Name \qquad Test 2, Spring 2020

Part 1: Computational Skills

1) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points) [Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{n=1}^{\infty} \frac{3^{n}+n}{2^{n}-1}
$$

2) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{3}}
$$

3) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{n=1}^{\infty} \frac{n}{(\ln (n))^{n}}
$$

4) Find the radius of the convergence of the power series below.

$$
\sum_{k=3}^{\infty} \frac{k^{2}}{5^{k}}(x-2)^{k}
$$

5) Find a power series expansion of the function below, centered at $x=1$. Write your answer using sigma notation. (10 points)

$$
\frac{1}{x^{2}}
$$

6) Find a power series expansion of the function below, centered at $x=0$. (10 points) $\cos (5 x)$

Part 2: Conceptual Understanding

7) Let $f(x)$ be a function satisfying with power series expansion $\sum_{k=0}^{\infty} a_{k}(x-2)^{k}$, centered at $x=2$ with radius of convergence 7 . It is known that $f(2)=5$. What is $\sum_{k=0}^{\infty} a_{k}(2-2)^{k}$? (10 points)
8) If a power series has radius of convergence 4 and the interval of convergence does not include either endpoint, for how many integer x-values can the series possibly converge? (10 points)

Part 3: Applications

9) Below is a Taylor series (centered at $x=0$) that represents a function. Suppose we are going to ask a computer to evaluate this function at $x=1$. The computer uses the first 13 terms. How accurate is the computer's approximation? It is known that f is infinitely differentiable, and each derivative is no larger than 5. (10 points)

$$
\sum_{k=0}^{\infty} \frac{(k-3) x^{k}}{k}
$$

Part 4: Review

10) Find the integral below. (5 points)

$$
\int x \sec ^{2}(x) d x
$$

11) Find the integral below. (5 points)

$$
\int \sin (x) \cos ^{4}(x) d x
$$

Part 5: Small Bonus

12) A restaurant offers 20 different entries. Your party has 7 people, and you all want different meals so you can share. How many meal choices are there? Use correct mathematical notation. (2 points)
