8 e^{2}$	x^{3}

$$
e^{2 x} \approx e^{2}+2 e^{2}(x-1)+\frac{4 e^{2}(x-1)^{2}}{2}+\frac{8 e^{2}(x-1)^{3}}{3!}
$$

4) Use your Taylor Polynomial from the previous problem to write down a formula that approximates the number $e^{2.2}$
(6 points)

$$
e^{2.2}=e^{2(1.1)} \approx e^{2}+2 e^{2}(1.1-1)+\frac{4 e^{2}(1.1-1)^{2}}{2}+\frac{8 e^{2}(1.1-1)^{3}}{3!}
$$

5) How accurate is your approximation from the previous problem? Note that the remainder in a $n^{\text {th }}$ order Taylor Polynomial is bounded by $\frac{M(x-a)^{n+1}}{(n+1)!}$.
(6 points)

$$
\frac{16 e^{2.2}(1.1-1)^{4}}{4!}
$$

6) Complete ONE of the following problems.
(a) Find the radius of convergence of the Taylor series below. (8 points maximum)

$$
\sum_{k=1}^{\infty}(2 x)^{k}
$$

(b) Find the interval of convergence of the Taylor series below. (10 points - full credit)

$$
\sum_{k=1}^{\infty} 2(x-5)^{k}
$$

[Word crashed and we lost these solutions]
7) Find the series expansion for ONE of the functions below, centered at $x=0$. Use any method.
(a) $f(x)=\cosh (x)$
(8 points maximum)
(b) $f(x)=e^{x^{2}}$
(10 points - full credit)
....math we missed

$$
e^{b}=1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\cdots
$$

It looks we want the series with $b=x^{2}$. This gives us:

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots
$$

8) Find the series expansion for ONE of the functions below, centered at $x=0$. Use any method.
(a) $f(x)=\frac{1}{(1-x)^{2}}$
(8 points maximum)

Note the geometric series:

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

Take a derivative:

$$
\begin{gathered}
-\frac{1}{(1-x)^{2}}(-1)=\sum_{k=1}^{\infty} k x^{k-1} \\
\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}
\end{gathered}
$$

(b) $f(x)=\frac{1}{(2-x)^{2}}$
(10 points - full credit)

Note the geometric series:

$$
\frac{1}{2-x}=\frac{1}{2} \cdot \frac{1}{1-\left(\frac{x}{2}\right)}=\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{x}{2}\right)^{k}
$$

Take a derivative:

$$
\begin{gathered}
-\frac{1}{2} \frac{1}{\left(1-\left(\frac{x}{2}\right)\right)^{2}}\left(-\frac{1}{2}\right)=\frac{1}{4} \sum_{k=1}^{\infty} k\left(\frac{x}{2}\right)^{k-1} \\
\frac{1}{4} \frac{1}{\left(1-\left(\frac{x}{2}\right)\right)^{2}}=\frac{1}{4} \sum_{k=1}^{\infty} k\left(\frac{x}{2}\right)^{k-1} \\
\frac{1}{(2-x)^{2}}=\frac{1}{4} \sum_{k=1}^{\infty} k\left(\frac{x}{2}\right)^{k-1}
\end{gathered}
$$

9) Given the parametric equations below, find a single equation that describes the same curve. (6 points)

$$
\begin{gathered}
x=t^{2}+2 \\
y=4 t \\
\frac{y}{4}=t \\
x=\left(\frac{y}{4}\right)^{2}+2
\end{gathered}
$$

10) Given the parametric equations below, find the slope of the tangent line at $t=2$. (8 points)

$$
\begin{gathered}
x=3-t \\
y=3 t^{2}+12 \\
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 t}{-1}=-6 t
\end{gathered}
$$

At $t=2$ we get:

$$
m=-12
$$

11) Find the equation of the line tangent to the curve in the previous problem at $t=2$. (6 points)

$$
\begin{gathered}
x=3-2=1 \\
y=3(4)+12=24 \\
y-24=(-12)(x-1) \\
y=-12 x+36
\end{gathered}
$$

12) On the axis provided, graph ONE of the polar curves below.
(a) $r=3 \sin (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$.
(8 points - full credit)
(b) $r=3 \cos (3 \theta)$ for $0 \leq \theta \leq \frac{\pi}{6}$.
(8 points - full credit)
(c) $r=3 \cos (2 \theta)$ for $0 \leq \theta \leq \pi$.
(6 points maximum)

13) Complete ONE of the following problems.
(a) Given a polar equation $r=f(\theta)$, what is the formula for $\frac{d y}{d x}$ in terms of r and θ ?
(4 points maximum)

$$
\begin{gathered}
x=r \cos (\theta) \\
y=r \sin (\theta) \\
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
\end{gathered}
$$

(b) Find the slope of the line tangent to $r=\cos (3 \theta)$ at $\frac{\pi}{6}$.
(6 points - full credit)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}=\frac{(-3 \sin (3 \theta)) \sin (\theta)+\cos (3 \theta) \cos (\theta)}{(-3 \sin (3 \theta)) \cos (\theta)-\cos (3 \theta) \sin (\theta)} \\
=\frac{\frac{(-3)}{2}+0}{(-3) \frac{\sqrt{3}}{2}-0}=\frac{1}{\sqrt{3}} \\
\cos (3 \theta)=\cos \left(\frac{\pi}{2}\right)=0 \\
\sin (3 \theta)=\sin \left(\frac{\pi}{2}\right)=1 \\
\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\
\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
\end{gathered}
$$

14) Write down an integral formula for the area shown in the graph below. You do not need to calculate it. (6 points)
$\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\int_{0}^{\frac{\pi}{12}} \frac{1}{2}(4 \cos (6 \theta))^{2} d \theta$

15) $\mathbf{2}$ point bonus: Use Taylor series to find the limit below.

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} \\
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots \\
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots-1}{x}=\lim _{x \rightarrow 0} \frac{x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots}{x} \\
=\lim _{x \rightarrow 0} \frac{1+\frac{x^{1}}{2}+\frac{x^{2}}{3!}+\cdots}{1}=1
\end{gathered}
$$

16) $\mathbf{1 0}$ points bonus: Write the series below as a summation in sigma notation.
(Warning: Don't waste all you're time thinking about this problem. It's a huge bonus for a reason - it's hard and I don't expect many people to figure it out)

$$
\begin{gathered}
2+4-8-16+32+64-128-256+512+1024-2048-4096+\cdots \\
\sum_{k=1}^{\infty} 2^{k}\left(\sin \left(\frac{\pi k}{2}\right)+\cos \left(\frac{\pi k}{2}\right)\right)
\end{gathered}
$$

